高糖、高游离脂肪酸、UCP4影响脂肪细胞胰岛素敏感性的线粒体机制分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肥胖已成为全球性的公共卫生问题,儿童肥胖的现状不容乐观。美国儿童肥胖的发生率在过去三十年内已增加近3倍,中国儿童、青少年超重和肥胖的发生率已达12%。肥胖不仅影响儿童的心理发育,而且还导致肥胖相关代谢综合症(包括2型糖尿病)的出现。近年来,儿童2型糖尿病的低龄化趋势日趋明显,而2型糖尿病及代谢综合症发生的关键环节是胰岛素抵抗,但其发病机制目前尚未完全阐明,因此进一步系统地对胰岛素抵抗发生发展的机理进行研究非常必要。
     高血糖、高游离脂肪酸是胰岛素抵抗2型糖尿病最主要、最常见的生化表现。早在上世纪90年代就提出了胰岛素抵抗的葡萄糖毒性(glucose toxicity)和脂质毒性(lipid toxicity)学说,胰岛β细胞在高浓度葡萄糖或游离脂肪酸作用下会出现功能衰竭,致葡萄糖刺激的胰岛素分泌(glucose stimulated insulin secretion,GSIS)功能丧失。近年来越来越多研究则表明,高糖、高游离脂肪酸致胰岛素敏感性降低的机制还不仅仅涉及其对胰岛β细胞的毒性作用,而且还涉及其对骨骼肌细胞、肝细胞、血管内皮细胞等的作用。已知脂肪组织也是胰岛素作用的重要靶组织之一,由于近年来发现脂肪组织已不单纯是能量储存的场所,在胰岛素抵抗发生过程中能通过增加游离脂肪酸释放、分泌大量炎性因子如肿瘤坏死因子(TNF-α)等,加重全身胰岛素的抵抗,因此脂肪细胞胰岛素抵抗已被认为是全身胰岛素抵抗的一部分。脂肪组织中线粒体细胞器十分丰富,近年来胰岛素抵抗的线粒体机制备受关注,但目前有关高糖和/或高游离脂肪酸作用下脂肪细胞线粒体功能变化及与脂肪细胞胰岛素敏感性之间的关系尚无系统论证。
     解耦联蛋白4(UCP4)是位于线粒体内膜上、与能量代谢密切相关的分子。前期研究中,本研究小组应用基因芯片(cDNA array)技术筛选肥胖相关差异表达基因时发现,UCP4基因在饮食诱导性肥胖大鼠脂肪组织中表达显著上调;UCP4基因过表达于3T3-L1脂肪前体细胞,不但抑制脂肪细胞分化、抑制其脂质积聚,而且还促进前体脂肪细胞增殖、抑制脂肪细胞凋亡,在成熟脂肪细胞中则下调GLUT1、GLUT4而抑制脂肪细胞对基础葡萄糖摄取、胰岛素刺激后葡萄糖摄取。UCP4对脂肪细胞胰岛素敏感性的下调作用是否涉及线粒体机制尚需深入研究。
     为此,本研究拟评价高糖、高游离脂肪酸、UCP4对脂肪细胞胰岛素敏感性的影响,并分析线粒体功能障碍机制在其中的作用。第一部分,以高糖、高游离脂肪酸干预3T3-L1脂肪细胞,观察此过程中脂肪细胞胰岛素敏感性的变化,分析高糖、高游离脂肪酸对线粒体功能的影响及与胰岛素敏感性变化之间的关系;第二部分,通过构建UCP4真核表达载体,转染3T3-L1脂肪前体细胞,观察UCP4在脂肪细胞中过表达对脂肪细胞胰岛素敏感性的影响,并初步评价线粒体功能障碍机制在其中可能的作用。
     第一部分:高糖、高游离脂肪酸对3T3-L1脂肪细胞胰岛素敏感性的影响及线粒体机制分析
     目的:探讨高糖、高游离脂肪酸对3T3-L1脂肪细胞胰岛素敏感性的影响,分析高糖、高游离脂肪酸对线粒体功能的影响及与胰岛素敏感性变化之间的关系。
     方法:3T3-L1前体脂肪细胞经MDI方案诱导分化成熟后,分别以高游离脂肪酸(含混合游离脂肪酸1mmol/L)、高糖(葡萄糖25 mmol/L)、高糖+高游离脂肪酸干预48hr,低糖(5 mmol/L )为对照,2-Deoxy-[~3H]glucose摄取实验验证脂肪细胞的胰岛素敏感性,透射电镜观察线粒体超微结构,荧光定量Real Time PCR、Western Blotting检测线粒体的生物合成情况,荧光分子探针检测脂肪细胞内活性氧、线粒体膜电位、线粒体内钙等。
