乙型肝炎病毒X基因整合/X蛋白与肝癌发生关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
乙型肝炎病毒(hepatitis B virus, HBV)的持续感染是肝细胞癌(hepatocellular carcinoma, HCC)发生的最主要因素。HBV X (HBx)基因在肝细胞基因组中的整合和X蛋白的反式激活作用对HCC的发生和发展具有重要意义,但其致癌的分子机制目前尚不十分清楚。对HBx的研究大多着眼于X蛋白的反式激活功能,而忽略了HBx基因在肝细胞基因组整合的作用。研究表明,在HBV导致肝癌发生过程中,病毒DNA在宿主基因组中有高频率的整合,整合部位随机分布于多条染色体上,这种整合多发生在HBV X基因区域。前期研究发现,稳定整合HBx基因的人正常肝胞系(L-02-X)发生恶性转化,推测HBx基因的整合可能与肝癌发生有直接关系。此外,HBx蛋白对HCC的发生和转移具有重要作用。近年来研究发现,骨桥蛋白(osteopontin, OPN)及钙蛋白酶小亚基1(calpain small subunit 1,Capn4)与肿瘤细胞的生长、增殖、浸润及转移密切相关。因此,HBx蛋白可能通过OPN及Capn4促进肝癌细胞迁移。为了进一步阐明HBx基因/蛋白与肝癌发生发展的关系,本研究应用细胞模型和病人肝癌组织标本,探讨了HBx基因整合在肝癌发生中的直接作用和HBx蛋白促进肝癌细胞迁移作用的分子机制,主要研究内容如下:
     第一部分:HBx基因整合与肝癌发生关系的研究
     一、HBx基因突变体稳定整合细胞模型的建立
     前期研究发现,稳定整合HBx基因的人正常肝胞系(L-02-X)发生了恶性转化,因此推测HBx基因的整合可能与肝癌发生有直接关系。但是,其中包含了HBx蛋白的反式激活作用。为了探讨HBx基因整合与肝细胞转化的直接关系,首先建立了无反式激活功能的HBx基因突变体稳定整合的细胞模型。本研究中,HBx基因被随机分成五个片段,并分别克隆到真核表达载体pCMVTag-2B,获得的质粒分别命名为pCMV-X1、pCMV-X2、pCMV-X3、pCMV-X4和CMV-X5。将此五个质粒及克隆有全长HBx基因的质粒分别瞬时转染人肝细胞L-02使其蛋白过表达,同时检测对核因子-κB(NF-κB)和人端粒酶反转录酶(hTERT)启动子活性的影响,发现与野生型相比,五个突变的HBx基因片段失去了对NF-κB和hTERT启动子活性的上调作用。通过基因转染技术将克隆有这五个片段的质粒分别导入人正常肝细胞系L-O2和人肝癌细胞系H7402中,经G418筛选,获得了稳定转染细胞系,分别命名为L-02-X1、L-O2-X2、L-O2-X3、L-O2-X4和L-02-X5(或H7402-X1、H7402-X2、H7402-X3、H7402-X4和H7402-X5)。
     二、HBx基因片段整合导致肝细胞恶性转化的作用
     为了阐明L-02-X1、L-O2-X2、L-O2-X3、L-O2-X4和L-02-X5细胞系的恶性表型,进行了免疫印迹实验。结果显示,与对照组相比,在L-02-X3和L-02-X5细胞中有甲胎蛋白(AFP)表达,而L-02-X1、L-02-X2和L-02-X4则检测不到AFP。软琼脂克隆形成实验显示,与对照组相比,L-02-X3和L-02-X5细胞克隆形成能力显著增强,而L-02-X1、L-02-X2和L-02-X4细胞克隆形成能力与对照组相比无明显差异。进一步研究发现,将L-02-X1、L-02-X2、L-02-X3、L-02-X4和L-02-X5分别皮下接种裸鼠后,L-02-X3和L-02-X5细胞接种的裸鼠在接种部位形成原位瘤,而L-02-X1、L-02-X2和L-02-X4细胞接种的裸鼠则未能成瘤。本结果说明,整合有HBx基因片段的L-02-X3和L-02-X5细胞发生了恶性转化,HBx基因整合与肝细胞的转化直接相关。
     三、HBx基因整合导致肝细胞转化分子机制的研究
     1、HBx基因整合模式的鉴定。提取L-02-X细胞基因组DNA,应用HBx-AluPCR方法检测HBx基因整合模式,测序结果显示,HBx基因整合到Alu核心序列和亚端粒DNA(subtelomeric DNA)序列上游,整合后HBx基因发生了3'末端(381-465 bp)缺失,产生HBx基因/Alu核心序列/亚端粒DNA重组体。然后,设计针对该重组体中HBx基因和亚端粒的引物进行PCR,在其他HBx基因稳定整合的细胞系(如H7402-X、3T3-X、HepG2-X和HepG2.2.15)中检测上述重组体是否存在。结果显示,仅在H7402-X细胞系中检测到该重组体。
     2、HBx基因/Alu核心序列/亚端粒DNA重组体与肝细胞转化的关系。为了阐明该重组体是否参与肝细胞的转化,应用上述特异于HBx基因和亚端粒的引物,在稳定整合HBx基因突变体的细胞系(L-02-X1、L-02-X2、L-02-X3、L-02-X4和L-02-X5;H7402-X1、H7402-X2、H7402-X3、H7402-X4和H7402-X5)中进行验证。结果显示,在上述发现的已发生恶性转化的L-02-X3和L-02-X5(或H7402-X3和H7402-X5)细胞中检测到HBx基因/Alu核心序列/亚端粒DNA重组体,而未发生转化的细胞无该重组体。为了进一步提供HBx基因/Alu核心序列/亚端粒DNA重组导致肝细胞发生转化的证据,应用报告基因及免疫印迹的方法对L-02-X1、L-02-X2、L-02-X3、L-02-X4、L-02-X5和L-02-X(或H7402-X1、H7402-X2、H7402-X3、H7402-X4、H7402-X5和H7402-X)细胞系转录因子启动子活性及癌蛋白表达进行检测,结果显示NF-κB、AP-1和hTERT启动子活性在L-02-X3、L-02-X5和L-02-X、(或H7402-X3、H7402-X5和H7402-X)细胞中显著增强,而在L-02-X1、L-02-X2和L-02-X4则与对照组无明显差异。c-Myc、PCNA和Bcl-2蛋白表达在L-02-X3、L-02-X5和L-02-X、(或H7402-X3、H7402-X5和H7402-X)细胞中显著上调,而在L-02-X1、L-02-X2和L-02-X4细胞中则与对照组无明显差异。提示,HBx基因整合导致的HBx基因/Alu核心序列/亚端粒DNA重组是肝细胞转化的重要原因之一。
     3、在肝癌和癌旁组织中检测HBx基因/Alu核心序列/亚端粒DNA重组体。应用PCR方法对60例肝癌组织和癌旁组织中HBx基因进行检测,发现HBx在60例肝癌组织及其癌旁组织中有44例(73.3%)。然后,应用PCR方法在44例HBx阳性的肝癌组织及其癌旁组织中检测上述重组体,结果发现其中有5例肝癌组织中存在与细胞模型中相同的HBx基因/Alu核心序列/亚端粒DNA重组体,而在其对应的癌旁组织无上述重组体,临床标本检测结果进一步证实HBx基因/Alu核心序列/亚端粒DNA重组与肝癌发生有密切的关系。
     本研究发现HBx基因整合与肝细胞转化具有直接的关系,HBx基因/Alu核心序列/亚端粒DNA重组导致基因组不稳定是肝细胞转化的重要原因之一。这一发现首次为揭示HBV DNA在肝细胞基因组中整合的致癌作用提供了直接证据,对于肝癌的预防具有重要的指导作用。
     第二部分:HBx蛋白促进肝癌细胞迁移分子机制的研究
     近年研究发现OPN和Capn4与肿瘤细胞的生长、增殖、浸润及转移密切相关。因此,HBx蛋白可能通过OPN及Capn4促进肝癌细胞迁移,为此进行了以下研究:
     一、HBx蛋白促进肝癌细胞迁移信号传导途径的研究
     本研究对HBx蛋白促进肝癌细胞迁移的信号传导途径进行了探讨。前期研究发现HBx蛋白通过NF-κB上调肝癌细胞HepG2和H7402中Capn4的表达;在此基础上,进一步研究显示HBx蛋白在启动子转录活性、mRNA及蛋白等水平通过5-脂氧化酶(5-LOX)上调肝癌细胞HepG2和H7402中OPN的表达;进而,OPN可以通过NF-κB上调肝癌细胞HepG2和H7402中Capn4的表达;而Capn4则以正反馈的形式对肝癌细胞HepG2和H7402中OPN的表达起调节作用。体外划痕实验显示,HBx蛋白可显著增强肝癌细胞HepG2的迁移能力,而对HepG2-X细胞中OPN或Capn4进行RNA干扰后,其迁移能力受到明显抑制。表明,HBx蛋白通过正反馈环HBx/5-LOX/OPN/NF-κB/Capn4/OPN促进肝癌细胞迁移。
     二、HBx蛋白突变体HBxΔ127促进肝癌细胞迁移分子机制的研究
     实验室前期研究发现了一个新的HBx蛋白突变体,将其命名为HBx△127。研究表明,HBx△127具有明显促进肝癌细胞增殖的作用。在此基础上,本研究探讨了HBx△127对肝癌细胞迁移的影响,结果发现HBx△127具有促进肝癌细胞迁移的作用。HBx△127可通过5-LOX上调肝癌细胞中OPN的表达,进而促进肝癌细胞迁移。与野生型HBx蛋白相比,HBx△127促进肝癌细胞迁移的作用更强。
     上述实验结果进一步丰富了HBx蛋白及其突变体促进肝癌细胞迁移的分子机制,为肝癌的治疗提供了理论基础。
