电力系统分布式多目标无功优化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国电力系统“西电东送,南北互供”大联网格局的逐步实现,以及特高压交直流电网和分布式发电技术的发展,电力系统规模不断扩大且日趋复杂,因而电力系统的各类计算正变得越来越繁琐,传统的计算分析方法受到挑战。无功优化作为保障电力系统安全经济运行的重要内容,属于计算复杂度非常高的非线性混合优化问题,其求解难度将因以上原因迅速增大,因而传统的集中式优化计算模式难以有效地满足大规模系统的无功优化需求。考虑到无功功率平衡的局部特性,可以通过电压无功分区方法将整个系统“软分区”成若干较小规模的分区,即将原有计算量较大的问题分解为若干计算量较小、且相互之间耦合度较低的子任务,然后通过相互协调得到整个问题的解决方案。在电力系统改革日益深化、电网结构日趋复杂的大环境下,这种“分而治之”的方法符合电力系统发展的趋势,对大规模电力系统的分析计算具有十分重要的现实意义。
     在广泛阅读相关参考文献并分类评述的基础上,本文采用模糊聚类、模糊评价、多代理和智能搜索等理论和技术,紧密结合电力系统工程实际,围绕分布式多目标无功优化进行了系统深入的研究和探索,主要研究内容和创新性成果如下:
     提出了一种基于改进模糊C均值聚类的无功电压分区方法。该方法为了计及无功优化时并联电容组/电抗器组的投切、变压器分接头档位的调节等离散控制变量的变化对系统中各节点电气量的影响,采用摄动分析方法逐一计算无功离散及连续控制变量摄动变化对各节点电压的响应。这种计算方法在每次摄动分析时都考虑了各无功控制变量的共同影响,克服了传统灵敏度计算的局限性,符合电压控制的准稳态过程。再依据归一化后的摄动响应值将网络中的各节点映射到无功变量空间,并与改进的节点关联矩阵相结合,得到了节点间的电气距离。所得电气距离既包含了电气信息,也包含了系统网络拓扑信息,可避免产生孤点等不合理的分区结果。然后利用改进模糊C均值聚类算法对系统进行无功电压分区,采用改进α分解算法或依据电网调度分区对系统分区数和聚类中心点进行初始化,为算法提供有效的初始参数,避免了随机初始化可能会陷入局部最优解的问题。聚类过程中,聚类有效性指标被用于评判聚类分区的效果,从而最终确定系统分区数。专家知识也被加入聚类计算,以进一步保证所得分区结果的合理性。通过这种模糊聚类方法对节点进行“软”聚类分区,更能客观地反映事物分类的不确定性,同时在一定程度上增大了求得聚类最优解的概率,可以取得更好的聚类效果。利用该方法对IEEE算例系统及实际电网进行仿真计算,验证了方法的可行性,并通过对结果进行比较,表明了该方法所得分区结果更加合理有效。
     通过电力系统无功电压分区,可将大规模电网的无功优化问题分解为若干个小规模分区的优化子问题,降低了无功优化问题的复杂度。在无功电压分区的基础上,提出了一种多代理分布式多目标无功优化方法。考虑到不同拓扑结构的系统在进行无功优化时具有不同的特点,设计了两类代理对分区后不同结构的网络进行无功优化,分别为用于环型网络无功优化的环网代理和用于辐射型网络的辐射网代理。在进行无功优化时,两类代理可选用不同的潮流算法、优化数学模型、优化算法对所负责的分区进行无功优化计算。针对分布式多目标无功优化问题,建立隶属度函数,对各优化目标进行模糊评价,使得不同量纲的目标之间可以相互比较。避免了传统加权求和法中,因目标函数原始值不同而造成的影响。并将多目标问题解的模糊评价值映射成一个多维空间中不同的点,依据各个点与理想点之间欧氏距离的长短来衡量所得解的优劣。然后根据分解协调的思想,分布式无功优化时各代理在交互的信息量较少的情况下,通过Internet对各自边界节点的电气量进行交互,而分区内部数据互相不可观,从而保证了数据的完整性和密封性。整个优化过程中没有计算的简化和等值,也没有海量数据的传输,最终实现整个系统的全局一体化优化,制定出适用于整个电网的全局无功配置决策。另外,在开放式网格服务体系结构的基础上,围绕多代理分布式多目标无功优化方法设计了一种用于电力系统无功优化的网格计算构架,通过封装成网格服务的计算代理对所负责分区进行优化计算,为分布式资源的共享和异构问题提供了解决途径。通过对IEEE算例系统及实际电网进行仿真计算,验证了这种分布式多目标无功优化方法的可行性和有效性。所得优化结果表明,该方法可兼顾多个优化目标,在协调边界节点参数的同时,有效地降低网络损耗、提高节点电压合格率。
     电力系统无功优化作为电网安全经济运行的重要内容,所求得的无功资源优化配置方案不仅要满足电网经济运行的要求,而且要满足系统对电压安全性的要求。无功资源配置不当会使得系统存在电压失稳事故隐患,因而有必要从增强系统电压稳定性的角度出发,对电力系统无功优化问题进行研究。为了在无功优化时考虑薄弱功率传输路径的电压稳定性,提出了一种计及电压稳定的多代理分布式无功优化方法。该方法先将局部电压稳定性指标经过模糊评价后作为多代理分布式无功优化问题的子目标进行优化,以提高分区中薄弱节点的稳定裕度。然后利用所得无功优化结果及薄弱节点信息,判别分区的最弱功率传输路径,并计算该路径的电压稳定性指标。将关键发电机无功储备指标的计算扩展为关键功率源点无功储备指标的计算,除了考虑关键发电机,还计及了虚拟功率源点的无功储备对负荷节点的影响。将各区所得电压稳定性指标与关键功率源点的无功储备指标相结合,转化为空间坐标后,利用四区图对系统的电压稳定性进行评估,最终得到所需的无功优化方案。通过对IEEE算例系统的基本运行方式和重负荷运行方式的仿真计算,所得结果表明该方法在对无功资源进行优化配置时,考虑了各分区内薄弱节点及薄弱功率传输路径对系统电压稳定性的影响,所得优化方案能保证系统的电压稳定裕度,可避免由于无功优化策略不当造成的电压失稳事故隐患。
With the expansion of power networks and the development of UHV AC/DC power grid and distributed generation technology, various calculations of power systems are becoming more and more complex. Thus, many traditional calculation methodes need to be improved for the development situation. As an important calculation for the safety and economic operation of power systems, reactive power optimization is a mixed nonlinear optimization