     结果:①高游离脂肪酸、高糖、高糖+高游离脂肪酸干预各组,胰岛素刺激后的葡萄糖摄取量均显著降低;②高糖、高游离脂肪酸单独或联合干预后,脂肪细胞线粒体体积变小,线粒体变致密,线粒体基质浓缩,线粒体嵴断裂、减少、排列紊乱;③线粒体融合相关蛋白mfn1在高游离脂肪酸组、高糖+高游离脂肪酸组表达显著下调,而介导线粒体分裂的蛋白Drp1在高游离脂肪酸组显著增加,线粒体倾向于分裂而融合减少;④各干预组线粒体生物合成的关键因子过氧化物酶体增殖物激活受体γ辅激活子1α(PGC-1α)、过氧化物酶体增殖物激活受体γ辅激活子1β(PGC-1β)、核呼吸因子(NRF-1)、线粒体转录因子A(mtTFA)均表达下调;⑤各干预组脂肪细胞内ROS显著增加、线粒体膜电位显著降低,但线粒体DNA拷贝数、脂肪细胞内ATP浓度无显著变化;⑥高糖、高糖+高游离脂肪酸干预可显著降低脂肪细胞线粒体内的钙含量,但高游离脂肪酸干预对脂肪细胞线粒体内钙含量无显著影响。
     结论:高糖、高游离脂肪酸可降低脂肪细胞胰岛素的敏感性,同时引发线粒体功能障碍,线粒体功能障碍可能是脂肪细胞胰岛素抵抗的机制之一。
     第二部分:UCP4过表达对3T3-L1脂肪细胞胰岛素敏感性的影响及线粒体机制分析
     目的:探讨UCP4基因过表达对3T3-L1脂肪细胞胰岛素敏感性的影响,分析UCP4基因过表达对线粒体功能的影响及与胰岛素敏感性变化之间的关系。
     方法:构建UCP4真核表达载体,稳定转染体外培养的3T3-L1前体脂肪细胞株,Real Time PCR、Western Blotting验证UCP4稳定转染后,以含空载质粒的3T3-L1脂肪细胞为对照,MDI方案诱导稳定转染UCP4-pcDNATM3.1/myc-His B载体质粒的3T3-L1脂肪细胞分化成熟;2-Deoxy-[~3H]glucose摄取实验验证UCP4过表达对脂肪细胞胰岛素敏感性的影响,透射电镜观察其线粒体超微结构,采用荧光定量Real Time PCR、Western Blotting等技术检测其线粒体的生物合成情况,荧光分子探针检测脂肪细胞内活性氧、线粒体膜电位、线粒体内钙。
     结果:①UCP4基因过表达可显著降低脂肪细胞的胰岛素敏感性;②透射电镜显示UCP4过表达脂肪细胞的线粒体体积大小不一,线粒体变致密,线粒体基质浓缩,线粒体嵴模糊,断裂;③UCP4过表达可致脂肪细胞中线粒体融合蛋白mfn1表达下调,线粒体分裂蛋白Drp1表达降低;④UCP4过表达脂肪细胞中,PGC-1α、NRF-1表达下调而NRF-2表达显著上调,SIRT1(沉默信息调节因子1)蛋白表达量在无明显差异,雌激素受体相关受体β(ERRβ)蛋白表达显著降低,mtTFA mRNA表达也显著降低;⑤UCP4过表达可显著降低脂肪细胞线粒体DNA拷贝数、脂肪细胞内ATP浓度、线粒体膜电位、线粒体内的钙含量,显著增加脂肪细胞内的ROS。
     结论:UCP4过表达不但降低脂肪细胞胰岛素的敏感性,同时引发线粒体功能障碍,线粒体功能障碍可能是脂肪细胞胰岛素抵抗的机制之一。
Obesity has been a global public health problem, and the situation in children and adolescents is not optimistic. The obesity incidence rate of US childhood has increased nearly 3 times during the past three decades, and 12% of the Chinese children and adolescents are overweight and obese. Obesity has been showed to affect the children’s mental growth, and would lead to develop the obesity related metabolism syndrome( type 2 diabetes included). Recently, the lower age tendency of childhood type 2 diabetes is becoming obvious. The key link of type 2 diabetes and metabolism syndrome is insulin resistance, but the mechanism of which is not fully clarified untill now, so a systematic study for the pathogenesis of insulin resistance is needed.
