电力系统动态同步相量估计算法及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
同步相量测量技术为电网的大面积实时监控提供了先进的信息技术保证,而同步相量测量技术的核心及基础是同步相量估计算法的设计,算法的估计精度将直接影响到广域测量系统(Wide Area Measurement System, WAMS)其它高级应用的效果,如状态估计、自适应保护以及故障测距等。现有的商用同步相量估计算法在静态条件下具有较高的测量精度,而在动态条件下(如低频振荡、频率偏移等情况下)却受到系统动态特性的影响而导致算法精度急剧下降。因此研究在动态条件下仍然具有较好估计精度的同步相量估计算法,对于判断电网状态、预测电网发展方向以及采取正确、快速的保护措施都具有较大的现实意义。
     论文在动态条件下的频率跟踪算法、同步相量估计、同时消除直流衰减和动态影响方面进行了深入研究,提出了对应的算法;在此基础上,利用PMU的同步相量估计值来近似表示信号的动态特性,提出一种考虑信号动态特性的新型故障测距算法。
     在频率跟踪方面,论文中根据全部三相电压信号的信息来在线估计电压信号的噪声含量以及动态特性,并通过动态特性方差和噪声方差两个参数来量化系统的实时状态,从而调整ⅡR滤波器的遗忘因子来使频率跟踪算法不但在动态条件下具有快速跟踪的特性而且在静态条件下也具有较好的抗噪特性。由于递归算法的应用,简化了计算,本算法易于在重计算负荷的DSP中实现。通过不同的工况下的仿真研究(包括:相位突变测试,频率跳变测试以及PSCAD/EMTDC仿真)表明无论在动态还是在静态条件下,该频率跟踪算法都具有比其它传统算法更为优越的性能,如高抗噪声性能以及快速跟踪等。
     在同步相量估计方面,利用泰勒级数对电力信号的时变相量进行建模,并利用相邻采样数据窗的相量测量值来表示相量导数,以此相量导数来修正传统傅立叶变换的相量估计值从而减弱或消除系统动态特性对相量测量精度的影响。理想信号数字仿真以及实时数字仿真的分析研究表明:新算法能够在增加少量额外的计算负荷的前提下大大地提高同步相量测量在多种动态条件下(如低频振荡和频率偏移等情况)的精度。此外,还可以利用同步相量估计值的泰勒导数来实现在低频振荡下的故障检测。
     在消除直流分量影响方面,论文提出了一种同时考虑信号动态特性和衰减直流分量的同步相量测量新算法。首先对电力信号的基波信号和衰减直流分量进行建模,再通过利用一个基波滤波器来对相量的动态特性进行估计和一个直流滤波器来对衰减直流分量进行估计,然后将两个滤波器的估计结果代入到动态模型中进行迭代运算,最终得到精确的同步相量测量结果。对理想信号(包括衰减直流分量、动态信号以及两都的综合)以及PSCAD/EMTDC建模仿真信号的大量仿真结果表明,此方法在一定程度上提高了同步相量测量算法在功率振荡下发生接地故障时的相量估计精度。
     在同步相量估计的应用方面(动态故障测距),论文提出一种利用信号的动态特性对基于分布参数模型的故障测距算法进行改进和扩展的新型故障测距算法。该算法不但从空间上认为输电线路上不同位置的电流、电压信号是不同的,而且从时间上认为输电线路上的电流、电压信号的幅值和频率是随时间而变化的,从而扩展了传统的故障测距算法,使其具有同时描述电气信号的空间特性和时间特性的能力。算法通过输电线路两端的同步相量估计值的导数形式来表示信号的动态特性,再利用牛顿迭代法对故障距离进行测定。论文利用数字仿真软件对一个230kV输电系统进行建模,并对各种工况进行仿真验证,如不同的故障位置、故障过渡电阻和故障类型。仿真结果表明,所提出的故障测距算法不但具有传统双端测距算法的优点,而且能对发生低频振荡时的故障进行精确定位。
     总的说来,本论文最终形成一个包括改进数据采集系统的频率跟踪算法、提高精度的同步相量测量算法以及基于同步相量测量结果的动态故障测距算法的理论和应用体系。
Synchrophasor measurement has provided a novel method to monitor the power grid widely and the design of synchrophasor measurement technique is one of the most important essential elements. The accuracy of measurement has direct bear on the efficiency of other applications of Wide Area Measurement System (WAMS), such as state estimation, adaptive protection and fault location, etc. Although the accuracy of phasor measurement of the commercial Phasor Measurement Units (PMUs) can meet the most of the requirement of real-time applications in the steady state, the error of phasor measurement arises when a power system is under dynamic condition such as power oscillation and frequency deviation due to the impact of the dynamic characteristic of supplied signals. Therefore, it is necessary to develop a new synchrophasor measurement algorithm and a new frequency estimation algorithm, which can have accurate estimation under both steady state and dynamic condition. it is very important that can offer accurate phasor and frequency information across the whole power grid to help the high-level applications predict the develop direction of power system and make a rapid decision to protect the power system correctly.