problem with a large number of variables and constrains. Because of the above results, it is becoming more and more difficult to get a satisfying global solution for a large-scale power system using centralized optimization approaches. Considering reactive power needs to be compensated locally, a large-scale power system can be divided into several small-scale subsystems in network partition. Therefore the whole optimization problem is decomposed into several low-dimension and low-coupling subproblems for corresponding subsystems. Then the optimization problem is solved coordinatively in distributed computing. It is of great significance that the computing mode conforms to the development of power systems.
     Introducing the theory and methods of fuzzy clustering, fuzzy evaluation, multi-agent system and intelligent optimization, distributed multi-objective reacitive power optimization is researched systematically in the dissertation. The main contributions of the dissertation are shown as follows.
     A new network partition approach based on the improved fuzzy C means clustering algorithm is presented herein. In order to take into account the perturbation impact of discrete variables on nodes' parameters, such as transformer tap-changers and capacitor banks, a perturbation approach is adopted to get the voltage response of nodes to the perturbation of various discrete and continuous variables. The approach takes into account the combined effect of reactive power variables in perturbation analysis, which overcomes disadvantages of traditional sensitivity approaches. The nodes in power networks are mapped to the space of var variables according to the normalized perturbation values, and a new electrical distance is worked out associated with an improved incidence matrix. Therefore the electrical distance combines network topology information with the voltage response of nodes, which can avoid the unreasonable partition results. And then an improved fuzzy C means clustering algorithm is used for network partition, in which the clustering parameters are initialized according to a improved a decomposition algorithm or dispatching areas. The effective initial parameters can avoid trapping into local optimal solution of clustering problems. In the clustering process, a clustering validity index is defined to evaluate the clustering results and confirm the final result of network partition. And expert knowledge is also introduced into the clustering algorithm for the reasonableness of partition results. The fuzzy clustering algorithm is a "flexible" method for nerwork partition, which can reflect more objectively the uncertainty of the classification and increase the probability of getting the global optimal solution of network partition. The simulations verify that the reasonable and effective results can be obtained using the proposed partition method.