Infection of hepatitis B virus (HBV) is closely related to the development of hepatocellular carcinoma (HCC). The integration of HBV DNA into the host genome and the trans-activation of HBx protein play crucial roles in the development of HCC. However, the molecular mechanisms underlying HBV-induced HCC remain to be elucidated. Most researches related to HBx focused on its trans-activation role in the cells, but the role of HBV DNA integration in hepatocarcinogenesis was ignored. It has been reported that HBV DNA, especially X gene, can randomly integrate into the host genome with a very high integration rate of more than 80% in HBV-related HCC. Previously, we reported that human immortalized liver L-O2 cells could be transformed by HBx in a model of stably HBx gene-transfection cells. Therefore, we supposed that the integration of HBx gene may be directly involved in hepatocarcinogenesis. Meanwhile, HBx protein also plays an important role in the metastasis of HCC. Accordingly, osteopontin (OPN) and calpain small subunit 1 (Capn4) are related to tumor cell adhesion, migration and invasion. Therefore, we supposed that OPN and Capn4 may be involved in the promotion of hepatoma cell migration mediated by HBx. In the present study, we took advantage of cell models and clinical HCC specimens to investigate the direct role of the HBx gene-integration in hepatocarcinogenesis and the mechanism of hepatoma cell migration promoted by HBx protein. This study includes two parts as follows:
     Part I:Investigation of relationship between HBx gene integration and hepatocarcinogenesis
     Establishment of cell models stably transfected with HBx mutant
     We previously reported that the L-O2 cells stably transfected with full-length HBx gene (L-O2-X cells) could be transformed, suggesting that HBx integration may be involved in hepatocarcinogenesis. However, there were the possibilities of trans-activation by HBx proteins in the transformation mediated by full-length HBx-integration. To investigate the direct role of HBx integration in the transformation, we tried to establish cell models involving HBx-mutant gene integration, in which the mutant HBx protein lost the trans-activation function. Firstly, we randomly divided the full-length HBx gene into five fragments, which were subcloned into the pCMVTag-2B vector. The constructs were termed as pCMV-X1, pCMV-X2, pCMV-X3, pCMV-X4 and pCMV-X5, respectively. We observed that the overexpression of the 5 fragments of HBx gene failed to affect the promoter activities of NF-κB and human telomerase reverse transcriptase (hTERT) relative to wild type HBx protein in the transiently HBx mutant-transfected L-O2 cells, suggesting that the mutant HBx proteins lost the trans-activation roles. The constructed plasmids were transfected into L-O2 (or H7402) cells and selected by G418 for two weeks. The engineered cells were termed as L-02-X1,L-O2-X2, L-O2-X3, L-O2-X4 and L-O2-X5 (or H7402-X1, H7402-X2, H7402-X3, H7402-X4 and H7402-X5), respectively.
     Effect of HBx gene integration on the transformation of L-O2 cells
     We observed the malignant phenotype of above HBx-fragments engineered L-O2 cells. The results showed that alpha-fetoprotein (AFP) was detectable in the L-O2-X3 and L-O2-X5 cells, suggesting that L-O2-X3 and L-O2-X5 cells become HCC cells. Moreover, the two cell lines generated more clones in soft agar. Animal transplantation showed that nude mice injected with L-O2-X3 and L-O2-X5 cells gave rise to tumors after transplantation, while the others failed to form any visible tumors. This finding suggests that L-O2-X3 and L-O2-X5 cells are transformed and that HBx gene-integration is directly involved in the transformation of L-O2 cells.
     The mechanism of HBx gene integration-meditated transformation
     We found that HBx-integration was involved in the transformation of L-O2 cells, and then we tried to identify the HBx-integration manner by HBx-Alu PCR approach in the L-02-X cells. We randomly picked up one band from the positive PCR products. The sequencing data revealed that HBx gene inserted into the upstream of a 20 bp Alu core sequence with a secondary deletion of 382-465 bp at the 3'end of HBx gene, followed by subtelomeric DNA, suggesting that HBx gene-integration results in a recombination of HBx/Alu core sequence/subtelomeric DNA in the host genome. Accordingly, we designed the PCR primers to amplify the sequence from the integrated HBx to subtelomeric DNA, to confirm the recombination in H7402-X (human hepatoma H7402 cells stably transfected HBx gene),3T3-X (NIH3T3 cell line stably transfected HBx gene), HepG2.2.15 and HepG2-X (human hepatoma HepG2 cells stably transfected HBx gene). The same recombination could be only detected in H7402-X cells.