     A great deal of effort has been put to the research on frequency tracking algorithm and synchrophasor measurement algorithm in presence of decaying dc components and dynamic characteristitcs. After a new dynamic frequency tracking estimator and a dynamic phasore estimator have been proposed, a dynamic fault-location estimator considering power systems'dynamic chariteristics expressed by the phasor measurement from PMUs is presented.
     Three-phase voltage signals are employed to estimated the density of the noise and the dynamic characteristic online, and then the real-time state of power system can be measured by introducing two variables, noise density variance and dynamic characteristic variance. Therefore, the new frequency-tracking algorithm can have fast tracking characteristic under dynamic condition and good anti-noise characteristic under high noise density condition by changing the forgetting factor in the Infinite Impulse Response (IIR) filters according to the estimation of noise density variance and dynamic characteristic variance. Besides, the algorithm proposed can be employed with ease when limited Digital Signal Processor (DSP) bandwidth is available as the the computation burden has been sharply reduced by applying a recursive algorithm. A few simulations under different conditions including phase shift, frequency step change and PSCAD/EMTDC simulation allows us to make a conclusion that the performace of proposed algorithm is much better than that of traditional one under both high-density noise condition and dynamic conditions.
     With the aspect of synchrophasor estimation, by considering the dynamic characteristic of supplied signals, the time-varying phasor of supplied signals are modeled by Taylor expansion and the Taylor derivatives are described by the adjoining phasor estimations of different data windows. The synchrophasor estimation from Discrete Fourier Transform(DFT) can be reassigned by using the derivatives in order to improve the accuracy of phasor estimation. Computer-generated signals tests and simulations by Real Time Digital System draw a conclusion that the proposed algorithm can dramatically improve the performance under variety of dynamic conditions with the cost of minus computational burden increase. Besides, the derivative of Taylor expansion can also be applied to detect the fault under power oscillation condition.
     It is necessary to consider dynamic characteristic and decaying DC component simultaneously and reduce their affect on phasor estimation. First, a dynamic signal model considering the decaying DC component is applied to model the fault current. Two filters, fundament component filter and DC component filter, estimate the fundamental phasor and decaying DC component. Finally, better fundamental phasor estimation is obtained by using a recursive algorithm. Ideal signal test, including decaying dc component, dynamic characteristics and both of them, and PSCAD/EMTDC based simulations allows us to draw a conclusion that the proposed algorithm can improve the accuracy of phasor measurement under power oscillation condition when a earth fault happens.
     A new algorithm extended from traditional fault location algorithms is proposed. This approach not only can express the space characteristic of supplied signals but also considers the supplied signals as time-variable signals whose magnitude and frequency are changing against time so that it has the ability of describing space property and time property of signals. Then, after using the adjoining phasor measurement to express the dynamic characteristic in term of derivatives, the accurate fault location can be attained via a Newton iteration method. PSCAD/EMTDC simulation based on a typical 230kV transmission line under different conditions, such as different fault location, fault resistance and fault type is performed. The simulation results show that the proposed algorithm not only have the merit of trandition two-terminal fault-location algorithm, but also can have a precise estimate of fault location under power oscillation condition.