     By the above method of network partition, a reactive power optimization problem can be decomposed into several subproblems of small-scale systems, which can reduce the complexity of var optimization problem significantly. A distributed multi-objective reactive power optimization method based on the multi-agent technology is presented in the dissertation. Considering the characteristics of reactive power optimization in different network structures, two kinds of agents are developed according to network structures: loop agent for loop network and radial agent for radial network. The characteristics of two kinds of agents for reactive power optimization are presented respectively in power flow algorithm, objective function and optimization algorithm. Membership functions for the distributed multi-objective optimization problem are constructed to evaluate objectives, so that the objectives with different units can be compared. Evaluation values of multi-objective optimization problem are regarded as coordinate values of points in a multidimensional space, and the Euclidean distances between the points and the ideal point are used to evaluate optimization solutions. According to the decomposition and coordination theory, agents transmit the parameters of boundary nodes each other via Internet in the process of distributed var optimization. Due to the unobservability of internal data among subsystems, the integrity and sealing of data is ensured. In addition, a grid-computing architecture for distributed multi-objective reactive power optimization is designed based on open grid service architecture. Grid computing technology can solve the data-sharing problem of distributed resources and integrate the heterogeneous computational resources. The optimization subproblems for corresponding subsystems can be worked out autonomously by agents, which are wrapped into grid services. The simulation results, greatly reduced power losses and improved voltage profiles as well as coordinated the parameters of boundary nodes, show that the method is feasible and effective.
     The solutions of reactive power optimization not only meet the requirement of power system economic operation, but also meet the requirement of voltage security. The improper allocation of reactive power resources will have hidden dangers of voltage instability accidents in power systems, thus it is necessary to research the reactive power optimization considering voltage stability. For considering voltage stability of power transmission paths in power systems, a new distributed reactive power optimization considering voltage stability method is introduced in the dissertation. The local voltage stability index as the optimization objective is used to improve the stability margin of weak nodes after fuzzy evaluation. Then according to optimization results and weak nodes, the voltage stability indeces of weak paths are computed and the weakest power transmission path is searched. The reactive power reserve index of key power sources is developed from the key generators reactive power reserve index, including virtual power sources as well as key generators. The two kinds of indeces are incorporated as coordinate values in a four-zone diagram, which is used to evaluate the solutions of reactive power optimization. Weak nodes and weak paths of voltage stability in subsystems are considered in the proposed method of reactive power optimization. The results of IEEE 30-bus system in the base and heavy load conditions show that the method can ensure the voltage stability margin of power systems and avoid accidents of voltage instability due to the improper allocation of reactive power resoures.
引文
[1]马晋弢,Lai L.L.,杨以涵.遗传算法在电力系统无功优化中的应用[J].中国电机工程学报,1995,15(5):347-353.
    [2]冯治鸿,倪以信.关于电力系统电压稳定性的探讨[J].电力系统自动化,1991,15(2):37-42.
    [3]李娟,刘修宽,曲祖义,等.负荷频率变化时IPC及其两侧电网的动态行为[J].中国电机工程学报,2003,23(7):71-75.
    [4]陈章潮,顾洁.配电网规划及自动化(二)第二讲 配电网规划(Ⅰ)[J].电网技术,1995,19(10):63-66.
    [5]陈章潮,顾洁.配电网规划及自动化(三)第三讲 配电网规划(Ⅱ)[J].电网技术,1995,19(11):61-67.
