广域测量系统可靠性及基于广域测量系统的电压稳定性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
广域测量系统WAMS借助GPS等高精度全球同步时钟,可以得到电网全局统一时空坐标下的动态信息,有效增强系统的可观测性,进而实现系统动态过程的实时监控,提高电网的自动控制和安全稳定水平。但是,如同其它任何系统一样,WAMS本身也有可能发生故障失效,而且由于WAMS涉及到了整个电力系统,因此其失效后果往往更加严重。如果只关注系统引入WAMS后的有利方面,而忽略它的潜在风险,这样得到的安全控制措施将是一个不完全的“单腿”方案。作者广泛检索了现有文献资料,结果表明:虽然在电力系统可靠性的其它领域中已经有了诸多成果,但目前对WAMS的失效研究几乎是一个空白,还没有相关的文章。论文率先提出了评估WAMS可靠性的分析方法,并建立了与WAMS功能特点相适应的可靠性评估模型。
     鉴于WAMS系统是包含多设备(包括多台同步相量测量装置PMU)和专用通信网络在内的软硬件相结合的复杂系统,论文先采用了故障树分析方法将WAMS分解为PMUs、相量数据集中器PDC、WAMS局部通信网络、WAMS主干通信网络以及控制中心几个部分,并给出了WAMS整体可靠性的计算公式。然后,论文针对WAMS各子部分的特点建立了相应的可靠性模型,并运用多种可靠性评估方法推导了WAMS各子部分的两状态等效概率模型;同时还对各子部分进行了灵敏度分析,以识别各子部分中影响可靠性的关键模块和参数。最后,利用各子部分的两状态等效概率模型和整个WAMS的可靠性计算公式建立了WAMS整体的等效两状态Markov模型。所提出的模型可以广泛应用于评估各种基于WAMS的控制措施对系统风险的影响,包括本文提出的基于WAMS的电压稳定性控制方案的风险。该模型还可以进一步用于评估引入WAMS后由常规电力系统和通信、控制、测量系统组成的广义系统的整体风险。
     作为WAMS实际功能应用的一个非常合理的延伸,论文接着建立了一套基于WAMS的电力系统电压稳定性指标。所提出的指标可以识别系统的电压稳定薄弱环节(薄弱线路和节点),并准确预测薄弱环节的传输功率极限。这些指标不但能够克服传统基于系统潮流信息的电压稳定性指标(如基于最大功率法和雅可比矩阵奇异法的指标等)的缺点,不需要对整个系统进行潮流计算,因此计算速度非常快;而且克服了现有大多数局部性指标的不足,在模型中考虑了系统对局部网络的影响,具有较高的精度;该指标基于WAMS动态实时测量数据,因此能自动处理与电压相关或与频率相关的实际负荷特性,捕捉到负荷的“慢动作”变化过程,及时启动系统紧急保护控制以避免系统发生电压崩溃;同时由于所提出的指标依赖的WAMS信息量较少,因此对WAMS本身的可靠性要求相对较低,更便于实际实施。4个IEEE试验系统的仿真结果表明,所提出的指标可以精确地判断出系统发生电压崩溃的薄弱环节,并预测出系统电压崩溃裕度。
     利用所提出的新型电压稳定性指标,论文进一步建立了考虑电压稳定性约束条件的最优切负荷模型。该模型通过切除部分负荷、减少系统中电压稳定性薄弱环节上的传输功率,可以有效地降低系统发生电压失稳的风险。论文采用了预测-校正原对偶内点法求解该模型,并通过Q-V模态分析研究切负荷前后系统降阶雅可比矩阵的特征值变化情况,评估切负荷控制措施的有效性。2个IEEE标准试验系统的仿真结果表明,该模型直接针对系统薄弱环节,自动辩识切负荷节点和最小切负荷量,具有很好的效果。
The WAMS can be used to conduct real time monitoring and control in dynamic system states and enhance the system security level because it utilizes the high precise synchronous clock on the earth such as GPS to build a unified space-time ordinate for the whole system. However, like any other physical system, the WAMS can fail while it can provide much better observability and controllability in power system operations. The consequence of WAMS failure is severe and could be a large blackout because of its wide-area impacts if its emergency control function does not work properly. It has been recognized that the reliability of WAMS must be quantitatively evaluated and assured while utilizing its beneficial features. In other words, the WAMS based protection and control scheme would be a“single leg”one if the risk of WAMS failure is ignored. The author has carried a wide range of literature reading, which indicates that the quantitative reliability evaluation of WAMS has not been addressed so far although considerable efforts have been devoted to other aspects of power system reliability assessment. For the first time, the dissertation proposed the WAMS reliability evaluation techinques and established relevant reliability models of WAMS.