     Overall, a theoretical system based on dynamic characteristics of power systems is achieved. This system includes a frequency-tracking algorithm that improves the performance of data acquisition system, a dynamic phasor estimator and a dynamic fault-location estimator.
引文
[1]甘德强,胡江溢,韩祯祥.2003年国际若干停电事故思考[J].电力系统自动化,2004,28(03):1-4
    [2]郭永基.加强电力系统可靠性的研究和应用——北美东部大停电的思考[J].电力系统自动化,2003,27(19):1-5
    [3]薛禹胜.综合防御由偶然故障演化为电力灾难——北美“8·14”大停电的警示[J].电力系统自动化,2003,27,(18):1-5
    [4]G. Stenbakken, T. Nelson. NIST support of phasor measurements to increase reliability of the North American electric power grid[C]. Power Engineering Society General Meeting,2006. IEEE.2006
    [5]D. Novosel, V. Madani, B. Bhargava,et al. Dawn of the grid synchronization[J]. Power and Energy Magazine, IEEE,2008,6 (1):49-60
    [6]A. Chakrabortty, J. H. Chow. Interarea model estimation for radial power system transfer paths with voltage support using synchronized phasor measurements[C]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE.2008
    [7]I. C. Decker, D.Dotta, M. N. Agostini,et al. Performance of a synchronized phasor measurements system in the Brazilian power system[C]. Power Engineering Society General Meeting,2006. IEEE. 2006
    [8]Sun Kai, S. Likhate, V. Vittal,et al. An online dynamic security assessment scheme using phasor measurements and decision trees[C]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE.2008
    [9]K. E. Martin. Phasor measurement systems in the WECC[C]. Power Engineering Society General Meeting,2006. IEEE.2006
    [10]K. E. Martin. Phasor Measurements in the Western Electric Power System[C]. Transmission and Distribution Conference and Exhibition,2005/2006 IEEE PES.2006
    [11]A. G. Phadke, J. S. Thorp. History and applications of phasor measurements[C]. Power Systems Conference and Exposition,2006. PSCE'06.2006 IEEE PES.2006
    [12]Ding Xiaoling, T. Littler, J. Morrow,et al. Synchronized Phasor Measurement on the All-Ireland Electrical Network[C]. Power Tech,2007 IEEE Lausanne.2007
    [13]王克英,季坤,蔡泽祥.WAMS中PMU的完整周期抗混迭同步采样方法[J].电力系统自动化,2006,30(02):72-76
    [14]赵金利,余贻鑫.基于本地相量测量的电压失稳指标工作条件分析[J].电力系统自动化,2006,30(24):1-4
    [15]丁军策,蔡泽祥,王克英.基于广域测量系统的状态估计研究综述[J].电力系统自动化,2006,30(07):98-103
    [16]刘杰,李建华,焦莉,等.系统可观测同步相量测量单元最优配置和分阶段配置[J].西安交通大学学报,2007,41(08):959-963
    [17]邱晓燕,李兴源,王晓燕.基于同步相量测量单元的观测线性化追踪目标励磁控制策略[J].四川大学学报(工程科学版),2006,38(02):146-150
    [18]宋晓娜,毕天姝,吴京涛,等.基于WAMS的电网扰动识别方法[J].电力系统自动化,2006,30(05):24-28
    [19]薛禹胜,徐伟,万秋兰.关于广域测量系统及广域控制保护系统的评述[J].电力系统自动化,2007,31(15):1-5
    [20]张胜.同步相量测量标准化的有关问题讨论[J].电力系统自动化,2007,31(02):91-93
    [21]张胜,王健,贺春.相量测量单元性能评价标准和测试方法[J].电力系统自动化,2007,31(21):102-105
    [22]黄莹,徐政,杨靖萍.基于同步相量测量单元的观测线性化最优直流附加控制器[J].电网技术,2005,29(03):18-22
    [23]Ruikun Mai, Kirby Brian, Zhengyou He,et al. Research on synchronized phasor measuring method for dynamic signals[C]. IEEE Power and Energy Society 2008 General Meeting:Conversion and Delivery of Electrical Energy in the 21st Century, PES, July 20,2008-July 24,2008. Pittsburgh, PA, United states.2008
    [24]Ruikun Mai, Zhengyou He, Zhiqian Bo,et al. A novel phasor estimate algorithm based on taylor expansion and phasorlet[C]. Power System Computation Conference. University of Strathclyde,Glasgow, Scotland.2008
    [25]G. Stenbakken, Zhou Ming. Dynamic Phasor Measurement Unit Test System[C]. Power Engineering Society General Meeting,2007. IEEE.2007
    [26]T. Hashiguchi, H. Ukai, Y. Mitani,et al. Power System Dynamic Performance Measured by Phasor Measurement Unit[C]. Power Tech,2007 IEEE Lausanne.2007
    [27]Xie Xiaorong, Xin Yaozhong, Xiao Jinyu,et al. WAMS applications in Chinese power systems[J]. Power and Energy Magazine, IEEE,2006,4 (1):54-63
    [28]Min Yong. Phasor measurement applications in China[C]. Transmission and Distribution Conference and Exhibition 2002:Asia Pacific. IEEE/PES.2002
    [29]P. NASPI. PMU System Testing and Calibration Guide[J]. G. Stenbakken, WG chair, D. Novosel, PSTT chair,2007
    [30]A. G. Phadke. Synchronized phasor measurements in power systems[J]. Computer Applications in Power, IEEE,1993,6 (2):10-15
    [31]麦瑞坤,何正友,薄志谦,等.动态条件下的同步相量测量算法的研究[J].中国电机工程学报,2009,29(10):52-58