    [6]付瑾诚,肖国泉,舒隽.基于线性规划的Benders分解法在无功规划中的应用[J].电网技术,1998,22(11):30-33.
    [7]张焰,陈章潮.电网规划中的模糊潮流计算[J].电力系统自动化,1998,22(3):20-22.
    [8]李林川,王建勇,陈礼义,等.电力系统无功补偿优化规划[J].中国电机工程学报,1999,19(2):66-69.
    [9]张粒子,舒隽,林宪枢,等.基于遗传算法的无功规划优化[J].中国电机工程学报,2000,20(6):5-8.
    [10]段刚,余贻鑫.输配电系统综合规划的全局优化算法[J].中国电机工程学报,2002,22(4):109-113.
    [11]王秀丽,李淑慧,陈皓勇,等.基于非支配遗传算法及协同进化算法的多目标多区域电网规划[J].中国电机工程学报,2006,25(12):11-15.
    [12]Hsiao Y T,Liu C C,Chiang H D,et al.A new approach for optimal VAr sources planning in large scale electric power systems[J].IEEE Transactions on Power Systems,1993,8(3):988-996.
    [13]Chen Y L,Liu C C.Optimal multi-objective VAr planning using an interactive satisfying method[J].IEEE Transactions on Power Systems,1995,10(2):664-670.
    [14]Oliveira G C,Costa A P,Binato S.Large scale transmission network planning using optimization and heuristic techniques[J].IEEE Transactions on Power Systems,1995,10(4):1828-1834.
    [15]Momoh J A,Dias L G,Guo S X,et al.Economic operation and planning of multi-area interconnected power systems[J].IEEE Transactions on Power Systems,1995,10(2):1044-1053.
    [16]Chen Y L.Weak bus-oriented optimal multi-objective VAr planning[J].IEEE Transactions on Power Systems,1996,11(4):1885-1890.
    [17]Chen Y L.An interactive fuzzy-norm satisfying method for multi-objective reactive power sources planning[J].IEEE Transactions on Power Systems,2000,15(3):1154-1160.
    [18]Chattopadhyay D,Chakrabarti B.B.Voltage stability constrained VAR planning:model simplification using statistical approximation[J].International Journal of Electrical Power & Energy Systems,2001,23(5):349-358.
    [19]Dulce F P,Martins A G,Antunes C H.A multiobjective model for VAR planning in radial distribution networks based on tabu search[J].IEEE Transactions on Power Systems,2005,20(2):1089-1094.
    [20]Ramirez-Rosado I J,Jose A D.New multiobjective tabu search algorithm for fuzzy optimal planning of power distribution systems[J].IEEE Transactions on Power Systems,2006,21(1):224-233.
    [21]黄梅,龚强,何希芬,等.利用SCADA系统实时数据进行电网无功优化计算[J].电力系统自动化,1998,22(8):70-72.
    [22]顾丹珍,徐瑞德.一种地区电网多目标无功优化的新方法——改进模拟退火算法[J].电网技术,1998,22(1):71-74.
    [23]刘玉田,马莉.基于Tabu搜索方法的电力系统无功优化[J].电力系统自动化,2000,24(2):61-64.
    [24]黄华,熊信艮,吴耀武,等.基于Box算法的无功优化配置[J].电力系统自动化,2000,24(20):32-36.
    [25]卢鸿宇,胡林献,刘莉,等.基于遗传算法和TS算法的配电网电容器实时优化投切策略[J].电网技术,2000,24(11):56-59.
    [26]向铁元,周青山,李富鹏,等.小生境遗传算法在无功优化中的应用研究[J].中国电机工程学报,2005,25(17):48-51.
    [27]Gan D,Qu Z H,Cai H Z.Large-scale var optimization and planning by tabu search[J].Electric Power Systems Research,1996,39(3):195-204.
    [28]任晓娟,邓佑满,周立国,等。高中压配电网的无功优化算法[J].电力系统自动化,2002,26(7):45-49.
    [29]任晓娟,邓佑满,赵长城,等.高中压配电网动态无功优化算法的研究[J].中国电机工程学报,2003,23(01):31-36.