     The WAMS itself is a complex system that is associated with both software and hardware and contains multiple devices (such as many PMUs) and special communication networks. The whole WAMS is first divided into several sub-systems including PMUs, PDC, local communication network, backbone communication network and control center. The Fault Tree Analysis (FTA) method is used to derive the general formula of evaluating WAMS system reliability. Then, the reliability models of all sub-systems are individually developed based on their features and their two-state equivalent Markov models are established using a variety of probabilistic reliability assessment techniques. Sensitivity analyses are also performed to identify key modules and parameters in each sub-system. Finally, the two-state equivalent Markov model of the whole WAMS is established using the two-state models of sub-systems and the general formula. This two-state model of the whole WAMS can be widely used to assess the effects on the system risk of various WAMS based control schemes, including the voltage stability control scheme proposed in this paper. It can also be applied to evaluate the risk of a generalized system that contains a regular power system, communication networks, control and measurement systems.
     As a natural and rational extension of WAMS application, the dissertation proposes a set of new voltage stability indices based on the measurements of WAMS, which can be used to identify weak buses or circuits in the system and accurately predict their transfer capability limits. The indices have four major advantages:①Compared to traditional power flow-based voltage stability indices (such as those based on the maximum power method or the Jacobian matrix singularity), the proposed indices do not require any computation associated with system-wide power flow and therefore is much faster.②Compared to majority of the voltage indices based on local measurements, the proposed indices include the effect of overall system outside the local network using a new equivalent model of the system. This assures accuracy of the indices in modeling.③The WAMS based indices could automatically include time-dependent frequency and voltage related load characteristics and start up the emergency protection and control scheme to prevent voltage collapse in time.④The proposed indices require a small amount of WAMS measurements and therefore has less reliance on the reliability performance of WAMS. This feature is very useful in practical application of the indices. The simulation results of 4 IEEE standard test systems indicate that the proposed indices can accurately recognize weak buses and circuits, and predict the margin from the voltage collapse point.
     Based on the proposed voltage stability indices, the dissertation establishes a minimum load shedding Optimal Power Flow (OPF) model with voltage stability constraints. The power level required to transfer on the weak buses and circuits is reduced by the OPF model through shedding partial loads. This can effectively reduce the risk of voltage instability in the system. The Predictor Corrector Primary Dual Interior Point Method (PCPDIPM) is used to solve the OPF model. The effectiveness of load shedding is confirmed using the Q-V mode analysis method, which can be applied to compute eigenvalues of a reduced Jacobian matrix. The numerical results of 2 IEEE standard test systems demonstrate that the proposed OPF model is very effective since it automatically identifies the weak buses and circuits and calculates minimum load shedding.
引文
[1] Phadke A G. Synchronized phasor measurements in power systems [J]. IEEE Computer Applications in Power Systems, 1993, 6(2): 10-15.
    [2] Phadke A G, Thorp J S. History and applications of phasor measurements [C]. Power Systems Conference and Exposition, 2006 IEEE PES, Atlanta, USA, 2006.
    [3] Taylor C W, Erickson D C, Martin K E, et al. WACS - wide-area stability and voltage control system: R&D and online demonstration [J]. Proceedings of the IEEE Energy Infrastructure Defense Systems, 2005, 93(5): 892-906.
    [4] Begovic M, Novosel D, Karlsson D, et al. Wide-area protection and emergency control [J]. Proceedings of the IEEE Energy Infrastructure Defense Systems, 2005, 93(5): 876-891.
    [5]江全元,邹振宇,曹一家.考虑时滞影响的电力系统稳定分析和广域控制研究进展[J].电力系统自动化, 2005, 29(3): 1-6.
    [6] Carson W. Taylor. Power system voltage stability [M].北京:中国电力出版社, 2001.
    [7]周双喜,朱凌志,郭锡玖,等.电力系统电压稳定性及其控制[M].北京:中国电力出版社, 2004.