    [32]Lin Ying-Hong, Liu Chih-Wen, Chen Ching-Shan. A new PMU-based fault detection/location technique for transmission lines with consideration of arcing fault discrimination-part Ⅱ:performance evaluation[J]. Power Delivery, IEEE Transactions on,2004,19(4):1594-1601
    [33]J. A. Jiang, Liu Chih-Wen, Chen Ching-Shan. A novel adaptive PMU-based transmission-line relay-design and EMTP simulation results[J]. Power Delivery, IEEE Transactions on,2002,17 (4): 930-937
    [34]A. G. Phadke, B. Pickett, M. Adamiak,et al. Synchronized sampling and phasor measurements for relaying and control[J]. IEEE Transactions on Power Delivery,1994,9 (1):442-452
    [35]Chen Ching-Shan, Liu Chih-Wen, Jiang Joe-Air. A new adaptive PMU based protection scheme for transposed/untransposed parallel transmission lines[J]. Power Delivery, IEEE Transactions on,2002, 17 (2):395-404
    [36]M. C. Bozchalui, M. Sanaye-Pasand. Out of step relaying using phasor measurement unit and equal area criterion[C]. Power India Conference,2006 IEEE.2006
    [37]A. Guzman, S. Samineni, M. Bryson. Protective Relay Synchrophasor Measurements During Fault Conditions[C]. Power Systems Conference:Advanced Metering, Protection, Control, Communication, and Distributed Resources,2006. PS'06.2006
    [38]G. Benmouyal, E. O. Schweitzer, A. Guzman. Synchronized phasor measurement in protective relays for protection, control, and analysis of electric power systems[C]. Protective Relay Engineers,2004 57th Annual Conference for.2004
    [39]B. Milosevic, M. Begovic. Voltage-stability protection and control using a wide-area network of phasor measurements[J]. Power Systems, IEEE Transactions on,2003,18 (1):121-127
    [40]D. Hart, D. Novosel, Hu Yi,et al. A new frequency tracking and phasor estimation algorithm for generator protection[J]. Power Delivery, IEEE Transactions on,1997,12 (3):1064-1073
    [41]闵勇,丁仁杰,韩英铎,等.自适应调整采样率的相量在线测量算法研究[J].电力系统自动化,1998,22(10):10-13
    [42]M. M. Begovic, P. M. Djuric, S. Dunlap,et al. Frequency tracking in power networks in the presence of harmonics[J]. Power Delivery, IEEE Transactions on,1993,8 (2):480-486
    [43]谢小荣,韩英铎.电力系统频率测量综述[J].电力系统自动化,1999,23(03):268-271
    [44]孙中记,郭吉丰.基于锁相环电路的超声波电机频率跟踪系统[J].机电工程,2008,25(05)78-84
    [45]R. E. Best. Phase-locked loops:design, simulation, and applications:McGraw-Hill Professional,2007
    [46]S. Chandrasekhar, T. V. Sreenivas. Instantaneous frequency estimation using level-crossing information[C]. Acoustics, Speech, and Signal Processing,2003. Proceedings. (ICASSP'03).2003 IEEE International Conference on.2003
    [47]O. Vainio, S. J. Ovaska. Digital filtering for robust 50/60 Hz zero-crossing detectors[J]. IEEE Transactions on Instrumentation and Measurement,1996,45 (2):426-430
    [48]曾院辉,李延新.一种软件频率跟踪方法[J].电力系统自动化,2005,29(21):78-84
    [49]R. Aghazadeh, H. Lesani, M. Sanaye-Pasand,et al. New technique for frequency and amplitude estimation of power system signals[J]. Generation, Transmission and Distribution,IEE Proceedings-, 2005,152 (3):435-440
    [50]A. Routray, A. K. Pradhan, K. P. Rao. A novel Kalman filter for frequency estimation of distorted signals in power systems[J]. Instrumentation and Measurement, IEEE Transactions on,2002,51 (3):469-479
    [51]Kim Sunghan, J. McNames. Tracking tremor frequency in spike trains using the extended Kalman smoother[J]. Biomedical Engineering, IEEE Transactions on,2006,53 (8):1569-1577
    [52]罗谌持,张明.基于Sigma点卡尔曼滤波器的电力频率跟踪新算法[J].电力系统自动化,2008,32(13):66-70
    [53]Huang Chien-Hung, Lee Chien-Hsing, Shih Kuang-Jung,et al. Frequency Estimation of Distorted Power System Signals Using a Robust Algorithm[J]. Power Delivery, IEEE Transactions on,2008, 23 (1):41-51
    [54]P. K. Dash, A. K. Pradhan, G. Panda. Frequency estimation of distorted power system signals using extended complex Kalman filter[J]. Power Delivery, IEEE Transactions on,1999,14 (3):761-766
    [55]A. A. Girgis, D. G. Hart. Implementation of Kalman and adaptive Kalman filtering algorithms for digital distance protection on a vector signal processor[J]. Power Delivery, IEEE Transactions on, 1989,4 (1):141-156