    [30]钟红梅,任震,张勇军,等.免疫算法及其在电力系统无功优化中的应用[J].电网技术,2004,28(3):16-19.
    [31]张勇军,俞悦,任震,等.实时环境下动态无功优化建模研究[J].电网技术,2004,28(12):12-15.
    [32]贾德香,唐国庆,韩净.基于改进模拟退火算法的电网无功优化[J].继电器,2004,32(4):32-35.
    [33]刘方,颜伟,Yu David C.基于遗传算法和内点法的无功优化混合策略[J].中国电机工程学报,2005,25(15):67-72.
    [34]熊虎岗,程浩忠,李宏仲.基于免疫算法的多目标无功优化[J].中国电机工程学报,2006,26(11):102-108.
    [35]张文,刘玉田.自适应粒子群优化算法及其在无功优化中的应用[J].电网技术,2006,30(8):19-24.
    [36]石嘉川.基于模糊评价的配电网络多目标优化研究[D].济南:山东大学,2007.
    [37]熊虎岗,程浩忠,胡泽春,等.基于混沌免疫混合算法的多目标无功优化[J].电网技术,2007,31(11):33-37.
    [38]王建学,王锡凡,陈皓勇,等.基于协同进化法的电力系统无功优化[J].中国电机工程学报,2004,24(9):124-129.
    [39]宋军英,刘涤尘,陈允平.电力系统模糊无功优化的建模及算法[J].电网技术,2001,25(3):22-25.
    [40]许文超,郭伟.电力系统无功优化的模型及算法综述[J].电力系统及其自动化学报,2003,15(1):100-104.
    [41]黄志刚,李林川,杨理,等.电力市场环境下的无功优化模型及其求解方法[J].中国电机工程学报,2003,23(12):82-86.
    [42]王函韵,胡骅,朱卫东,等.信息不确定性对电网无功优化的影响[J].中国电机工程学报,2005,25(13):24-28.
    [43]赵波,曹一家.电力系统无功优化的多智能体粒子群优化算法[J].中国电机工程学报,2005,25(5):1-7.
    [44]王淑芬,万仲平,樊恒,等.基于二层规划的无功优化模型及其混合算法[J].电网技术,2005,29(9):22-25.
    [45]程新功,厉吉文,曹立霞,等.基于电网分区的多目标分布式并行无功优化研究[J].中国电机工程学报,2003,23(10):109-113.
    [46]张勇军,任震.全局实时无功优化调度的MAS方法[J].中国电力,2003,36(11):7-11.
    [47]张勇军.电力系统无功优化的灾变遗传算法及MAS模型研究[D].广州:华南理工大学,2004.
    [48]赵波,郭创新,张鹏翔,等.基于分布式协同粒子群优化算法的电力系统无功优化[J].中国电机工程学报,2005,25(21):1-7.
    [49]梁才浩,段献忠,钟志勇,等.基于差异进化和PC集群的并行无功优化[J].电力系统自动化,2006,30(1):29-34.
    [50]段刚,余贻鑫.电力系统NP难问题全局优化算法的研究[J].电力系统自动化,2001,25(5):14-18.
    [51]程浩忠,吴浩.电力系统无功与电压稳定性[M].北京:中国电力出版社,2004.
    [52]IEEE/CIGRE.Definition and classification of power system stability[J].IEEE Transactions on Power Systems,2004,19(3):1387-1401.
    [53]Taylor C.Power System Voltage Stability[M].New York:McGraw-Hill Inc, 1994.
    [54]张勇军,任震,李邦峰.电力系统无功优化调度研究综述[J].电网技术,2005,29(2):50-56.
    [55]刘明波,朱春明,钱康龄,等.计及控制设备动作次数约束的动态无功优化算法[J].中国电机工程学报,2004,24(3):34-40.
    [56]Deng Y M,Ren X J,Zhao C C,et al.A heuristic and algorithmic combined approach for reactive power optimization with time-varying load demand in distribution systems[J].IEEE Transactions on Power Systems,2002,17(4):1068-1072.