     To investigate whether the recombination involved the transformation of L-O2 cells, we examined the recombination in above ten engineered cell lines stably transfected with five HBx fragments by PCR using the primers from each of the five fragments to subtelomeric DNA. Interestingly, we found that the recombination was found in the transformed L-O2-X3 and L-O2-X5 (or H7402-X3 and H7402-X5) cells but not in the non-transformed cells. The corresponding recombination just matched the L-O2-X3 and L-O2-X5 cell lines which were transformed, suggesting that the recombination of HBx gene/Alu core sequence/subtelomeric DNA was involved in the transformation. Furthermore, we provided more evidence of the transformation mediated by HBx-integraiton at the molecular level. The promoter activities of NF-κB, activator protein-1 (AP-1) and hTERT were increased in the engineered cells with the HBx integration-meditated recombination (such as, L-O2-X, L-O2-X3, L-O2-X5, H7402-X, H7402-X3 and H7402-X5). The proteins involved in proliferation and transformation, such as c-Myc, proliferating cell nuclear antigen (PCNA) and Bcl-2 were remarkably upregulated in the corresponding cells as well. However, the cell lines without the HBx meditated-recombination had no the phenotype. These results indicate that HBx integration-meditated recombination is one of crucial causes of transformation of hepatocytes.
     To examine the recombination in human HBV-related HCC tissues, we first detected the HBx gene in 60 cases of HCC tissues and their non-tumor ones by PCR. The positive rates of HBx gene were 73.3%(44/60) in HCC tissues and 73.3%(44/60) in their non-tumor tissues. Then, we examined the recombination of HBx/Alu core sequence/subtelomeric DNA in the above HBx-positive tissues by PCR using the primers from HBx to subtelomeric DNA. The recombination was detectable in 5 out of 44 cases HCC tissues, while in their non-tumor tissues the recombination was negative.
     In summary, our finding first provides evidence that the HBx integration is directly related to the hepatocarcinogenesis involving a recombination of HBx/Alu core sequence/subtelomeric DNA. It suggests that the prevention of HCC is very important.
     Part II:The mechanism of hepatoma cell migration promoted by HBx protein
     Investigation of the signal pathways involved in hepatoma cell migration promoted by HBx protein
     Recently, we reported that HBx protein could upregulate the expression of Capn4 in the hepatoma cells. In this study, we revealed that HBx could upregulate OPN through 5-lipoxygenase (5-LOX) in hepatoma HepG2 (or H7402) cells. Moreover, OPN could upregulate the expression of Capn4 through NF-κB in the cells. Interestingly, Capn4 could regulate the expression of OPN in a positive feedback manner. In function, wound healing assay showed that OPN and Capn4 were involved in the promotion of hepatoma cell migration mediated by HBx. Thus, we conclude that HBx promotes hepatoma cell migration via a positive feedback loop involving HBx/5-LOX/OPN/NF-KB/Capn4/OPN.
     The mechanism of hepatoma cell migration promoted by HBx protein mutant (HBxΔ127)
     We previously identified a natural mutant of the HBx gene, termed HBxΔ127, which was able to promote cell proliferation. In the present study, we investigated the role of HBxΔ127 in hepatoma cell migration. The results display that HBxΔ127 strongly promotes hepatoma cell migration via activating OPN involving 5-LOX relative to wild type HBx protein.
     Taken together, our findings provide new insight into the mechanism of hepatoma cell migration mediated by HBx protein. Potentially, OPN and Capn4 may serve as key therapeutic targets.
引文
[1]Yokosuka O, Chiba T. Mechanisms of hepatocarcinogenesis by hepatitis B virus(HBV) infection. Nippon Rinsho,2001,59(Suppl 6):50-54
    [2]Okubo K, Nakamura T, Tokino T, et al. Different type of hepatitis B virus (HBV) DNA integrants that may reflect the integration process. Gastroenterol Jpn,1990,25(Suppl 2): 23-30
    [3]Ding JJ, Saito H, Morizane T, et al. Hepatitis B virus DNA integration in hepatocellular carcinomas and their adjacent non-neoplastic liver tissues. Keio J Med,1989,38(4): 443-453
    [4]Sherman M. Complexities of HBV DNA integration. Hepatology,1989,9(3):514-515
    [5]Tanaka Y. Esumi M, Shikata T. Frequent integration of hepatitis B virus DNA in noncancerous liver tissue from hepatocellular carcinoma patients.J Med Virol,1988. 26(1):7-14
    [6]Rivkina MB, Lunin VG, Mahov AM,et al. Nucleotide sequence of integrated hepatitis B virus DNA and human flanking regions in the genome of the PLC/PRF/5 cell line. Gene. 1988.64(2):285-296
    [7]Chang MH,Chen PJ,Chen JY,et al. Hepatitis B virus integration in hepati(?)is B virus-related hepaiocellular carcinoma in childhood. Hepatology,1991,13(2):316-320
    [8]Fujise K, Nagamori S, Hasumura S, et al. Integration of hepatitis B virus DNA into cells of six established human hepatocellularcarcinoma cell lines. Hepatogastroenterology,1990, 37(3):457-460
    [9]Goto Y, Yoshida J, Kuzushima K, et al. Patterns of hepatitis B virus DNA integration in liver tissue of children with chronic infections. J Pediatr Gastroenterol Nutr,1993,16(1): 70-74
    [10]Zhou YZ, Slagle BL, Donehower LA, et al. Structural analysis of a hepatitis B virus genome integrated into chromosome 17p of a human hepatocellular carcinoma. J Virol, 1988,62(11):4224-4231
    [11]Hsu TY, Fourel G, Etiemble J, et al. Integration of hepatitis virus DNA near c-myc in woodchuck hepatocellular carcinoma. Gastroenterol Jpn,1990,25(Suppl 2):43-48
    [12]Takada S, Gotoh Y, Hayashi S, et al. Structural rearrangement of integrated hepatitis B virus DNA as well as cellular flanking DNA is present in chronically infected hepatic tissues.J Virol,1990,64(2):822-828
    [13]Wang PC, Hui EK, Chiu JH, et al. Analysis of integrated hepatitis B virus DNA and flanking cellular sequence by inverse polymerase chain reaction. J Virol Methods,2001, 92(1):83-90
    [14]Urashima T, Saigo K, Kobayashi S, et al. Identification of hepatitis B virus integration in hepatitis C virus-infected hepatocellular carcinoma tissues. J Hepatol,1997,26(4): 771-778
    [15]Tagieva NE, Gizatullin RZ, Zakharyev VM, et al. A genome-integrated hepatitis B virus DNA in human neuroblastoma. Gene,1995,152(2):277-278
    [16]Takada S, Gotoh Y, Hayashi S, et al. Integrated structures of HBV DNA in chronic hepatitis and hepatoma tissues. Gastroenterol Jpn,1990,25(Suppl 2):31-37