    [56]M. Mojiri, M. Karimi-Ghartemani, A. Bakhshai. Estimation of Power System Frequency Using an Adaptive Notch Filter[J]. Instrumentation and Measurement, IEEE Transactions on,2007,56 (6):2470-2477
    [57]邵京一.模拟自适应陷波器的原理与实现[J].电子学报,1992,20(01):62-65
    [58]张世平,赵永平,张绍卿,等.一种基于自适应陷波器的电网频率测量新方法[J].中国电机工程学报,2003,23(07):315-317
    [59]雷振宇,胡光锐,孙丽萍.一种新变步长LMS算法在二阶自适应陷波器中的应用[J].上海交通大学学报,2003,37(10):52-55
    [60]梁红,李志舜,王惠刚.一种变步长自适应格型ⅡR陷波器及其在混响抵消中的应用研究[J].电声技术,2004(02):23-26
    [61]I. Djurovic. Estimation of the Sinusoidal Signal Frequency Based on the Marginal Median DFT[J]. Signal Processing, IEEE Transactions on [see also Acoustics, Speech, and Signal Processing, IEEE Transactions on],2007,55 (5):2043-2051
    [62]Wang Maohai, Sun Yuanzhang. A practical method to improve phasor and power measurement accuracy of DFT algorithm[J]. Power Delivery, IEEE Transactions on,2006,21 (3):1054-1062
    [63]吴笃贵,贺春,易永辉.一种新颖的频率跟踪算法[J].电网技术,2004,28(14):39-43
    [64]D. Agrez. Dynamics of Frequency Estimation in the Frequency Domain[J]. Instrumentation and Measurement, IEEE Transactions on,2007,56 (6):2111-2118
    [65]D. Agrez. Frequency estimation of the non-stationary signals using interpolated DFT[C]. Instrumentation and Measurement Technology Conference,2002. IMTC/2002. Proceedings of the 19th IEEE.2002
    [66]D. Agrez. Weighted multipoint interpolated DFT to improve amplitude estimation of multifrequency signal[J]. Instrumentation and Measurement, IEEE Transactions on,2002,51 (2):287-292
    [67]D. Belega, D. Dallet. Frequency estimation via weighted multipoint interpolated DFT[J]. Science, Measurement & Technology, IET,2008,2 (1):1-8
    [68]M. D. Kusljevic. A simple recursive algorithm for frequency estimation[J]. Instrumentation and Measurement, IEEE Transactions on,2004,53 (2):335-340
    [69]M. M. Canteli, A. O. Fernandez, L. I. Eguiluz,et al. Three-phase adaptive frequency measurement based on Clarke's transformation[J]. Power Delivery, IEEE Transactions on,2006,21 (3):1101-1105
    [70]C. T. Nguyen, K. Srinivasan. A New Technique for Rapid Tracking of Frequency Deviations Based on Level Crossings[J]. IEEE Transactions on Power Apparatus and Systems,1984, PAS-103 (8): 2230-2236
    [71]胡艳婷,李本藩.一种供安全自动装置用的新的频率测量方法[J].电力系统自动化,1987,11(06):24-29
    [72]Milenko B. Djuric, Zeljko R. Djurisic. Frequency measurement of distorted signals using Fourier and zero crossing techniques[J]. Electric Power Systems Research,2008,78 (8):1407-1415
    [73]Qian Hao, Zhao Rongxiang, Chen Tong. Interharmonics Analysis Based on Interpolating Windowed FFT Algorithm[J]. Power Delivery, IEEE Transactions on,2007,22 (2):1064-1069
    [74]J. K. Wu, Y. Liang, Q. Wu,et al. Frequency tracking techniques of power systems in coloured noises[J]. Vision, Image and Signal Processing, IEE Proceedings-,2006,153 (6):795-804
    [75]J. K. Wu. Frequency tracking techniques of power systems in noises[C]. Power Engineering Society General Meeting,2005. IEEE.2005
    [76]Wang Maohai, Sun Yuanzhang. A practical, precise method for frequency tracking and phasor estimation[J]. Power Delivery, IEEE Transactions on,2004,19 (4):1547-1552
    [77]R. Zivanovic, C. Cairns. Implementation of PMU technology in state estimation:an overview[C]. AFRICON,1996., IEEE AFRICON 4th.1996
    [78]Jr. R. O. Burnett, M. M. Butts, P. S. Sterlina. Power system applications for phasor measurement units[J]. Computer Applications in Power, IEEE,1994,7 (1):8-13
    [79]J. Rasmussen, P. Jorgensen. Synchronized phasor measurements of a power system event in eastern Denmark[J]. Power Systems, IEEE Transactions on,2006,21 (1):278-284
    [80]R. E.Wilson. PMUs [phasor measurement unit] [J]. Potentials, IEEE,1994,13 (2):26-28
    [81]J. F. Hauer, N. B. Bhatt, K. Shah,et al. Performance of "WAMS East" in providing dynamic information for the North East blackout of August 14,2003 [C]. Power Engineering Society General Meeting,2004. IEEE.2004
    [82]I. Kamwa, J. Beland, G. Trudel,et al. Wide-area monitoring and control at Hydro-Quebec:past, present and future[C]. Power Engineering Society General Meeting,2006. IEEE.2006