     Hyperglycaemia and high level of free fatty acids (FFAs) in blood circulation are the most important and common sceneries. The concept of glucose toxicity and lipid toxicity was raised early in 1990s, which meant that high level of glucose or FFAs would lead toβ-Cell failure and loss of glucose-stimulated insulin secretion (GSIS). There were growing body of evidences demonstrated that not onlyβ-Cell, but other insulin targeted tissues, such as skeletal muscle, hepatic cell and vascular endothelial cell et al, were involved in the development of high glucose and high FFAs caused insulin resistance.
     As one of the important periphery insulin targeted tissues, the adipose tissue was not merely as an energy storage place, once it became insulin resistance, it would turn to release FFAs and secrete inflammatory factors (TNF-α, for example), the both conditions would exacerbate systematic insulin resistance, today it has been conceived as an important player of systematic insulin resistance. The adipose tissue contained plentiful of mitochondria, on the other hand, the mitochondria mechanism has been implicated closely in insulin resistance, but there is little message for the effect of high level of glucose and FFAs on mitochondrial function and adipocyte insulin sensitivity.
     UCP4, located in the inner mitochondrial membrane, was closely related to energy metabolism. We previously showed that UCP4 was significently upregulated in omental adipose tissue in diet-induced obese rats using suppression subtractive hybridization (SSH). Ectopic expression of UCP4 can promote proliferation and inhibit differentiation and lipid accumulation as well as apoptosis in 3T3-L1 preadipocytes. The insulin-stimulated glucose uptake and the expression of glucose transporters GLUT1 and GLUT4 in differentiated 3T3-L1 adipocytes were downregulated upon UCP4 overexpression. Whether mitochondrial mechanism is involved in the down regulated insulin sensitivity of UCP4 in adipocytes deserves futhur investigation.
     The aim of this study was to determine the effect of high glucose、high FFAs and UCP4 on adipocytes insulin sensitivity, and to detemine whether mitochondrial dysfunction plays a role. In the first part, the differentiated 3T3-L1 adipocytes were incubated with high glucose or/and high FFAs, adipocytes insulin sensitivity was observed, the mitochondrial function was analyzed after the treatment, the relationship of mitochondrial function and insulin sensitivity was investigated; In the second part, we examined the effect of UCP4 on adipocytes insulin sensitivity and mitochondrial function in vitro by establishing a stable preadipocyte cell line overexpressing UCP4, we preliminary assessed the possible role of mitochondrial dysfunction in the process.
     Part I: The mitochondrial mechanism analysis of high level of glucose、high FFAs impacting the insulin sensitivity of 3T3-L1 adipocytes
     Objective: To investigate the relationship and the effects of high glucose and high FFAs on insulin sensitivity and mitochondrial function in differentiated 3T3-L1 adipocytes.
     Methods: Differentiated 3T3-L1 adipocytes were treated with high glucose (25 mM) or high FFAs (1 mM) or both for 48 hours, 5 mmol/L glucose as control. Insulin sentivity was determined by insulin-stimulated 2-Deoxy-D-[3H] glucose uptake in differentiated 3T3-L1 adipocytes, mitochondria ultramicrostructure was displayed by electromicrograph morphometry, mitochondrial biogenesis related proteins were examined by western blot, and the mitochondrial DNA copynumber and mRNA expression of PGC-1αwas detected by Realtime PCR. The ATP content of the adipocytes was measured with ATP lite-glo, a luciferase-based luminescence assay kit. Mitochondrial membrane potential and intramitochondrial calcium as well as intracellular ROS was detemined by fluorescent molecular probes and FACS.