    [17]Laskus T, Radkowski M, Wang LF, et al. Detection and sequence analysis of hepatitis B virus integration in peripheral blood mononuclear cells. J Virol,1999,73(2):1235-1238
    [18]Murakami Y, Saiqo K, Takashima H, et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut,2005,54(8): 1162-1168
    [19]Chen JY, Harrison TJ, Tsuei DJ, et al. Analysis of integrated hepatitis B virus DNA and flanking cellular sequences in the hepatocellular carcinoma cell line HCC36. Intervirology, 1994.37(1):41-46
    [20]Paterlini-Brechot P. Saiqo K. Murakami Y. et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene,2003,22(25):3911-3916
    [21]Kuo KW,Yang PY, Huang YS,et al.Variations in gene expression and genomic stability of human hepatoma cells integrated with hepatitis B virus DNA. Biochem Mol Biol Int. 1998,44(6):1133-1140
    [22]Ferber MJ, Montoya DP, Yu C, et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene,2003,22(24):3813-3820
    [23]Bonilla Guerrero R, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol,2005,42(5):760-77
    [24]Zhang XK, Egan JO, Huang D, et al. Hepatitis B virus DNA integration and expression of an erb B-like gene in human hepatocellular carcinoma. Biochem Biophys Res Commun, 1992,188(1):344-351
    [25]Quade K, Saldanha J, Thomas H, et al.Integration of hepatitis B virus DNA through a mutational hot spot within the cohesive region in a case of hepatocellular carcinoma. Gen Virol,1992,73(Pt1):179-182
    [26]Berger 1, Shaul Y. Integration of hepatitis B virus:analysis of unoccupied sites. Virol, 1987,61(4):1180-1186
    [27]Simon D, Carr BI. Integration of hepatitis B virus and alteration of the 1p36 region found in cancerous tissue of primary hepatocellular carcinoma with viral replication evidenced only in noncancerous, cirrhotic tissue. Hepatology,1995,22(5):1393-1398
    [28]Su TS, Hwang WL, Yauk YK. Characterization of hepatitis B virus integrant that results in chromosomal rearrangement. DNA Cell Biol.1998,17(5):415-425
    [29]Pineau P, Marchio A, Terris B, et al. At(3:8) chromosomal translation associated with hepatitis B virus intergration involves the carboxypeptidase N locus. J Virol,1996,70(10): 7280-7284
    [30]Dandri M, Burda MR, Burkle A, et al. Increase in de novo HBV DNA integrations in response to oxidative DNA damage or inhibition of poly(ADP-ribosyl)ation. Hepatology, 2002,35(1):217-223
    [31]Slagle BL, Zhou YZ, Butel JS. Hepatitis B virus integration event in human chromosome 17p near the p53 gene identifies the region of the chromosome commonly deleted in virus-positive hepatocellular carcinomas. Cancer Res,1991,51(1):49-54
    [32]Livezey KW, Negorev D, Simon D. Hepatitis B virus-transfected Hep G2 cells demonstrate genetic alterations and denovo viral integration in cells replicating HBV. Mutat Res,2000,452(2):163-178
    [33]Meyer M, Wiedorn KH, Hofschneider PH. et al. A chromosome 17:7 translocation is associated with a hepatitis B virus DNA integration in human hepatocellular carcinoma DNA. Hepatology,1992,15(4):665-671
    [34]Zhou YZ. Butel JS. Li PJ. et al. Integrated state of subgenomic fragments of hepatitis B virus DNA in hepatocellular carcinoma from mainland China. J Natl Cancer Inst.1987. 79(2):223-231
    [35]Feitelson MA. Lee J. Hepatitis B virus integration,fragile sites,and hepatocarcinogencsis Cancer Lett,2007,252(2):157-70
    [36]Tamori A,Yamanishi Y,Kawashima S,et al. Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res.2005 11(16):5821-5826
    [37]Wang J, Zindy F, Chenivesse X, et al. Modification of cyclin A expression by hepatitis B virus DNA integration in a hepatocellular carcinoma. Oncogene,1992,7(8):1653-1656
    [38]Chami M, Gozuacik D, Saigo K, et al. Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene,2000,19(25):2877-2886
    [39]Bonilla Guerrero R, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol,2005,42(5):760-77
    [40]Saigo K, Yoshida K, Ikeda R, et al. Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hun Mutat,2008,29(5):703-708
    [41]Kajino K, Yamamoto T, Hayashi J, et al. Recombination hot spot of hepatitis B virus genome binds to members of the HMG domain protein family and the Y box binding protein family; implication of these proteins in genomic instability.Intervirology,2001, 44(5):311-316
    [42]Hsu IC, Tokiwa T, Bennett W, et al. P53 gene mutation and integrated hepatitis B viral DNA sequences in human liver cancer cell lines. Carcinogenesis,1993,14(5):987-992
    [43]Zhang Z, Protzer U, Hu Z, et al. Inhibition of cellular proteasome activities enhances hepadnavirus replication in an HBX-dependent manner. Virol,2004,78(9):4566-4572
    [44]Bouchard MJ, Puro RJ, Wang L, et al. Activation and inhibition of cellular calcium and tyrosine kinase signaling pathways identify targets of the HBx protein involved in hepatitis B virus replication. Virol,2003,77(14):7713-7719
    [45]Tang H, Delgermaa L, Huang F, et al.The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication.Virol,2005, 79(9):5548-5556
    [46]Hu Z, Zhang Z, Kim JW, et al. Altered proteolysis and global gene expression in hepatitis B virus X transgenic mouse liver. Virol,2006,80(3):1405-1413
    [47]Leupin O, Bontron S, Schaeffer C, et al. Hepatitis B virus X protein stimulates viral genome replication via a DDB 1-dependent pathway distinct from that leading to cell death. Virol.2005,79(7):4238-4245
    [48]Zhang JL, Zhao WG, Wu KL, et al. Human hepatitis B virus X protein promotes cell proliferation and inhibits cell apoptosis through interacting with a serine protease Hepsin. Arch Virol.2005,150(4):721-741
    [49]Haviv 1. Vaizel D, Shaul YP. pX, the HBV-encoded coactivator,interacts with components of the transcription machinery and stimulates transcription in a TAF-independent manner. EMBO J,1996,15(13):3413-3420
    [50]Klein NP, Bouchard MJ, Wang LH. et al. Src kinases involved in hepatitis B virus replication. EMBO J,1999.18(18):5019-5027
    [51]Zhang XD, Dong N, Zhang H, et al. Effects of hepatitis B virus X protein on hTERT expression and activity in hepatoma cells. J Lab. Clin, Med,2005,145(2):98-104
    [52]Chan CF, Yau TO, Jin DY. Evaluation of nuclear factor-kappaB, urokinase-type plasminogen activator, and HBx and their clinicopathological significance in hepatocellular carcinoma. Clin Cancer Res,2004,10(12 Pt 1):4140-4149