    [8] IEEE Tutorial Course Text, Electric delivery system reliability evaluation [J]. 05TP175, Proceedings of the IEEE PES General Meeting, San Francisco, California USA, 2005.
    [9] Wenyuan Li. Risk Assessment of Power Systems: Models, Methods, and Applications [M]. IEEE Press and Wiley & Sons, New York, 2005.
    [10] Billinton R, Fotuhi-Firuzabad M and Bertling L. Bibliography on the application of probability methods in power system reliability evaluation 1996-1999 [J]. IEEE Transactions on Power Systems, 2001, 16(4): 595-602.
    [11]韩英铎,姜齐荣,谢小荣,等.从美加大停电事故看我国电网安全稳定对策的研究[J].电力设备, 2004, 5(3): 8-12.
    [12] IEEE Standard for Synchrophasors for Power Systems [S]. IEEE C37.118– 2005.
    [13]丁剑,白晓民,王文平,等.电力系统中基于PMU同步数据的应用研究综述[J].继电器, 2006, 34(6): 78-84.
    [14] Rehtanz C, Bertsch J. A new wide area protection system [C]. IEEE Porto Power Technique Conference, 10-13 September 2001, Porto, Portugal.
    [15] Phadke A G, Horowitz S H, Thorp J S. Aspects of power system protection in the post-restructuring [C]. Proceeding of the 32nd Hawaii International Conference on System Sciences, Hawaii 1999.
    [16] Phadke A G, et al. The wide world of wide-area measurement [J]. IEEE Power & Energy Magazine, 2008, 6(5): 52-65.
    [17] Madani V. Western interconnection experience with phasor measurements [C]. IEEE PES Power Systems Conference and Exposition, PSCE’06, Atlanta, USA, October 29 - November 1 2006: 343-352.
    [18] Donnelly M, Ingram M, Carroll J R. Eastern interconnection phasor project [C]. Proceedings of the 39th Hawaii International Conference on System Sciences, HICSS’06, System Sciences-2006, Hawaii, January 2006.
    [19] Xiaorong Xie, Yaozhong Xin, et al. WAMS applications in Chinese power system [J]. IEEE Power & Energy Magazine, January/February 2006: 54-63.
    [20] Min Y. Phasor measurement applications in China [C]. IEEE PES Transmission and Distribution Conference and Exhibition. Asia Pacific, Yokohama, Japan, 2002, 1: 485-489.
    [21] Liu C W. Phasor measurement applications in Taiwan [C]. IEEE PES Transmission and Distribution Conference and Exhibition. Asia Pacific, Yokohama, Japan, 2002, 1: 490-493.
    [22]王兆家,岑宗浩,陈汉中.华东电网多功能功角实时监测系统的开发及应用[J].电网技术, 2002, 26(8): 73-77.
    [23] Phadke A G, Thorp J S, Karimi K J. State estimation with phasor measurements [J]. IEEE Transactions on Power Systems, 1986, 1(1): 233-238.
    [24]卢志刚,许世范,史增洪,等.部分电压和电流相量可测量时电压相量的状态估计[J].电力系统自动化, 2000, 24(1): 42-44.
    [25] Atanackovic D, Clapauch J H, Dwernychuk G, et al. First steps to wide area control [J]. Electrical Power and Energy Systems, 2008, 6(1):61-68.
    [26]余志文,白雪峰,郭志忠.继电保护与稳定控制的一体化[J].电力自动化设备, 2002, 22(7): 71-74.
    [27] Korba P, Larsson M, Rehtanz C. Detection of oscillations in power systems using Kalman filtering techniques [C]. Proceedings of IEEE Conference on Control Applications, 2003, 1: 183-188.
    [28]谢小荣,肖晋宇,童陆园,等.采用广域测量信号的互联电网区间阻尼控制[J].电力系统自动化, 2004, 28(2): 37-40.
    [29] Ota Y, UkaiH, Nakamura K, et al. Evaluation of stability and electric power quality in power system by using phasor measurements [C]. Proceedings of International Conference on Power System Technology. 2000, 3: 1335-1340.
    [30] OtaY, UkaiH, NakamuraK, et al. PMU based midterm stability evaluation of wide-area power system [C]. IEEE PES Transmission and Distribution Conference and Exhibition. Asia Pacific,2002, 3: 1676-1680.