    [57]Liu Y T,Ma L,Zhang J J.Reactive power optimization by GA/SA/TS combined algorithms[J].International Journal of Electrical Power & Energy Systems,2002,24(9):765-769.
    [58]娄素华,李研,吴耀武,等.多目标电网无功优化的量子遗传算法[J].高电压技术,2005,31(9):69-71.
    [59]Zhang W,Liu Y T.Fuzzy logic controlled particle swarm for reactive power optimization considering voltage stability[C].The 7th International Power Engineering Conference.Singapore,2005:1-555.
    [60]Zhang Y J,Ren Z.Real-time optimal reactive power dispatch using multi-agent technique[J].Electric Power Systems Research,2004,69(3):259-265.
    [61]Momoh J A,El-Hawary M E,Adapa R.A review of selected optimal power flow literature to 1993.Ⅱ.Newton,linear programming and interior point methods[J].IEEE Transactions on Power Systems,1999,14(1):105-111.
    [62]Momoh J A,Adapa R,El-Hawary M E.A review of selected optimal power flow literature to 1993.Ⅰ.Nonlinear and quadratic programming approaches[J].IEEE Transactions on Power Systems,1999,14(1):96-104.
    [63]Wang J C,Chiang H D,Miu K N,et al.Capacitor placement and real time control in large-scale unbalanced distribution systems:loss reduction formula,problem formulation,solution methodology and mathematical justification[J].IEEE Transactions on Power Delivery,1997,12(2): 953-958.
    [64]Liu Y T,Zhang P,Qiu X Z.Optimal volt/var control in distribution systems[J].International Journal of Electrical Power & Energy Systems,2002,24(4):271-276.
    [65]Hsu Y Y,Lu F C.A combined artificial neural network-fuzzy dynamic programming approach to reactive power/voltage control in a distribution substation[J].IEEE Transactions on Power Systems,1998,13(4):1265-1271.
    [66]王成山,张义.基于Bender's分解和内点法的无功优化规划[J].电力系统及其自动化学报,2003,15(4):46-50.
    [67]刘盛松,侯志俭,蒋传文.基于混沌优化与线性内点法的最优潮流算法[J].电网技术,2003,(09):.
    [68]Iba K.Reactive power optimization by genetic algorithm[C].Power Industry Computer Application Conference.Scottsdale,Arizona,1993:195-201.
    [69]Iba K.Reactive power optimization by genetic algorithm[J].IEEE Transactions on Power Systems,1994,9(2):685-692.
    [70]胡山鹰,陈丙珍,何小荣,等.非线性规划问题全局优化的模拟退火法[J].清华大学学报自然科学版,1997,37(6):5-9.
    [71]Liu C W,Jwo W S,Liu C C,et al.A fast global optimization approach to VAr planning for the large scale electric power systems[J].IEEE Transactions on Power Systems,1997,12(1):437-443.
    [72]Glover F.Tabu search:part Ⅰ[J].ORSA Journal on Computing,1989,1(3):190-206.
    [73]Glover F.Tabu search:part Ⅱ[J].ORSA Journal on Computing,1990,2(1):4-32.
    [74]张学松,柳焯,于尔铿.基于Tabu方法的配电电容器投切策略[J].电网技术,1998,22(2):33-36.
    [75]Kennedy J,Eberhart R.Particle swarm optimization[C].Proceedings of IEEE International Conference on Neural Networks.Perth,Australia,1995:1942-1948.
    [76]Yoshida H,Fukuyama Y,Takayama S,et al.A particle swarm optimization for reactive power and voltage control in electric power systems considering voltage security assessment[C].IEEE International Conference on Systems,Man,and Cybernetics.Tokyo,1999:497-502.
    [77]刘自发,葛少云,余贻鑫.基于混沌粒子群优化方法的电力系统无功最优潮流[J].电力系统自动化,2005,29(7):53-57.
    [78]Zhang W,Liu Y T.Adaptive particle swarm optimization for reactive power and voltage control in power systems[J].Lecture Notes in Artificial Intelligence,2005,3613(3):449-452.