     Results: We found:①High glucose,high FFAs,or high glucose+high FFAs reduced insulin-stimulated glucose uptake in differentiated 3T3-L1 adipocytes;②The treatment of high glucose, high FFAs, or high glucose+high FFAs induced smaller and more compact mitochondria, the mitochondrial matrix condensed, cristae collapsed and confused arranage;③Levels of the mitofusion protein mfn1 decreased in high FFAs group and high glucose+high FFAs group, and levels of the mitofission protein Drp1 increased in high FFAs group;④Levels of the mitochondrial biogenesis key factors PGC-1α、PGC-1β、NRF-1、mtTFA were downregulated in the treated groups ;⑤Intracellular ROS was significently increased while mitochondrial membrane potential was decreased in the treated groups, but there was no difference was detected when it came to mtDNA copy number and intracellular ATP content;⑥High glucose and high glucose+high FFAs treatment induced significent decreased intramitochondrial calcium, but high FFAs had no effect.
     Conclusion:High glucose and high FFAs could down regulate insulin sensitivity and cause mitochondrial dysfunction of adipocytes, mitochondrial dysfunction mightbe one of the mechanisms of adipocytes insulin resistance.
     Part II: The mitochondrial mechanism analysis of UCP4 overexpression affecting the insulin sensitivity of 3T3-L1 adipocytes
     Objective: To explore the effect of UCP4 on adipocytes insulin sensitivity, and to analyze the relationship of UCP4 overexpression induced mitochondrial function changes and insulin sensitivity in differentiated 3T3-L1 adipocytes.
     Methods: UCP4 eukaryotic expression vector was constructed and was stably transfected into 3T3-L1 preadipocytes. UCP4 expression was confirmed by Real Time PCR and Western-Blot analysis. The transfected cells with an empty expression vector (pcDNA3.1Myc/His B)(as control) or an UCP4 expression vector were induced to differentiated adipocytes; Insulin sentivity was determined by insulin-stimulated 2-Deoxy-D-[3H] glucose uptake in differentiated 3T3-L1 adipocytes, mitochondria ultramicrostructure was displayed by electromicrograph morphometry, mitochondrial biogenesis related proteins were examined by western blot, and the mitochondrial DNA copynumber and mRNA expression of PGC-1αwas detected by Realtime PCR. The ATP content of the adipocytes was measured with ATP lite-glo, a luciferase-based luminescence assay kit. Mitochondrial membrane potential and intramitochondrial calcium as well as intracellular ROS was detemined by FACS.
     Results:①Adipocytes insulin sensitivity was down regulated upon UCP4 overexpression;②Transmission electron microscopy (TEM) showed that adipocytes overexpressing UCP4 displayed different size and condensed mitochondria with collapsed and unclear cristae;③UCP4 overexpression impaired mitochondrial fusion and fission, as indicated by decreased mitofusin mfn1, and mitofission DRP1;④The adipocytes overexpressing UCP4 also showed decreased mRNA expression of key factors in mitochondrial biogenesis, including PGC-1αand mtTFA. NRF-1 and ERRβlevels were downregulated, while NRF-2 levels were upregulated and no change for SIRT1;⑤The adipocytes overexpressing UCP4 also showed decreased mitochondrial copy number (mtDNA) and intracellular ATP content, higher production of intracellular ROS and diminished levels of intramitochondrial calcium and mitochondrial membrane potential.
     Conclusion: UCP4 overexpression induced decreased insulin sensitivity and mitochondrial dysfunction in adipocytes, and mitochondrial dysfunction might be one of the mechanisms of adipocytes insulin resistance.
引文
1. Hawkins SS, Cole TJ, Law C, Millennium Cohort Study Child Health Group. An ecological systems approach to examining risk factors for early childhood overweight: findings from the UK Millennium Cohort Study. J Epidemiol Community Health. 2009; 63 ( 2 ): 147-55.
    2. Ogden CL, Carroll MD, Flegal KM. High body mass index for age among US children and adolescents, 2003-2006. JAMA. 2008; 299(20): 2401-5.
    3. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004; 27(5): 1047-53.
    4. Qiao Q, Hu G, Tuomilehto J, Nakagami T, Balkau B, Borch-Johnsen K, Ramachandran A, Mohan V, Iyer SR, Tominaga M, Kiyohara Y, Kato I, Okubo K, Nagai M, Shibazaki S, Yang Z, Tong Z, Fan Q, Wang B, Chew SK, Tan BY, Heng D, Emmanuel S, Tajima N, Iwamoto Y, Snehalatha C, Vijay V, Kapur A, Dong Y, Nan H, Gao W, Shi H, Fu F; DECODA Study Group. Age- and sex-specific prevalence of diabetes and impaired glucose regulation in 11 Asian cohorts. Diabetes Care. 2003; 26(6): 1770-80.