    [31] Dongchen Hu. A wide-area control for mitigating angle instability in electric power systems [D]. Masters Thesis, School of EECS, Washington State University, Pullman, WA, December 2006.
    [32] Larsson M, Rehtanz C. Predictive frequency stability control based on wide-area phasor measurements [C]. IEEE Power Engineering Society Summer Meeting. Chicago, USA, 2002, 1: 233-238.
    [33] Nuquii R F, Arun G P R P. Fast on-line voltage security monitoring using synchronized phasor measurements and decision trees [C]. IEEE PES Winter Meeting, Columbus USA, 2001.
    [34] Larsson M, Karlsson D. Coordinated system protection scheme against voltage collapse using heuristic search and predictive control [J]. IEEE Transactions on Power Systems, 2003, 18(3): 1001-1006.
    [35] Anderson P M, LeReverend B K. Industry experience with special protection schemes [J]. IEEE Transactions on Power Systems, 1996, 11(3): 1166-1179.
    [36] McCalley J D, Fu W. Reliability of special protection schemes [J]. IEEE Transactions on Power Systems, 1999, 14(4): 1400-1406.
    [37] Fu W, Zhao S, McCalley J D. Risk assessment for special protection systems [J]. IEEE Transactions on Power Systems, 2002, 17(1): 63-72.
    [38] Hsiao T Y, et al. A risk-based contingency selection method for SPS application [J]. IEEE Transactions on Power System, 2006, 21(2): 1009-1010.
    [39]马尔柯维奇,张钟俊,译.动力系统及其运行情况[M].北京:电力工业出版社, 1956.
    [40] Hans Glavitsch. Voltage stability and collapse– A review of basic phenomena and methods of assessment[C]. Bulk power system voltage phenomena– III voltage stability security and control, An International Seminar Interlaker, Switzerland, August 1994.
    [41]王梅义,吴竞昌,蒙定中.大电网系统技术[M].北京:中国电力出版社, 1995.
    [42]彭志炜,胡国根,韩祯祥.基于分叉理论的电力系统电压稳定性分析[M].北京:中国电力出版社, 2005.
    [43] Vu K T, Liu C C, Taylor C W ,et al. Voltage instability: mechanisms and control strategies [J]. Proceedings of the IEEE, 1995, 83(11): 1442-1454.
    [44] Western systems coordinating council disturbance report [R]. For the power system outages that occurred on the Western interconnection on– July 2, 1996 1424 MAST, July 3, 1996 1403 MAST. Approved by WSCC operations committee on September 19, 1996.
    [45] Western systems coordinating council disturbance report [R]. For the power system outages that occurred on the Western interconnection on– August 10, 1996 1548 PAST. Approved bythe WSCC operations committee on October 18, 1996.
    [46] Kundur P, et al. Voltage stability assessment [R]. Procedures and Guides, IEEE/PES special publication, 2000.
    [47] Kundur P, Paserba J, Ajjarapu V, et al. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions [J]. IEEE Transactions on Power Systems, 2004, 19(2): 1387-1401.
    [48]段献忠,何仰赞,陈德树.电力系统电压稳定性的研究现状[J].电网技术, 1995, 19(4): 20-24.
    [49] Desoer C A. A maximum power transfer problem [J]. IEEE Transactions on Circuits and Systems, 1983, 30(10): 757-782.
    [50] Flatabo N, Ognedal R, Carisen T. Voltage stability condition in a power transmission system calculated by sensitivity methods [J]. IEEE Transactions on Power Systems, 1990, 5(4): 1286-1293.
    [51] Tamura Y, Mori H, Iwamoto S. Relationship between voltage instability and multiple load solutions in electric power systems [J]. IEEE Transactions on Power Apparatus and Systems, 1983, 102(5): 1115-1123.
    [52] Araposthatis A, Sastry S, Varaiya P. Analysis of power flow equation [J]. Electric Power & Energy Systems, 1981, 3(3): 115-126.
    [53] Lof P A, Smed T, Anderson G, et al. Fast calculation of a voltage stability index [J]. IEEE Transactions on Power Systems, 1992, 7(1): 54-64.
    [54] Ajjarapu V A, Christy C. The continuation power flow: A tool for steady– state voltage stability analysis [J]. IEEE Transactions on Power Systems, 1992, 7(1): 416-423.