    [83]J. Y. Cai, Huang Zhenyu,J. Hauer,et al. Current Status and Experience of WAMS Implementation in North America[C]. Transmission and Distribution Conference and Exhibition:Asia and Pacific,2005 IEEE/PES.2005
    [84]A. G. Phadke, J. S. Thorpe. Synchronized Phasor Measurement for the Western Systems Coordinating Council (WSCC),1997
    [85]A. B. Leirbukt, J. O. Gjerde, P. Korba,et al. Wide Area Monitoring Experiences in Norway[C]. Power Systems Conference and Exposition,2006. PSCE'06.2006 IEEE PES.2006
    [86]K. K. Yi, J. B. Choo, S. H. Yoon,et al. Development of wide area measurement and dynamic security assessment systems in Korea[C]. Power Engineering Society Summer Meeting,2001. IEEE.2001
    [87]闵勇,丁仁杰,任勇,等.电力系统全网同步监测系统[J].清华大学学报(自然科学版),1997,37(07):88-90
    [88]Qixun Yang, Tianshu Bi, Jingtao Wu. WAMS Implementation in China and the Challenges for Bulk Power System Protection[C]. Power Engineering Society General Meeting,2007. IEEE.2007
    [89]国家电网.电网的第十一个五年计划,2006
    [90]王大光,林因,吴丹岳,等.福建电网发展战略思考[J].福建电力与电工,2008(01):20-27
    [91]尚力,于占勋,荆铭,等.山东电网广域实时动态监测系统[J].山东电力技术,2008(01):11-16
    [92]林榕,贾京华.河北南网实时动态监测系统的建设[J].继电器,2007,35(S1):49-50
    [93]张梓奇,苏健祥.广域测量系统在电力系统中的应用[J].现代商贸工业,2007(01):7-12
    [94]冯源,夏立.广域监控系统研究的新进展[J].电力自动化设备,2007,27(03):45-47
    [95]S. R. Samantaray, L. N. Tripathy, P. K. Dash. Differential equation-based fault locator for unified power flow controller-based transmission line using synchronised phasor measurements[J]. Generation, Transmission & Distribution, IET,2009,3 (1):86-98
    [96]Mei Kejun, S. M. Rovnyak, Ong Chee-Mun. Clustering-Based Dynamic Event Location Using Wide-Area Phasor Measurements[J]. Power Systems, IEEE Transactions on,2008,23 (2):673-679
    [97]王波,王伟,陈超.基于同步相量测量技术的输电线路故障测距综述[J].电力系统保护与控制,2009,37(13):31-33
    [98]李大虎,曹一家.基于同步相量测量的实时电压稳定分析方法[J].电力系统自动化,2006,30(12):17-23
    [99]刘道伟,谢小荣,穆钢,等.基于同步相量测量的电力系统在线电压稳定指标[J].中国电机工程学报,2005,25(01):13-17
    [100]王彬彬.基于同步相量测量装置的广域电网实时监控系统研究.2005
    [101]黄莹,徐政.基于同步相量测量单元的直流附加控制器研究[J].中国电机工程学报,2004,24(09):7-12
    [102]黄志刚,邬炜,韩英铎.基于同步相量测量的电压稳定评估算法[J].电力系统自动化,2002(02):28-33
    [103]Jiang Weiqing, V. Vittal, G. T. Heydt. Diakoptic State Estimation Using Phasor Measurement Units[J]. Power Systems, IEEE Transactions on,2008,23 (4):1580-1589
    [104]A. Jain, N. R. Shivakumar. Phasor Measurements in Dynamic State Estimation of power systems[C]. TENCON 2008-2008, TENCON 2008. IEEE Region 10 Conference.2008
    [105]B. B. Monchusi, Y. Mitani, L. Changsong,et al. Stability analysis based on synchronized phasor measurements[C]. Sustainable Energy Technologies,2008. ICSET 2008. IEEE International Conference on.2008
    [106]A. Jain, N. R. Shivakumar. Impact of PMU in dynamic state estimation of power systems[C]. Power Symposium,2008. NAPS'08.40th North American.2008
    [107]陆超,谢小荣,吴小辰,等.基于广域测量系统的电力系统稳定控制[J].电力科学与技术学报,2009,24(02):98-101
    [108]D. M. Laverty, D. J. Morrow, R. Best,et al. Internet based phasor measurement system for phase control of synchronous islands[C]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE.2008
    [109]Fan Lingling, Synchronized global Phasor Measurement based inter-area oscillation control considering communication delay[C]. Power and Energy Society General Meeting-Conversion and Delivery of Electrical Energy in the 21st Century,2008 IEEE.2008
    [110]Li Chunyan, Deng Changhong, Sun Yuanzhang,et al. An on-line transient stability emergency control strategy based on PMU forecasted trajectory[C]. Power Engineering Conference,2007. IPEC 2007. International.2007
    [111]王波,周昱勇.基于PMU的多端传输线路故障定位新方法[J].电力系统保护与控制,2009,37(12):38-41
    [112]李胜芳,范春菊,郁惟镛.基于相量测量的输电线路故障测距新算法[J].电网技术,2004,28(17):28-32
    [113]李胜芳,范春菊,郁惟镛.一种基于PMU的线路自适应故障测距算法[J].继电器,2004,32(10):6-9
    [114]Yu Chi-Shan, Liu Chih-Wen, Yu Sun-Li,et al. A new PMU-based fault location algorithm for series compensated lines[J]. Power Delivery, IEEE Transactions on,2002,17 (1):33-46
    [115]. IEEE Standard for Synchrophasors for Power Systems. New York:The Institute of Electrical and Electronics Engineers, Inc,2006
    [116]T. T. Nguyen, X. J. Li. A fast and accurate method for estimating power systems phasors using DFT with interpolation[C]. Power Engineering Society General Meeting,2006. IEEE.2006