    5. Chuang LM, Tsai ST, Huang BY, Tai TY, Diabcare-Asia 1998 Study Group. The status of diabetes control in Asia--a cross-sectional survey of 24 317 patients with diabetes mellitus in 1998. Diabet Med. 2002; 19 (12): 978-85.
    6. Nishimura R, Sano H, Matsudaira T, Miyashita Y, Morimoto A, Shirasawa T, Takahashi E, Kawaguchi T, Tajima N. Childhood obesity and its relation to serum adiponectin and leptin: a report from a population-based study. Diabetes Res Clin Pract. 2007; 76(2): 245-50.
    7. Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA. 2003; 290(14): 1884-90.
    8. Karvonen M, Viik-Kajander M, Moltchanova E, Libman IM, LaPorte R, Tuomilehto J. Incidence of childhood type 1 diabetes worldwide. Diabetes Mondiale (DiaMond) Project Group. Diabetes Care. 2000; 23(10): 1516-26.
    9. Poitout V, Hagman D, Stein R, Artner I, Robertson RP, Harmon JS. Regulation of the insulin gene by glucose and fatty acids. J Nutr. 2006; 136(4): 873-6.
    10. White MF. IRS proteins and the common path to diabetes. Am J Physiol Endocrinol Metab. 2002; 283(3): E413-22.
    11. Whitehead JP, Humphreys P, Krook A, Jackson R, Hayward A, Lewis H, Siddle K, O'Rahilly S. Molecular scanning of the insulin receptor substrate 1 gene in subjects with severe insulin resistance: detection and functional analysis of a naturally occurring mutation in a YMXM motif. Diabetes. 1998; 47(5): 837-9.
    12. Rask-Madsen C, King GL. Proatherosclerotic mechanisms involving protein kinase C in diabetes and insulin resistance. Arteriosclerosis, thrombosis, and vascular biology. 2005; 25(3): 487-96.
    13. Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science. 1993; 259(5091): 87-91.
    14. Steensberg A, Keller C, Starkie RL, Osada T, Febbraio MA, Pedersen BK. IL-6 and TNF-alpha expression in, and release from, contracting human skeletal muscle. Am J Physiol Endocrinol Metab. 2002; 283(6): E1272-8.
    15. van Hall G, Steensberg A, Sacchetti M, Fischer C, Keller C, Schjerling P, Hiscock N, M?ller K, Saltin B, Febbraio MA, Pedersen BK. Interleukin-6 stimulates lipolysis and fat oxidation in humans. J Clin Endocrinol Metab. 2003; 88(7): 3005-10.
    16. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS. Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function.Nature. 1997; 389(6651): 610-4.
    17. Pickup JC. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care. 2004; 27(3): 813-23.
    18. Hotamisligil GS. Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord. 2003; 27(Suppl 3): S53-5.
    19. Patti ME, Corvera S. The Role of Mitochondria in the Pathogenesis of Type 2 Diabetes. Endocr Rev. 2010
    20. Schrauwen-Hinderling VB, Roden M, Kooi ME, Hesselink MK, Schrauwen P. Muscular mitochondrial dysfunction and type 2 diabetes mellitus. Curr Opin Clin Nutr Metab Care. 2007; 10(6): 698-703.
    21. Petersen KF, Dufour S, Befroy D, Garcia R, Shulman GI. Impaired mitochondrial activity in the insulin-resistant offspring of patients with type 2 diabetes. N Engl J Med. 2004; 350(7): 664-71.
    22. Eriksson JW. Metabolic stress in insulin's target cells leads to ROS accumulation - a hypothetical common pathway causing insulin resistance. FEBS Lett. 2007; 581(19): 3734-42.
    23. Nishikawa T, Kukidome D, Sonoda K, Fujisawa K, Matsuhisa T, Motoshima H, Matsumura T, Araki E. Impact of mitochondrial ROS production in the pathogenesis of insulin resistance. Diabetes Res Clin Pract. 2007; 77 (Suppl 1): S161-4.
    24. Kaneto H, Matsuoka TA, Katakami N, Kawamori D, Miyatsuka T, Yoshiuchi K, Yasuda T, Sakamoto K, Yamasaki Y, Matsuhisa M. Oxidative stress and the JNK pathway are involved in the development of type 1 and type 2 diabetes. Curr Mol Med. 2007; 7(7): 674-86.