    [55] Wu F F. Characterization of power system small disturbance stability with models in- cooperating voltage variation [J]. IEEE Transactions on Circuits and Systems 1986, 33(4): 406-417.
    [56] Chiang H D, Dobson I, Thomas R J. On voltage collapse in electric power systems [J]. IEEE Transactions on Power Systems, 1990, 5(2): 601-608.
    [57] Pai M K. Voltage stability: analysis needs, modeling requirement, and modeling adequacy [J]. IEE Proceeding– Generation, Transmission and Distribution, 1993, 140(4): 279-286.
    [58] Begovic M M, Phadke A G. Dynamic simulation of voltage collapse [J]. IEEE Transactions on Power Systems, 1990, 5(4): 1529-1534.
    [59] Kwatny H G, Pasrija A K, et al. Static bifurcation in electric power networks: loss of steady state stability and voltage collapse [J]. IEEE Transactions on Circuits and Systems, 1986, 33(10): 981-991.
    [60] Chiang H D, Jumeau R J. A more efficient formulation for computation of the maximum loading in electric power systems [J]. IEEE Transactions on Power Systems, 1995, 10(2): 635-646.
    [61] Dobson I, Lu L. New methods for computing a closest saddle– node bifurcation and worst case load power margin for voltage collapse [J]. IEEE Transactions on Power Systems, 1993, 8(3): 905-913.
    [62] Chiang H D, Fluek A J, Shah K S, et al. CPFLOW: A practical tool for tracing power system steady– state stationary behavior due to load generation variations [J]. IEEE Transactions on Power Systems, 1995, 10(2): 623-630.
    [63] Ajjarapu V A, Lee B. Bifurcation theory and its application to nonlinear dynamical phenomenal in an electrical power system [J]. IEEE Transactions on Power Systems, 1992, 7(1): 424-431.
    [64]周双喜,姜勇,朱凌志.电力系统电压静态稳定性指标评述[J].电网技术, 2000, 25(1): 1-6.
    [65]袁骏,段献忠,何仰赞,等.电力系统电压稳定灵敏度分析方法综述[J].电网技术, 1997, 21(9): 7-10.
    [66] Lee B, Ajjarapu V. Invariant subspace parametric sensitivity (ISPS) of structure-preserving power system models [J]. IEEE Transactions on Power Systems,1996,11(2): 845-850.
    [67] Kessel P, Glavitsch H. Estimating the voltage stability of a power system [J]. IEEE Transactions of Power Delivery, 1986, 3(3): 346-354.
    [68] Tamura T, Sakamoto K, Tayama Y. Current issues in the analysis of voltage instability phenomena[C]. Proceedings of Bulk Power System Voltage Phenomena-Voltage Stability and Security, EL-6183, EPRI, January 1989.
    [69] Canizares C A, Alvarado F L. Point of collapse and continuation methods for large ac/dc systems [J]. IEEE Transactions on Power Systems,1993,8(1): 1-8.
    [70] Iba K, Suzuki H, Eguwa M, et al. Calculation of critical loading condition with nose curve using homotopy continuation method [J]. IEEE Transactions on Power Systems,1991,6(2): 584-593.
    [71] Vu K, Begovic M M, Novosel D, et al. Use of local measurements to estimate voltage-stability margin [J]. IEEE Transactions on Power Systems, 1999, 14(3): 1029-1035.
    [72] Borka M, Begovic M M. Voltage-stability protection and control using a wide-area network of phasor measurements [J]. IEEE Transactions on Power Systems, 2003, 18(1): 121-127.
    [73] Haque M H. Use of V-I characteristic as a tool to assess the static voltage stability limit of a power system [J]. IEE Proceedings-Generation, Transmission and Distribution, 2004, 151(1):1-7.
    [74] Capitanescu F, Van Cutsem T. Preventive control of voltage security margins: A multi-contingency sensitivity based approach [J]. IEEE Transactions on Power Systems, 2002, 17(2): 358-364.
    [75] Feng Z, Ajjarapu V, Maratukulam D J. A comprehensive approach for preventive and corrective control to mitigate voltage collapse [J]. IEEE Transactions on Power Systems, 2000, 15(2): 791-797.