    [53]Han J, Yoo HY, Choi BH, et al. Selective transcriptional regulations in the human liver cell by hepatitis B viral X protein. Biochem Biophys Res Commun,2000,272(2): 525-530
    [54]Pan J, Duan LX, Sun BS, et al. Hepatitis B virus X protein protects against anti-Fas-mediated apoptosis in human liver cells by inducing NF-κB. J Gen Virol,2001, 82(Pt 1):171-182
    [55]Chen GG, Lai PB, Chan PK, et al. Decreased expression of Bid in human hepatocellular carcinoma is related to hepatitis B virus X protein. Eur J Cancer,2001,37(13):1695-1702
    [56]Shih WL, Kuo ML, Chuang SE, et al. Hepatitis B virus X protein inhibits transforming growth factor-beta-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem,2000,275(33):25858-25864
    [57]Gottlob K, Fulco M, Levrero M, et al. The hepatitis B virus HBx protein inhibits caspase 3 activity. J Biol Chem,1998,273(50):33347-33353
    [58]Song CZ, Bai ZL, Song CC, et al. Aggregate formation of hepatitis B virus X protein affects cell cycle and apoptosis. World J Gastroenterol,2003,9(7):1521-1524
    [59]Chen HY, Tang NH, Li XJ, et al. Transfection and expression of hepatitis B virus x gene and its effect on apoptosis in HL-7702 cells. World J Gastroenterol,2004,10(7):959-964
    [60]Wang H, Chen X, Bai X. Hepatic cell apoptosis was triggerred by HBx accumulation and independent on verapamil. J Huazhong Univ Sci Technolog Med Sci,2004,24(3): 281-283
    [61]Tralhao JG, Roudier J, Morosan S, et al. Paracrine in vivo inhibitory effects of hepatitis B virus X protein (HBx) on liver cell proliferation:an alternative mechanism of HBx-related pathogenesis. Proc Natl Acad Sci USA,2002,99(10):6991-6996
    [62]Yoo YG, Lee MO. Hepatitis B virus X protein induces expression of Fas ligand gene through enhancing transcriptional activity of early growth response factor. J Biol Chem, 2004.279(35):36242-36249
    [63]Chung TW, Lee YC,Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways:involvement of invasive potential. FASEB J,2004.18(10):1123-1125
    [64]Lara-Pezzi E,Serrador JM,Montoya MC,et al. The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner:possible role of HBx in invasion and metastasis. Hepatology,2001,33(5):1270-81
    [65]Lara-Pezzi E. Gomez-Gaviro MV. Galvez BG,et al. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloprotemase-1 and cyclooxygenase-2 expression. J Clin Invest,2002.110(12):1831-1838
    [66]Ou DP, Tao YM, Tang FQ, et al. The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer,2007, 120(6):1208-1214
    [67]Lara-Pezzi E, Majano PL, Yanez-M6 M, et al. Effect of the hepatitis B virus HBx protein on integrin-mediated adhesion to and migration on extracellular matrix. J Hepatol,2001, 34(3):409-15
    [68]Tu H, Bonura C, Giannini C, et al. Biological impact of natural COOH-terminal deletions of hepatitis B virus X protein in hepatocellular carcinoma tissues.Cancer Res,2001, 61(21):7803-7810
    [69]Rui E, Moura PR, Goncalves KA, et al. Expression and spectroscopic analysis of a mutant hepatitis B virus onco-protein HBx without cysteine residues.J Virol Methods,2005. 126(1-2):65-71
    [70]Hoare J, Henkler F, bowling JJ, et al. Subcellular localisation of the X protein in HBV infected hepatocytes. J Med Virol,2001,64(4):419-426
    [71]Chen WN, Oon CJ. Leong AL, et al. Expression of integrated hepatitis B virus X variants in human hepatocellular carcinomas and its significance. Biochem Biophys Res Commun, 2000,276(3):885-892
    [72]Nijhara R, Jana SS, Goswami SK, et al. Sustained activation of mitogen-activated protein kinases and activator protein 1 by the hepatitis virus X protein in mouse hepatocytes in vivo. J Virol,2001,75(21):10348-10358
    [73]刘晓红,朱明华,曹晓哲等.HBx蛋白羧基端缺失对肝癌细胞生物学行为的影响.癌症,2005,24(10):1213-1219
    [74]Zhang H, Shan CL, Li N, et al. Identification of a natural mutant of HBV X protein truncated 27 amino acids at the COOH terminal and its effect on liver cell proliferation. Acta Pharmacol Sin,2008,29(4):473-480
    [75]Senger DR, Wirth DF, Hynes RO. Transformed mammalian cells secrete specific proteins and phosphoproteins. Cell,1979,16(4):885-893
    [76]Bellahcene A, Castronovo V, Ogbureke KU, et al. Small integrin-binding ligand N-linked glycoproteins(SIBLINGs):multifunctional proteins in cancer. Nat Rev Cancer,2008,8(3): 212-226
    [77]Wai PY, Kuo PC. Osteopontin:regulation in tumor metastasis. Cancer Metastasis Rev. 2008,27(1):103-118
    [78]Rudland PS. Platt2Higgins A, El-Tanani M. et al. Prognostic significance of the metastasis-associated protein osteopontin in human breast cancer. Cancer Res,2002. 62(12):3417-3427
    [79]Adwan H, Bauerle T J, Berger M R. Downregulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA2MB2231 human breast cancer cells.Cancer Gene Ther,2004,11(2):109-120
    [80]Pan HW, Ou YH, Peng SY, et al. Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer,2003,98(1):119-127
    [81]姜伟栋,印芳颖,韩喜春,等.骨桥蛋白在原发性肝癌中的表达及其与预后的关系.中国实验诊断学,2007,11(3):307-308
    [82]陈荣新,薛同春,叶胜龙,等.骨桥蛋白促进人肝癌细胞株SMMC27721肿瘤转移相关基因改变的研究.中华实验外科杂志,2006,23(8):943-944
    [83]陈荣新,薛同春,叶胜龙,等.骨桥蛋白促进人肝癌细胞株SMMC27721恶性表型的实验研究.中华肝脏病杂志,2007,15(1):37-40
    [84]杨力,张东涛,郭新宁.骨桥蛋白和核因子-κB在侵袭转移性胃癌中的表达.中国肿瘤临床,2004,31(16):901-904
    [85]Tang H, Wang J, Bai F, et al. Inhibition of osteopontin would suppress angiogenesis in gastric cancer. Biochem Cell Biol,2007,85(1):103-110
    [86]Wu CY, Wu MS, Chiang EP, et al. Elevated plasma osteopontin associated with gastric cancer development, invasion and surviva.Gut,2007,56(6):782-789
    [87]丁凌,郑树.骨桥蛋白在不同大肠癌细胞株中的转移相关功能研究。中国病理生理杂志,2007,23(3):460-464
    [88]何主强,殷莉,赵洪洋.骨桥蛋白在脑胶质瘤中的表达研究.中华神经外科疾病研究杂志,2005,4(6):501-503
    [89]Wong TS, Kwong DL, Sham J, et al. Elevation of plasma osteopontin level in patients with undifferentiated nasopharyngeal carcinoma. Eur J Surg Oncol,2005,31(5):555-5
    [90]侯志波,郑杰.骨桥蛋白下调对前列腺癌PC3细胞生物学行为的影响.肿瘤,2005,25(6):542-546
    [91]伍治强,温剑虎.骨桥蛋白在食管鳞癌中的表达及其临床意义.免疫学杂志,2006,22(6):678-680
    [92]Wang D, You Y, Lin PC, et al. Bcll0 plays a critical role in NF-kappaB activation induced by G protein-coupled receptors. Proc Natl Acad Sci,2007,104(1):145-150
    [93]Mi Z, Guo H, WAI PY, et al. Integrin linked kinase regulates osteopontin-dependent MMP-2 and uPA expression to convey metastatic function in murine mammary epithelial cancer cells. Carcinogenesis,2006,27(6):1134-1145
    [94]Philip S,Bulbule A, Kundu GC. Osteopontin stimulates tumor growth and activation of promatrix metalloproteinase-2 through nuclear factor-kappa B-mediated induction of membrane type 1 matrix metalloproteinase in murine melanoma cells.J Biol Chem,2001, 276(48):44926-44935