    [117]Fan Dawei, V. Centeno. Phasor-Based Synchronized Frequency Measurement in Power Systems[J]. Power Delivery, IEEE Transactions on,2007,22 (4):2010-2016
    [118]吴京涛,黄志刚,韩英铎,等.同步相量测量算法与实测误差估计[J].清华大学学报(自然科学版),2001,41(Z1):147-150
    [119]王茂海,孙元章.基于DFT的电力系统相量及功率测量新算法[J].电力系统自动化,2005,29(02):20-24
    [120]A. G. Phadke, M. Ibrahim, T. Hlibka. Fundamental basis for distance relaying with symmetrical components[J]. Power Apparatus and Systems, IEEE Transactions on,1977,96 (2):635-646
    [121]江道灼,孙伟华,陈素素.电网相量实时同步测量的一种新方法[J].电力系统自动化,2003,27(15):40-44
    [122]T. S. Sidhu, Zhang Xudong, V. Balamourougan. A new half-cycle phasor estimation algorithm[J]. Power Delivery, IEEE Transactions on,2005,20 (2):1299-1305
    [123]周捷,陈尧,崔建中.母线电压同步相角测量算法研究及实现[J].继电器,2002,30(03):13-16
    [124]A. K. Pradhan, A. Routray, D. Sethi. Voltage phasor estimation using complex linear Kalman filter[C]. Developments in Power System Protection,2004. Eighth IEE International Conference on.2004
    [125]I. Kamwa, R. Grondin. Fast adaptive schemes for tracking voltage phasor and local frequency in power transmission and distribution systems[J]. Power Delivery, IEEE Transactions on,1992,7 (2): 789-795
    [126]周水斌,杨敏,陈小桥,等.一种不受信号频率影响的电压计算方法[J].电力自动化设备,2003,23(02):66-67
    [127]Wong Chi-kong, Leong Ieng-tak, Lei Chu-san,et al. A novel algorithm for phasor calculation based on wavelet analysis [power system analysis] [C]. Power Engineering Society Summer Meeting,2001. IEEE. 2001
    [128]J. A. de la O Serna. Reducing the Error in Phasor Estimates From Phasorlets in Fault Voltage and Current Signals[J]. Instrumentation and Measurement, IEEE Transactions on,2007,56 (3):856-866
    [129]J. Adl O. Serna. Phasor estimation from phasorlets[J]. Instrumentation and Measurement, IEEE Transactions on,2005,54 (1):134-143
    [130]任明珠,邰能灵,袁成,等.基于单端量的同塔并架4回线路故障测距方法[J].上海交通大学学报,2009,43(08):1228-1232
    [131]K. Zimmerman, D. Costello. Cover Page-Impedance Based Fault Location Experience[C]. Rural Electric Power Conference,2006 IEEE.2006
    [132]王宾,董新洲,薄志谦,等.特高压长线路单端阻抗法单相接地故障测距[J].电力系统自动化,2008,32(14):25-29
    [133]V. Cook. Fundamental aspects of fault location algorithms used in distance protection[J]. IEE Proceedings Generation, Transmission and Distribution [see also IEE Proceedings-Generation, Transmission and Distribution],1986,133 (6):359-368
    [134]A. Wiszniewski. Accurate fault impedance locating algorithm[J]. IEE Proceedings Generation, Transmission and Distribution [see also IEE Proceedings-Generation, Transmission and Distribution], 1983,130 (6):311-314
    [135]A. Borghetti, M. Bosetti, M. Di Silvestro,et al. Continuous-Wavelet Transform for Fault Location in Distribution Power Networks:Definition of Mother Wavelets Inferred From Fault Originated Transients[J]. Power Systems, IEEE Transactions on,2008,23 (2):380-388
    [136]C. Y. Evrenosoglu, A. Abur. Travelling wave based fault location for teed circuits[J]. Power Delivery, IEEE Transactions on,2005,20 (2):1115-1121
    [137]P. A. Crossley, P. G. McLaren. Distance protection based on travelling waves[J]. IEEE Transactions on Power Apparatus and Systems,1983:2971-2983
    [138]黄家栋,智秀霞.配电网混合线路单端行波测距法[J].电力系统自动化,2009,33(07):69
    [139]何正友,杨建维,周超,等.铁路自闭贯通线架空线-电缆混合线路行波测距[J].大连海事大学学报,2007(03):530-534
    [140]陈平,徐丙垠,李京,等.现代行波故障测距装置及其运行经验[J].电力系统自动化,2003,27(06):66-69
    [141]董新洲,葛耀中,徐丙垠.利用暂态电流行波的输电线路故障测距研究[J].中国电机工程学报,1999,19(04):77-81
    [142]董新洲,葛耀中,徐丙垠,等.利用GPS的输电线路行波故障测距研究[J].电力系统自动化,1996,20(12):39-42
    [143]董新洲,葛耀中,徐丙垠,等.新型输电线路故障测距装置的研制[J].电网技术,1998,22(01):19-23
    [144]葛耀中.新型继电保护与故障测距原理与技术[M].西安:西安交通大学出版社,1996
    [145]邬林勇,何正友,钱清泉.一种提取行波自然频率的单端故障测距方法[J].中国电机工程学报,2008,28(10):78-83
    [146]邬林勇,何正友,钱清泉.利用CVT二次信号的频域行波故障测距方法[J].电力系统自动化,2008,32(08):24-27
    [147]邬林勇,何正友,钱清泉.单端行波故障测距的频域方法[J].中国电机工程学报,2008,28(25):99-104
    [148]J. C. S. Souza, M. A. P. Rodrigues, M. T. Schilling,et al. Fault location in electrical power systems using intelligent systems techniques[J]. Power Delivery, IEEE Transactions on,2001,16 (1):59-67