    [76] De Tuglie E, La Scala M, Scarpelini P. Real-time preventive actions for the enhancement of voltage-degraded trajectories [J]. IEEE Transactions on Power Systems, 1999, 14(2): 561-568.
    [77] La Svala M, Trovato M, Antonelli C. On-line dynamic preventive control: An algorithm for transient security dispatch [J]. IEEE Transactions on Power Systems, 1998, 13(2): 601-610.
    [78] Wang X, Ejebe G S, Tong J, et al. Preventive/corrective control for voltage stability using direct interior point method [J]. IEEE Transactions on Power Systems, 1998, 13(3): 878-883.
    [79] Koishikawa S, Ohsaka S, et al. Control of reactive power supply enhancing voltage stability of a bulk power transmission system and a new scheme of monitor on voltage security [C]. CIGRE, 38/39-01, 1990.
    [80] Vu H, Pruvot P, Launay C, et al. An improved voltage control on large-scale power system [J]. IEEE Transactions on Power Systems, 1996, 11(3): 1295-1303.
    [81]韩祯祥,薛禹胜,张伯明. 1996年国际大电网会议(CIGRE)第37、38、39组简介[J].电力系统自动化, 1997, 21(1): 45-48.
    [82] Li Xiao-lu, Bao Li-xin, Duan Xian-zhong, et al. Effects of FACTs controllers on small signal voltage stability [C]. IEEE PES Winter Meeting, Singapore, 2000.
    [83] Larsson M, Hill D J, Olsson G. Emergency voltage control using search and predictive control [J]. Electrical Power and Energy Systems, 2002, 24(2): 121-130.
    [84] Vargas L S, Vanizares C A. Time dependence of controls to avoid voltage collapse [J]. IEEE Transactions on Power Systems, 2000, 15(4): 1367-1375.
    [85] Rehtanz C, Bertsch J. Wide area measurement and protection system for emergency voltage stability control [C]. IEEE PES Winter Meeting, New York, 2002.
    [86] Alvarado F L. Voltage stability including detailed load models [C]. Bulk power system voltage phenomena– III voltage stability security and control, An International Seminar Interlaker, Switzerland, August 1994.
    [87] Ohtsuki H, Yokoyama A, Sekine Y. Reverse action of on-load tap changer in association with voltage collapse [J]. IEEE Transactions on Power Systems, 1991, 6(1): 300-306.
    [88] Lee B, Ajjarapu V. Bifurcation flow: A tool to study both static and dynamic aspects of voltage stability [C]. Bulk power system voltage phenomena– III voltage stability security and control, An International Seminar Interlaker, Switzerland, August 1994.
    [89] Qiu B, Liu Y, Phadke A G. Communication infrastructure design for strategic power infrastructure defense(SPID) system [C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, New York, USA, August 2002, 1: 672-677.
    [90] Fahid K A, Gopalakrishnan P, Cherian S. PhasorNet: A high performance network communications architecture for synchrophasor data transfer in wide area monitoring, protection and control applications [C]. Proceedings of the Bulk Power System Dynamics and Control - VII, Revitalizing Operational Reliability, 2007 iREP Symposium, August 2007, 1: 1-4.
    [91] Hauser C H, Bakken D E, Bose A, A failure to communication: next-generation communication requirements, technologies, and architecture for the electric power grid [J]. IEEE Power and Energy Magazine, March-April 2005, 3(2): 47- 55.
    [92]祝国龙,曾庆济,叶通,等. IP over WDM光网络联合保护策略[J].光通信技术, 2003, 27(1): 13-16.
    [93] Tong Xiaoyang, Liao Guodong, Wang Xiaoru, et al. The analysis of communication architecture and control mode of wide area power systems control [C]. Proceedings - 2005 International Symposium on Autonomous Decentralized Systems, ISADS 2005, 2005, 1: 59-65.
    [94] Billinton R. Allan R N, Reliability evaluation of engineering system (second edition) [M]. Plenum Press, New York, 1994.
    [95] Singh C, Billinton R. System reliability modeling and evaluation [M]. Hutchinson, London, 1977.
    [96] Shooman M L. Software engineering: design, reliability, and man management [M]. McGraw-Hill, 1983.
    [97] Xie M. Software reliability modeling [M]. World Scientific Publishing, 1991.