    [95]TUCK AB. CHAMBERS AF. ALLAN AL. Osteopontin overexpression in breast cancer: knowledge gained and possible implications for clinical management. J Cell Biochem. 2007.102(4):859-868
    [96]Dourdin N. Bhatt A K, Dutt P. et al. Reduced cell migration and disruption of the acti(?) cytoskeleton in calpain-deficient embryonic fibroblasts. J Biol Chem,2001,276(51): 48382-48388
    [97]Mellgren RL, Zhang W, Miyake K, et al. Calpain is required for the rapid, calcium-dependent repair of wounded plasma membrane. J Biol Chem,2007,282(4): 2567-2575
    [98]Goll D E, Thompson V F, Li H, et al. The Calpain system. Physiol Rev,2003,83(3): 731-801
    [99]Pamonsinlapatham P, Gril B, Dufour S, et al. Capnsl, a new binding partner of RasGAP-SH3 domain in K-RasV12 oncogenic cells:Modulation of cell survival and migration. Cellular Signalling,2008,20(11):2119-2126
    [100]Tonnetti L, Netzel-Arnett S, Darnell GA, et al. SerpinB2 Protection of Retinoblastoma Protein from Calpain Enhances Tumor Cell Survival. Cancer Res,2008,68(14): 5648-5657
    [101]Undyala VV, Dembo M, Cembrola K et al. The calpain small subunit regulates cell-substrate mechanical interactions during fibroblast migration.J Cell Sci,2008,121(Pt 21):3581-3588
    [102]Bai DS, Dai Z, Zhou J, et al. Capn4 overexpression underlies tumor invasion and metastasis after liver transplantation for hepatocellular carcinoma. Hepatology,2009, 49(2):460-70
    [103]Zhang WY, Cai N, Ye LH, et al. Transformation of human liver L-O2 cells mediated by stable HBx-transfection as a model. Acta Pharmacol Sin,2009,30(8):1153-1161
    [104]Mozer-Lisewska I, Kaczmarek M, Zeromski J. The role of NF-kappaB transcription factor in chronic viral hepatitis C and B. Postepy Biochem,2006,52(1):56-61
    [105]Yun C, Um HR, Jin YH, et al. NF-kappaB activation by hepatitis B virus X (HBx) protein shifts the cellular fate toward survival. Cancer Lett,2002,184(1):97-104
    [106]Wang WL, London WT, Feitelson MA. Hepatitis B x antigen in hepatitis B virus carrier patients with liver cancer. Cancer Res,1991,51(18):4971-4977
    [107]赵帅,贺修胜,罗桥.等.p33ING1b基因对人结肠癌细胞SW480生物学行为的影响.肿瘤.2006.26(7):648-651
    [108]Shigenobu Kawai. Osamu Yokosuka,* Fumio Imazeki, et al. State of HBV DNA in HBsAg-Negative. Anti-HCVPositive Hepatocellular Carcinoma:Existence of HBV DNA Possibly As Nonintegrated Form With Analysis by Alu-HBV DNA PCR and Conventional HBV PCR. Journal of Medical Virology,2001.64(4):410-418
    [109]Plas E. Carroll VA, Jilch R, et al. Variations of components of the plasminogen activation system with the cell cycle in benign prostate tissue and prostate cancer. Cytometry.2001. 46(3):184-9
    [110]Hsieh SY. Liaw SF. Lee SN,et al. Aberrant caspase-activated DNase (CAD) transcripts in human hepatoma cells. Br J Cancer,2003.88(2):210-216
    [111]Linardopoulou EV, Williams EM, Fan Y, et al. Human subtelomeres are hot spots of interchromosomal recombination and segmental duplication. Nature,2005,437(7055): 94-100
    [112]Rudiger NS, Gregersen N, Kielland—Brandt MC. One short well conserved region of Alu-sequences is involved in human gene rearrangements and has homology with prokaryotic chi. Nucleic Acids Res,1995,23(2):256-260
    [113]Rohlfs EM, Puget N, Graham ML, et al. An Alu-mediated 7.1kb deletion of BRCA1 exons 8 and 9 in breast and ovarian cancer families that results in alternatixre splicing of exon 10. Genes Chromosomes Cancer,2000,28(3):300-307
    [114]Tournier I,Paillerets BB, Sobol H, et al. Significant contribution of germline BRCA2 rearrangements in male breast cancer families. Cancer Res,2004,64(22):8143-8147
    [115]Hsieh SY, Liaw SF, Lee SN, et al. Aberrant caspase-activated DNase (CAD) transcripts in human hepatoma cells. Br J Cancer,2003.88(2):210-216
    [116]Ichimura K, Hanafusa H, Takimoto H, et al. Structure of the human retinoblastoma-related p107 gene and its intragenic deletion in B-cell lymphoma cell line. Gene.2000,251(1):37-43
    [117]Wang Y, Fed W, Lamberti C, et al. Hereditary nonpolyposis colorectal cancer:frequent occurrence of large genomic deletions in MSH2 and MLH1 genes. Int J Cancer,2003, 103(5):636-641
    [118]van Overveld PG, Lemmers RJ, Deidda G, et al. Interchromosomal repeat array interactions between chromosomes 4 and 10:a model for subtelomeric plasticity. Hum Mol Genet,2000,9(19):2879-2884
    [119]D'Angelo CS, Gajecka M, Kim CA, et al. Further delineation of nonhomologous-based recombination and evidence for subtelomeric segmental duplications in 1p36 rearrangements. Hum Genet,2009,125(5-6):551-63
    [120]Lee ME, Rha SY, Jeung HC, et al. Subtelomeric DNA methylation and telomere length in human cancer cells. Cancer Lett,2009,281(1):82-91
    [121]Kim YC, Song KS, Yoon G, et al. Activated ras oncogene collaborates with HBx gene of hepatitis B virus to transform cells by suppressing HBx-mediated apoptosis. Oncogene,2001,20(1):16-23
    [122]Sen R,Baltimore D. Multiple nuclear factors insert with the immunoglobulin enhancer sequences. Cell.1986,46(5):705-716
    [123]Michael Karin. Nuclear factor-icB in cancer development and progression. Nature,2006, 441 (7092):431-436
    [124]Bosch FX. Ribes J, Diaz M, Cleries R. Primary liver cancer:worldwide incidence and trends. Gastroenterology,2004,127(5 Suppl 1):S5-S16
    [125]Shaulian E. Karin M. AP-1 in cell proliferation and survival. Oncogene,2001,20(19): 2390-2400
    [126]Wang Q, Zhang W, Liu Q, et al. A Mutant of Hepatitis B virus X Protein (HBxΔ127) Promotes Cell Growth via A Positive Feedback Loop Involving 5-lipoxygenase and Fatty Acid Synthase. Neoplasia,2010,12(2):103-115
    [127]Zhang F, Wang Q, Ye LH, et al. Hepatitis B virus X protein upregulates expression of calpain small subunit 1 via nuclear facter-κB/p65 in hepatoma cells. J Med Virol,2010, 82(6):920-928
    [128]Guo H, Marroquin CE, Wai PY, et al. Nitric Oxide-Dependent Osteopontin Expression Induces Metastatic Behavior in HepG2 Cells. Dig Dis Sci,2005,50(7):1288-1298
    [1]Parkin DM. The global health burden of infection-associated cancers in the year 2002. Int J Cancer,2006,118(12):3030-3044
    [2]El-Serag HB. Hepatocellular carcinoma:recent trends in the United States. Gastroenterology, 2004,127(5 Suppl 1):S27-S34
    [3]Bruix J, Hessheimer AJ, Forner A, et al. New aspects of diagnosis and therapy of hepatocellular carcinoma. Oncogene,2006,25(27):3848-3856.