    [79]杜树杰,林晓彤.分布式计算模式中影响算法性能的主要因素[J].计算机工程,2003,29(16):162-164.
    [80]潘哲龙,张伯明,孙宏斌,等.分布计算的遗传算法在无功优化中的应用[J].电力系统自动化,2001,25(12):37-41.
    [81]Deeb N,Shahidehpour S M.Linear reactive power optimization in a large power network using the decomposition.approach[J].IEEE Transactions on Power Systems,1990,5(2):428-438.
    [82]Kim B H,Baldick R.Coarse-grained distributed optimal power flow[J].IEEE Transactions on Power Systems,1997,12(2):932-939.
    [83]Kim B H,Baldick R.A comparison of distributed optimal power flow algorithms[J].IEEE Transactions on Power Systems,2000,15(2):599-604.
    [84]Hur D,Park J K,Kim B H.On the convergence rate improvement of mathematical decomposition technique on distributed optimal power flow[J].International Journal of Electrical Power & Energy Systems,2003,25(1):31-39.
    [85]程新功,厉吉文,曹立霞,等.电力系统最优潮流的分布式并行算法[J].电力系统自动化,2003,27(24):23-27.
    [86]Talukdar S,Ramesh V C.A multi-agent technique for contingency constrained optimal power flows[J].IEEE Transactions on Power Systems, 1994,9(2):855-861.
    [87]曹立霞,厉吉文,程新功,等.基于多Agent技术的分布式电压无功优化控制系统[J].电网技术,2004,28(7):30-33.
    [88]王勤,方鸽飞.考虑电压稳定性的电力系统多目标无功优化[J].电力系统自动化,1999,23(3):31-34.
    [89]娄素华,吴耀武,熊信银.基于适应度空间距离评估选取的多目标粒子群算法在电网无功优化中的应用[J].电网技术,2007,31(19):41-46.
    [90]李益华,林文南,李茂军.基于改进Tabu搜索算法的区域电网无功优化[J].高电压技术,2008,34(07):1463-1468.
    [91]戴剑锋,周双喜,鲁宗相,等.基于风险的电力系统无功优化问题研究[J].中国电机工程学报,2007,27(22):38-43.
    [92]Kessel P,Glavitsch H.Estimating the voltage stability of a power system[J].IEEE Transactions on Power Delivery,1986,1(3):346-352.
    [93]李勇,张勇军,任震,等.基于N-1方式的无功优化规划[J].高电压技术,2007,33(09):100-103.
    [94]王耀瑜,张伯明,孙宏斌,相年德.一种基于专家知识的电力系统电压/无功分级分布式优化控制分区方法[J].中国电机工程学报,1998,18(3):221-224.
    [95]李钟煦,刘玉田.一种地区电网分布式无功优化方法[J].电力系统及其自动化学报,2005,17(2):80-83.
    [96]刘源祺,刘玉田.基于调度分区的电力系统解列割集搜索算法[J].电力系统自动化,2008,32(11):20-24.
    [97]Irving M R,Sterling M J.Optimal network tearing using simulated annealing[J].IEE Proceedings-Generation,Transmission and Distribution,1990,137(1):69-72.
    [98]Mori H,Takeda K.Parallel simulated annealing for power system decomposition[J].IEEE Transactions on Power Systems,1994,9(2):789-795.
    [99]Chang C S,Lu L R,Wen F S.Power system network partitioning using tabu search[J].Electric Power Systems Research,1999,49(1):55-61.
    [100]刘大鹏,唐国庆,陈珩.基于Tabu搜索的电压控制分区[J].电力系统自动化,2002,26(6):18-22.
    [101]Mori H,Matsuzaki O.A rule-based tabu search technique for power system decomposition[C].IEEE Power Engineering Society Summer Meeting.Seattle,2000:1990-1995.
    [102]胡泽春,王锡凡,王秀丽,等.用于无功优化控制分区的两层搜索方法[J].电网技术,2005,29(24):37-41.