    [98] Goel A L, Okumoto K. Time dependent error-detection rate model for software reliability and other performance measures [J]. IEEE Transactions on Reliability, 1979, R-28(3): 206-211.
    [99] Behrendt K, Fodero K. The Perfect Time: An examination of time synchronization techniques [C]. 32nd Annual Western Protective Relay Conference, Washington, USA, October, 2005.
    [100] Task force of the IEEE APM subcommittee-common mode forced outages of overhead transmission lines [R]. IEEE Transactions on Power Apparatus System, Vol. PAS-95, 1976, pp. 859-864.
    [101] Wang Gang, Ding Mao-sheng, Li Xiao-hua, et al. Reliability analysis of digital protection [J]. Proceedings of the CSEE, 2004, 24(7): 47-52.
    [102] Antonopoulos A, o’Reilly J J, Lane P. A framework for the availability assessment of SDH transport networks [C]. 2nd IEEE Symposium on Computers and Communications, Alexandria, Egypt, July 1-3, 1997, 1: 666-670.
    [103]杜明军.光纤环网保护在南方电网中的应用[J].电力系统通信, 2003, 24(9): 1-4.
    [104] Meng Laiyin, James L E, Arellano R R, et al. Real time estimation for usage-dependent reliability on a dual-backbone network subsystem [C]. 29 th Annual International Conference on Fault-Tolerant Computing, Madison, Wisconsin USA, June 15-18, 1999.
    [105] Lin Nanchang, Charles B, Silio J. A reliability comparison of single and double rings [C]. Proceedings of the IEEE INFOCOM, Multiple Facets of Integration, San Francisco, California USA, June 3-7, 1990.
    [106]熊小伏,田娟娟,周家启,等.电力通信系统可靠性模型研究[J].继电器, 2007, 35(14): 28-32.
    [107] Hussein J A, Majeed A R. Reliability study of regional power network communication [C]. Proceeding of the Transmission & Distribution Conference and Exposition: Latin America, 2006 IEEE PES, Caracas, Venezuela, August 15-18, 2006.
    [108]赵建立,高会生.光纤保护通道可靠性评估[J].电力系统通信, 2007, 28(6): 5-8.
    [109]赵建立,高会生,曾常安. FTA在光纤保护通道可靠性分析中的应用[J].电力系统通信, 2007, 28(117): 49-53.
    [110] Angskun T, Bosilca G, Fagg G, et al. Reliability analysis of self-healing network using discrete-event Simulation [C]. 7th IEEE International Symposium on Cluster Computing and the Grid, CCGrid 2007, Rio de Janeiro, Brazil, May 14-17, 2007.
    [111] Wenyuan Li, Billinton R. Common cause outage models in power system reliability evaluation [J]. IEEE Transactions on Power Systems, 2003, 18(2): 966-968.
    [112]李苑,方少元. SDH自愈环网特性分析及应用[J].现代电子技术, 2006, 29(20): 94-96.
    [113] Ramamurty S, Mukherjee B, Survivable WDM mesh networks, part I protection [C]. Proceedings of the Eighteenth Annual Joint Conference of the IEEE Computer and Communications Societies(Infocom‘99), New York, 21-25 March 1999, 2: 744–751.
    [114] Ramamurthy S, Mukherjee B. Survivable WDM Mesh Networks, Part II-Restoration [C]. Proceeding of the IEEE International Conference on Communication (ICC‘99), 6-10 June 1999, 3: 2023– 2030.
    [115] Qin Zheng, G. Mohan. Protection approaches for dynamic traffic in IP/MPLS-over-WDM network [J]. IEEE Communications Magazine, , May 2003, 41(5): S24-S29.
    [116] Autenrieth A, Kirstadter A. Engineering end-to-end IP resilience using resilience- differentiated Qos [J]. IEEE Communications Magazine, January 2002, 40(1): 50– 57.
    [117] Jozsa B G, Orincsay D, Kern A. Surviving multiple network failures using shared backup path protection[C]. Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC 2003), 30 June - 3 July 2003, Kiris-Kemer, Turkey, 2: 1333- 1340.
    [118] Chen Y G. A cut-based method for terminal-pair reliability [J]. IEEE Transactions on Reliability, 1996, 45(5): 413-416.