    [149]M. J. Reddy, D. K. Mohanta. Adaptive-neuro-fuzzy inference system approach for transmission line fault classification and location incorporating effects of power swings[J]. Generation, Transmission & Distribution, IET,2008,2 (2):235-244
    [150]Lee Seung-Jae, Choi Myeon-Song, Kang Sang-Hee,et al. An intelligent and efficient fault location and diagnosis scheme for radial distribution systems[J]. Power Delivery, IEEE Transactions on,2004,19 (2):524-532
    [151]D. Thukaram, H. P. Khincha, H. P. Vijaynarasimha. Artificial neural network and support vector Machine approach for locating faults in radial distribution systems[J]. Power Delivery, IEEE Transactions on,2005,20 (2):710-721
    [152]J. Mora-Florez, V. Barrera-Nuez, G. Carrillo-Caicedo. Fault Location in Power Distribution Systems Using a Learning Algorithm for Multivariable Data Analysis[J]. Power Delivery, IEEE Transactions on,2007,22 (3):1715-1721
    [153]S. M. Brahma. Fault location scheme for a multi-terminal transmission line using synchronized Voltage measurements[J]. Power Delivery, IEEE Transactions on,2005,20 (2):1325-1331
    [154]S. M. Brahma, A. A. Girgis. Fault location on a transmission line using synchronized Voltage measurements[J]. Power Delivery, IEEE Transactions on,2004,19 (4):1619-1622
    [155]李胜芳,范春菊,郁惟镛.T型支接线路的自适应故障测距算法[J].电工技术学报,2004,19(10):59-64
    [156]宋振红,张举,唐杰.一种基于双端电压相量测量的故障测距新算法[J].电力自动化设备,2006,26(06):45-48
    [157]刘万超,陈平,马永明,等.基于多时窗相关函数和形态学滤波的单端行波故障测距研究[J].电力系统保护与控制,2009(20):28-33
    [158]马丹丹,王晓茹.基于小波模极大值的单端行波故障测距[J].电力系统保护与控制,2009,27(03):334-375
    [159]张帆,潘贞存,马琳琳,等.基于模量行波传输时间差的线路接地故障测距与保护[J].中国电机工程学报,2009,29(10):54-57
    [160]张峰,梁军,杜涛,等.T型线路的行波精确故障测距新方法[J].高电压技术,2009,35(03):56-57
    [161]M. Chamia, S. Liberman. Ultra High Speed Relay for EHV/UHV Transmission Lines Development, Design and Application[J]. IEEE Transactions on Power Apparatus and Systems,1978:2104-2116
    [162]A. T. Johns. New ultra-high-speed directional comparison technique for the protection of EHV transmission lines[J]. IEE Proceedings Generation, Transmission and Distribution [see also IEE Proceedings-Generation, Transmission and Distribution],1980,127 (4):228-239
    [163]M. Vitins. A fundamental concept for high speed relaying[J]. IEEE Transactions on Power Apparatus and Systems,1981:163-173
    [164]贺家李,葛耀中.超高压输电线故障分析与继电保护[M].北京:科学出版社,1987
    [165]E. Styvaktakis, M. H. J. Bollen, I. Y. H. Gu. A fault location technique using high frequency fault clearing transients[J]. Power Engineering Review, IEEE,1999,19 (5):58-60
    [166]M. Reddy, D. K. Mohanta. Performance Evaluation of an Adaptive-Network-Based Fuzzy Inference System Approach for Location of Faults on Transmission Lines Using Monte Carlo Simulation[J]. Fuzzy Systems, IEEE Transactions on,2008,16 (4):909-919
    [167]Jiang Joe-Air, Yang Jun-Zhe, Lin Ying-Hong,et al. An adaptive PMU based fault detection/location technique for transmission lines. I. Theory and algorithms[J]. Power Delivery, IEEE Transactions on, 2000,15 (2):486-493
    [168]Jiang Joe-Air, Lin Ying-Hong, Yang Jun-Zhe,et al. An adaptive PMU based fault detection/location technique for transmission lines. II. PMU implementation and performance evaluation[J]. Power Delivery, IEEE Transactions on,2000,15 (4):1136-1146
    [169]梁远升,王钢,李海锋.消除暂态过程影响的滤波算法及其在故障测距中的应用[J].电力系统自动化,2007,31(22):77-82
    [170]辛振涛,尚德基,尹项根.一种双端测距算法的伪根问题与改进[J].继电器,2005,33(06)36-38
    [171]C. Ed. M. Pereira, Jr. L. C. Zanetta. Optimization algorithm for fault location in transmission lines considering current transformers saturation[J]. Power Delivery, IEEE Transactions on,2005,20 (2):603-608
    [172]施世鸿,何奔腾.不受TA饱和影响的高压输电线路故障测距算法[J].电力系统自动化,2008,32(02):67-71
    [173]E. Clarke. Circuit Analysis of AC Power Systems[M]:Chapman & Hall, limited,1943
    [174]西蒙,赫金,郑宝玉.自适应滤波器原理(第四版)[M].北京:电子工业出版社,2003
    [175]杨健维,麦瑞坤,何正友.PSCAD/EMTDC与Matlab接口研究[J].电力自动化设备,2007(11):83-87
    [176]J. A. D. de la Serna. Dynamic Phasor Estimates for Power System Oscillations[J]. Instrumentation and Measurement, IEEE Transactions on,2007,56 (5):1648-1657
    [177]徐衍会,贺仁睦,韩志勇.电力系统共振机理低频振荡扰动源分析[J].中国电机工程学报,2007,27(17):83-87
    [178]王铁强,贺仁睦,王卫国,等.电力系统低频振荡机理的研究[J].中国电机工程学报,2002,22(02):22-26

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700