    [4]Avila MA, Berasain C, Sangro B, et al. New therapies for hepatocellular carcinoma. Oncogene,2006,25(27):3866-3884
    [5]Shimada S, Aizawa R, Abe H, et al. Analysis of risk factors for hepatocellular carcinoma that is negative for hepatitis B surface antigen (HBsAg). Intern. Med,2003,42(5):389-393
    [6]Ming L, Thorgeirsson SS, Gail MH, et al. Dominant role of hepatitis B virus and cofactor role of aflatoxin in hepatocarcinogenesis in Qidong, China. Hepatology,2002,36(5): 1214-1220
    [7]Yokosuka O, Chiba T. Mechanisms of hepatocarcinogenesis by hepatitis B virus(HBV) infection. Nippon Rinsho,2001,59(Suppl 6):50-54
    [8]Yeh CT. Hepatitis B virus X protein:searching for a role in hepatocarcinogenesis. J Gastroenterol Hepatol,2000,15(4):339-341
    [9]Beck J, Nassal M. Hepatitis B virus replication. World J Gastroenterol,2007,13(1):48-64
    [10]Mason WS, Seal G, Summers J. Virus of Pekin ducks with structural and biological relatedness to human hepatitis B virus. J Virol,1980,36(3):829-836
    [11]Weiser B, Ganem D, Seeger C, et al. Closed circular viral DNA and asymmetrical heterogeneous forms in livers from animals infected with ground squirrel hepatitis virus. J Virol,1983,48(1):1-9
    [12]Tang H, Delgermaa L, Huang F, et al. The transcriptional transactivation function of HBx protein is important for its augmentation role in hepatitis B virus replication.J Virol,2005, 79(9):5548-5556
    [13]Leupin O, Bontron S, Schaeffer C, et al. Hepatitis B virus X protein stimulates viral genome replication via a DDB1-dependent pathway distinct from that leading to cell death. J Virol, 2005,79(7):4238-4245
    [14]Keasler VV, Hodgson AJ, Madden CR, et al. Enhancement of hepatitis B virus replication by the regulatory X protein in vitro and in vivo. J Virol,2007,81(6):2656-2662
    [15]Keasler VV, Hodgson AJ, Madden CR, et al. Hepatitis B virus HBx protein localized to the nucleus restores HBx-deficient virus replication in HepG2 cells and in vivo in hydrodynamically-injected mice. Virology,2009,390(1):122-129
    [16]Ganern D, Prince AM. Hepatitis B virus infection-natural history and clinical consequences. N Engl J Med,2004,350(11):1118-1129
    [17]Hoofnagle JH, Doo E, Liang TJ, et al. Management of hepatitis B:summary of a clinical research workshop. Hepatology,2007,45(4):1056-1075
    [18]Liver EAftSot. EASL clinical practice guidelines:management of chronic hepatitis B. J Hepatol,2009,50(2):227-242
    [19]Okubo K, Nakamura T, Tokino T, et al. Different type of hepatitis B virus (HBV) DNA integrants that may reflect the integration process. Gastroenterol Jpn,1990,25(Suppl 2): 23-30
    [20]Ding JJ, Saito H, Morizane T, et al. Hepatitis B virus DNA integration in hepatocellular carcinomas and their adjacent non-neoplastic liver tissues. Keio J Med,1989,38(4): 443-453
    [21]Sherman M. Complexities of HBV DNA integration. Hepatology,1989,9(3):514-515
    [22]Tanaka Y, Esumi M, Shikata T. Frequent integration of hepatitis B virus DNA in noncancerous liver tissue from hepatocellular carcinoma patients.J Med Virol,1988,26(1): 7-14
    [23]Rivkina MB, Lunin VG, Mahov AM. et al. Nucleotide sequence of integrated hepatitis B virus DNA and human flanking regions in the genome of the PLC/PRF/5 cell line. Gene. 1988,64(2):285-296
    [24]Chang MH, Chen PJ, Chen JY, et al. Hepatitis B virus integration in hepatitis B virus-related hepatocellular carcinoma in childhood. Hepatology,1991,13(2):316-320
    [25]Fujise K, Nagamori S, Hasumura S, et al. Integration of hepatitis B virus DNA into cells of six established human hepatocellularcarcinoma cell lines. Hepatogastroenterology,1990, 37(5):457-460
    [26]Hsu TY, Fourel G, Etiemble J, et al. Integration of hepatitis virus DNA near c-myc in woodchuck hepatocellular carcinoma. Gastroenterol Jpn,1990,25(Suppl 2):43-48
    [27]Laskus T, Radkowski M, Wang LF,et al.Detection and sequence analysis of hepatitis B virus integration in peripheral blood mononuclear cells. J Virol,1999,73(2):1235-8
    [28]Takada S, Gotoh Y, Hayashi S, et al. Structural rearrangement of integrated hepatitis B virus DNA as well as cellular flanking DNA is present in chronically infected hepatic tissues. J Virol,1990,64(2):822-828
    [29]Wang PC, Hui EK, Chiu JH, et al. Analysis of integrated hepatitis B virus DNA and flanking cellular sequence by inverse polymerase chain reaction. J Virol Methods,2001,92(1):83-90
    [30]Urashima T, Saigo K, Kobayashi S, et al. Identification of hepatitis B virus integration in hepatitis C virus-infected hepatocellular carcinoma tissues. J Hepatol,1997,26(4):771-778
    [31]Tagieva NE, Gizatullin RZ, Zakharyev VM, et al. A genome-integrated hepatitis B virus DNA in human neuroblastoma. Gene,1995,152(2):277-278
    [32]Goto Y, Yoshida J, Kuzushima K, et al. Patterns of hepatitis B virus DNA integration in liver tissue of children with chronic infections. J Pediatr Gastroenterol Nutr,1993,16(1):70-74
    [33]Takada S, Gotoh Y, Hayashi S, et al. Integrated structures of HBV DNA in chronic hepatitis and hepatoma tissues. Gastroenterol Jpn,1990,25(Suppl 2):31-37
    [34]Zhou YZ, Slagle BL, Donehower LA, et al. Structural analysis of a hepatitis B virus genome integrated into chromosome 17p of a human hepatocellular carcinoma. J Virol,1988,62(11): 4224-4231
    [35]Wang J, Zindy F, Chenivesse X, et al. Modification of cyclin A expression by hepatitis B virus DNA integration in a hepatocellular carcinoma. Oncogene,1992,7(8):1653-6
    [36]Kajino K, Yamamoto T, Hayashi J, et al. Recombination hot spot of hepatitis B virus genome binds to members of the HMG domain protein family and the Y box binding protein family; implication of these proteins in genomic instability. Intervirology,2001,44(5): 311-316
    [37]Murakami Y, Saiqo K, Takashima H, et al. Large scaled analysis of hepatitis B virus (HBV) DNA integration in HBV related hepatocellular carcinomas. Gut,2005,54(8):1162-1168.