    [119] Hung-Yau Lin, Sy-Yen Kuo, Fu-Min Yeh. Minimal cutset enumeration and network reliability evaluation by recursive merge and BDD [C]. Proceedings of the Eighth IEEE International Symposium on Computers and Communication (ISCC 2003), 30 June - 3 July 2003, Kiris-Kemer, Turkey, 2: 1341– 1346.
    [120] Singh C, Billinton R, A new method to determine the failure frequency of a complex system [J]. IEEE Transactions on Reliability, 1974, R-23: 231-234.
    [121] Wu, Jingtao. New Implementations of Wide Area Monitoring System in Power Grid of China [C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2005, Proceedings - 2005 IEEE/PES Transmission and Distribution Conference and Exhibition - Asia and Pacific, 2005, 1: 1-7.
    [122] Verbic G, Gubina F. A new concept of protection against voltage collapse based on local phasors [J]. IEEE Transactions on Power Delivery, 2004, 19(2): 576-581.
    [123] Gubina F, Strmcnik B. Voltage collapse proximity index determination using voltage phasors approach [J]. IEEE Transactions on Power Systems, 1995, 10(2): 788-794.
    [124]黄志刚,邬炜,韩英铎.基于同步相量测量的电压稳定评估算法[J].电力系统自动化, 2002, 26(2): 28-33.
    [125] Balamourougan V, Sidhu T S. Technique for online prediction of voltage collapse [J]. IEE Proceedings: Generation, Transmission and Distribution, 2004, 151(4): 453-460.
    [126]徐冰亮,柳焯,王永刚,等.电网负荷节点临界阻抗模的性质及意义[J].哈尔滨工业大学学报, 1999, 31(4): 91-95.
    [127]段俊东,郭志忠.一种可在线确定电压稳定运行范围的方法[J].中国电机工程学报, 2006, 26(4): 113-118.
    [128] Overbye T J. Computation of a practical method to restore power flow solvability [J]. IEEE Transactions on Power Systems, 1995, 10(1): 280-287.
    [129] Granville S, Mello J C O, and Melo A C G. Application of interior point methods to power flow unsolvability [J]. IEEE Transactions on Power Systems, 1996, 11(2): 1096-1103.
    [130] Chebbo A M, Irving M R, Sterling M J H. Reactive power dispatch incorporating voltagestability [J]. IEE Proceedings-C, 1992, 139(3): 253-260.
    [131] Chebbo A M, Irving M R, Sterling M J H. Voltage collapse proximity indicators: behaviour and implications [J]. IEE Proceedings-C, 1992, 139(3): 241-252.
    [132] Wenyuan Li, Mansour Y, Vaahedi E, et al. Incorporation of voltage stability operation Limits in composite system adequacy assessment: BC Hydro’s experience [J]. IEEE Transactions on Power Systems, 1998, 13(4): 1279-1284.
    [133] Rosehart W, Caiiizares C, Quintana V. Costs of voltage security in electricity markets [J]. Proceedings of IEEE PES Summer Meeting, 2000, 4: 2115-2120.
    [134] Kim S, Song T Y, Jeong M H, et al. Development of voltage stability constrained optimal power flow (VSCOPF) [C]. Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, 2001, 3: 1664-1669.
    [135] Balanathan R, Pahalawaththa N C, Annakkage U D, et al. A strategy for undervoltage load shedding in power systems [C]. Proceedings of the IEEE International Conference on Power System Technology, 1998, 2: 1494-1498.
    [136] Hua Wei, Sasaki H, Kubokawa J. An interior point nonlinear programming for optimal power flow problems with a novel data structure [J]. IEEE Transactions on Power Systems,1998,l3(3): 870-877.
    [137]余娟,颜伟,徐国禹,等.基于预测-校正原对偶内点法的无功优化新模型[J],中国电机工程学报, 2005, 25(11): 146-151.
    [138]刘方.关于电力系统动态最优潮流的几种模型与算法[D].重庆大学, 2007.
    [139] Kunder P. Power system stability and control [M]. New York: McGraw– Hill Inc., 1994.
    [140] Gao B, Morison G K, Kundur P, Voltage stability evaluation using modal analysis [J]. IEEE Transactions on Power Systems, 1992, 7(4): 1529-1542.
    [141] Morison G K, Gao B, Kundur P, Voltage stability analysis using static and dynamic approaches [C]. IEEE PES Summer Meeting, July 12-16, 1992, Seattle, Washington.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700