    [103]Schlueter R A,Hu I P,Chang M W,et al.Methods for determining proximity to voltage collapse[J].IEEE Transactions on Power Systems,1991,6(1):285-292.
    [104]冯光明,陆超,黄志刚,等.基于雅可比矩阵的电压控制区域划分的改进[J].电力系统自动化,2007,31(12):7-11.
    [105]范磊,陈珩.二次电压控制研究(一)[J].电力系统自动化,2000,24(11):18-21.
    [106]郭庆来,孙宏斌,张伯明,等.基于无功源控制空间聚类分析的无功电压分区[J].电力系统自动化,2005,29(10):36-40.
    [107]熊虎岗,程浩忠,孔涛.基于免疫—中心点聚类算法的无功电压控制分区[J].电力系统自动化,2007,31(2):22-26.
    [108]杨秀媛,董征,唐宝,等.基于模糊聚类分析的无功电压控制分区[J].中国电机工程学报,2006,26(22):6-10.
    [109]Miranda V,Moreira A,Pereira J.An Improved Fuzzy Inference System for Voltage/VAR Control[J].IEEE Transactions on Power Systems,2007,22(4):2013-2020.
    [110]Sun H B,Zhang B M.A systematic analytical method for quasi-steady-state sensitivity[J].Electric Power Systems Research,2002,63(2):141-147.
    [111]Bezdek J C.Pattern Recognition with Fuzzy Objective Function Algorithms[M].New York:Plenum,1981.
    [112]Van den Bergh F.An analysis of particle swarm optimizers[D].Pretoria:university of Pretoria,2001.
    [113]Liang C H,Duan X Z.A clustering validation based method for zone number determination in network partitioning for voltage control[C].39th International Universities Power Engineering Conference,2004.Bristol,UK,2004:727-731.
    [114]Xie X L,Beni G.A Validity Measure for Fuzzy Clustering[J].IEEE Trans.Patt.Anal.Machine Intell.,1991,13(8):841-847.
    [115]梁才浩,钟志勇,黄杰波,等.一种改进的进化规划方法及其在电力系统无功优化中的应用[J].电网技术,2006,30(4):16-20.
    [116]都志辉,陈渝,刘鹏.网格计算[M].北京:清华大学出版社,2002.
    [117]张维明,姚莉.智能协作信息技术[M].北京:电子工业出版社,2002.
    [118]胡毓达.实用多目标最优化[M].上海:上海科学技术出版社,1990.
    [119]Contreras J,Losi A,Russo M,et al.Simulation and evaluation of optimization problem solutions in distributed energy management systems[J].IEEE Transactions on Power Systems,2002,17(1):57-62.
    [120]Foster I,Kesselman C.The Grid:Blueprint for a New Computing Infrastructure[M].San Francisco:Morgan Kaufman,1999.
    [121]Irving M,Taylor G,Hobson P.Plug in to grid computing[J].Power and Energy Magazine,IEEE,2004,2(2):40-44.
    [122]Su S,Li K K,Zeng X J,et al.Grid computing for load modeling[C].Proceedings of the 2004 IEEE International Conference on Electric Utility Deregulation,Restructuring and Power Technologies,2004.Hunan,China,2004:602-6052.
    [123]张伟,沈沉,陈颖,等.电力网格体系初探(三)原型系统的设计与实现[J].电力系统自动化,2004,28(24):5-8.
    [124]Di S M,Ranaldo N,Villacci D,et al.Performing security analysis of large scale power systems with a broker-based computational grid[C].International Conference on Information Technology:Coding and Computing,2004.Benevento,Italy,2004:77-822.
    [125]王稹,何光宇,沈沉.基于网格技术的电力市场交易系统设计[J].电力 系统自动化,2005,29(18):13-18.
    [126]Schlueter R A.A voltage stability security assessment method[J].IEEE Transactions on Power Systems,1998,13(4):1423-1438.
    [127]王亮,刘玉田,栾兆文.基于功率传输路径的在线电压稳定性评估新方法[J].电力系统自动化,2006,30(2):27-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700