    [38]Chen JY, Harrison TJ, Tsuei DJ, et al. Analysis of integrated hepatitis B virus DNA and flanking cellular sequences in the hepatocellular carcinoma cell line HCC36. Intervirology, 1994,37(1):41-46
    [39]Paterlini-Brechot P, Saiqo K, Murakami Y, et al. Hepatitis B virus-related insertional mutagenesis occurs frequently in human liver cancers and recurrently targets human telomerase gene. Oncogene,2003,22(25):3911-3916
    [40]Kuo K W, Yang PY, Huang YS, et al. Variations in gene expression and genomic stability of human hepatoma cells integrated with hepatitis B virus DNA. Biochem Mol Biol Int,1998, 44(6):1133-1140
    [41]Ferber MJ, Montoya DP, Yu C, et al. Integrations of the hepatitis B virus (HBV) and human papillomavirus (HPV) into the human telomerase reverse transcriptase (hTERT) gene in liver and cervical cancers. Oncogene,2003,22(24):3813-3820
    [42]Bonilla Guerrero R, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol,2005,42(5):760-77
    [43]Zhang XK, Egan JO, Huang D, et al. Hepatitis B virus DNA integration and expression of an erb B-like gene in human hepatocellular carcinoma. Biochem Biophys Res Commun,1992, 188(1):344-351
    [44]Quade K, Saldanha J, Thomas H, et al. Integration of hepatitis B virus DNA through a mutational hot spot within the cohesive region in a case of hepatocellular carcinoma. Gen Virol,1992; 73(Pt 1):179-182
    [45]Berger I, Shaul Y. Integration of hepatitis B virus:analysis of unoccupied sites. Virol,1987, 61(4):1180-1186
    [46]Simon D, Carr BI. Integration of hepatitis B virus and alteration of the 1p36 region found in cancerous tissue of primary hepatocellular carcinoma with viral replication evidenced only in noncancerous, cirrhotic tissue. Hepatology,1995,22(5):1393-1398
    [47]Su TS, Hwang WL, Yauk YK. Characterization of hepatitis B virus integrant that results in chromosomal rearrangement. DNA Cell Biol,1998,17(5):415-425
    [48]Pineau P, Marchio A, Terris B, et al. At(3:8)chromosomal translocation associated with hepatitis B virus intergration involves the carboxypeptidase N locus. J Virol,1996,70(10): 7280-7284
    [49]Dandri M, Burda MR, Burkle A, et al. Increase in de novo HBV DNA integrations in response to oxidative DNA damage or inhibition of poly(ADP-ribosyl)ation. Hepatology, 2002,35(1):217-223
    [50]Slagle BL, Zhou YZ, Butel JS. Hepatitis B virus integration event in human chromosome 17p near the p53 gene identifies the region of the chromosome commonly deleted in virus-positive hepatocellular carcinomas. Cancer Res,1991,51(1):49-54
    [51]Livezey KW, Negorev D, Simon D. Hepatitis B virus-transfected HepG2 cells demonstrate genetic alterations and denovo viral integration in cells replicating HBV. Mutat Res,2000, 452(2):163-178
    [52]Meyer M, Wiedorn KH, Hofschneider PH,et al. A chromosome 17:7 translocation is associated with a hepatitis B virus DNA integration in human hepatocellular carcinoma DNA. Hepatology,1992,15(4):665-671
    [53]Zhou YZ,Butel JS, Li PJ, et al. Integrated state of subgenomic fragments of hepatitis B virus DNA in hepatocellular carcinoma from mainland China. J Natl Cancer lnst,1987,79(2): 223-231
    [54]Feitelson MA, Lee J. Hepatitis B virus integration, fragile sites, and hepatocarcinogenesis. Cancer Lett,2007,252(2):157-70
    [55]Tamori A, Yamanishi Y, Kawashima S, et al. Alteration of gene expression in human hepatocellular carcinoma with integrated hepatitis B virus DNA. Clin Cancer Res,2005, 11(16):5821-5826
    [56]Chami M, Gozuacik D, Saigo K, et al. Hepatitis B virus-related insertional mutagenesis implicates SERCA1 gene in the control of apoptosis. Oncogene,2000,19(25):2877-2886
    [57]Bonilla Guerrero R, Roberts LR. The role of hepatitis B virus integrations in the pathogenesis of human hepatocellular carcinoma. J Hepatol,2005,42(5):760-77
    [58]Saigo K, Yoshida K, Ikeda R, et al. Integration of hepatitis B virus DNA into the myeloid/lymphoid or mixed-lineage leukemia (MLL4) gene and rearrangements of MLL4 in human hepatocellular carcinoma. Hun Mutat,2008,29(5):703-708
    [59]Haviv I, Vaizel D, Shaul YP. pX, the HBV-encoded coactivator, interacts with components of the transcription machinery and stimulates transcription in a TAF-independent manner. EMBOJ,1996,15(13):3413-3420
    [60]Klein NP, Bouchard MJ, Wang LH, et al. Src kinases involved in hepatitis B virus replication. EMBO J,1999,18(18):5019-5027
    [61]Zhang XD, Dong N, Zhang H, et al. Effects of hepatitis B virus X protein on hTERT expression and activity in hepatoma cells. J Lab Clin Med,2005,145(2):98-104
    [62]Chan CF, Yau TO, Jin DY. Evaluation of nuclear factor-kappaB, urokinase-type plasminogen activator, and HBx and their clinicopathological significance in hepatocellular carcinoma. Clin Cancer Res,2004,10(12 Pt 1):4140-4149
    [63]Han J, Yoo HY, Choi BH, et al. Selective transcriptional regulations in the human liver cell by hepatitis B viral X protein. Biochem Biophys Res Commun,2000,272(2):525-530
    [64]Pan J, Duan LX, Sun BS, et al. Hepatitis B virus X protein protects against anti-Fas-mediated apoptosis in human liver cells by inducing NF-κB. J Gen Virol,2001,82(Pt 1):171-182
    [65]Chen GG, Lai PB, Chan PK, et al. Decreased expression of Bid in human hepatocellular carcinoma is related to hepatitis B virus X protein. Eur J Cancer,2001,37(13):1695-1702
    [66]Shih WL, Kuo ML, Chuang SE, et al. Hepatitis B virus X protein inhibits transforming growth factor-beta-induced apoptosis through the activation of phosphatidylinositol 3-kinase pathway. J Biol Chem,2000,275(33):25858-25864
    [67]Gottlob K, Fulco M, Levrero M, et al. The hepatitis B virus HBx protein inhibits caspase 3 activity.J Biol Chem,1998,273(50):33347-33353
    [68]Song CZ, Bai ZL, Song CC. et al. Aggregate formation of hepatitis B virus X protein affects cell cycle and apoptosis. World J Gastroenterol,2003,9(7):1521-1524
    [69]Chen HY, Tang NH, Zhang SJ, et al. Construction of hepatitis B virus X gene expression vector in eucaryotic cells and its transfection in HL-7702 cells. World J Gastroenterol,2004, 10(7):959-964
    [70]Wang H, Chen X, Bai X. Hepatic cell apoptosis was triggerred by HBx accumulation and independent on verapamil. J Huazhong Univ Sci Technolog Med Sci,2004,24(3):281-283
    [71]Tralhao JG, Roudier J, Morosan S, et al. Paracrine in vivo inhibitory effects of hepatitis B virus X protein (HBx) on liver cell proliferation:an alternative mechanism of HBx-related pathogenesis. Proc Natl Acad Sci USA,2002,99(10):6991-6996
    [72]Yoo YG, Lee MO. Hepatitis B virus X protein induces expression of Fas ligand gene through enhancing transcriptional activity of early growth response factor. J Biol Chem,2004, 279(35):36242-36249
    [73]Chung TW, Lee YC, Kim CH. Hepatitis B viral HBx induces matrix metalloproteinase-9 gene expression through activation of ERK and PI-3K/AKT pathways:involvement of invasive potential. FASEB J,2004,18(10):1123-1125
    [74]Lara-Pezzi E, Serrador JM, Montoya MC, et al. The hepatitis B virus X protein (HBx) induces a migratory phenotype in a CD44-dependent manner:possible role of HBx in invasion and metastasis. Hepatology,2001,33(5):1270-81
    [75]Lara-Pezzi E, Gomez-Gaviro MV, Galvez BG, et al. The hepatitis B virus X protein promotes tumor cell invasion by inducing membrane-type matrix metalloproteinase-1 and cyclooxygenase-2 expression. J Clin Invest,2002,110(12):1831-8
    [76]Ou DP, Tao YM, Tang FQ, et al. The hepatitis B virus X protein promotes hepatocellular carcinoma metastasis by upregulation of matrix metalloproteinases. Int J Cancer,2007, 120(6):1208-1214
    [77]Lara-Pezzi E, Majano PL, Yanez-M6 M, et al. Effect of the hepatitis B virus HBx protein on integrin-mediated adhesion to and migration on extracellular matrix. J Hepatol,2001,34(3): 409-15

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700