    25. Kaneto H, Katakami N, Kawamori D, Miyatsuka T, Sakamoto K, Matsuoka TA, Matsuhisa M, Yamasaki Y.Involvement of oxidative stress in the pathogenesis of diabetes. Antioxid Redox Signal. 2007; 9(3): 355-66.
    26. Boden G. Endoplasmic reticulum stress: another link between obesity and insulinresistance/inflammation? Diabetes. 2009; 58(3): 518-9.
    27. Sharma NK, Das SK, Mondal AK, Hackney OG, Chu WS, Kern PA, Rasouli N, Spencer HJ, Yao-Borengasser A, Elbein SC. Endoplasmic reticulum stress markers are associated with obesity in nondiabetic subjects. J Clin Endocrinol Metab. 2008; 93(11): 4532-41.
    28. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, G?rgün CZ, Hotamisligil GS. Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006; 313(5790): 1137-40.
    29. Zhang K, Kaufman RJ. From endoplasmic-reticulum stress to the inflammatory response. Nature. 2008; 454(7203): 455-62.
    30. Hirosumi J, Tuncman G, Chang L, G?rgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature. 2002; 420(6913): 333-6.
    31. Choo HJ, Kim JH, Kwon OB, Lee CS, Mun JY, Han SS, Yoon YS, Yoon G, Choi KM, Ko YG.Mitochondria are impaired in the adipocytes of type 2 diabetic mice. Diabetologia. 2006; 49(4): 784-91.
    32. Rong JX, Qiu Y, Hansen MK, Zhu L, Zhang V, Xie M, Okamoto Y, Mattie MD, Higashiyama H, Asano S, Strum JC, Ryan TE. Adipose mitochondrial biogenesis is suppressed in db/db and high-fat diet-fed mice and improved by rosiglitazone. Diabetes. 2007; 56(7): 1751-60.
    33. Hammarstedt A, Sopasakis VR, Gogg S, Jansson PA, Smith U. Improved insulin sensitivity and adipose tissue dysregulation after short-term treatment with pioglitazone in non-diabetic, insulin-resistant subjects. Diabetologia. 2005; 48(1): 96-104.
    34. Robertson RP, Zhang HJ, Pyzdrowski KL, Walseth TF. Preservation of insulin mRNA levels and insulin secretion in HIT cells by avoidance of chronic exposure to high glucose concentrations. J Clin Invest. 1992; 90(2): 320-5.
    35. Leahy JL, Bonner-Weir S, Weir GC. Beta-cell dysfunction induced by chronic hyperglycemia. Current ideas on mechanism of impaired glucose-induced insulin secretion. Diabetes Care. 1992; 15(3): 442-55.
    36. Lee Y, Hirose H, Ohneda M, Johnson JH, McGarry JD, Unger RH. Beta-cell lipotoxicity in the pathogenesis of non-insulin-dependent diabetes mellitus of obese rats: impairment in adipocyte-beta-cell relationships. Proc Natl Acad Sci U S A. 1994; 91(23): 10878-82.
    37. Zhang M, Wang B, Ni YH, Liu F, Fei L, Pan XQ, Guo M, Chen RH, Guo XR. Overexpression of uncoupling protein 4 promotes proliferation and inhibits apoptosis and differentiation of preadipocytes. Life Sci. 2006; 79(15): 1428-35.
    38. Chen H, Detmer SA, Ewald AJ, Griffin EE, Fraser SE, Chan DC. Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development. J Cell Biol. 2003; 160(2): 189-200.
    39. Duchen MR. Roles of mitochondria in health and disease. Diabetes. 2004; 53(Suppl 1): S96-102.
    40. Lowell BB, Shulman GI. Mitochondrial dysfunction and type 2 diabetes. Science. 2005; 307(5708): 384-7.
    41. Parish R, Petersen KF. Mitochondrial dysfunction and type 2 diabetes. Curr Diab Rep. 2005; 5(3): 177-83.
    42. Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N. Ca(2+) homeostasis during mitochondrial fragmentation and perinuclear clustering induced by hFis1. J Biol Chem. 2004; 279(21): 22704-14.
    43. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 2004; 117(Pt 26): 6535-46.
    44. Frieden M, James D, Castelbou C, Danckaert A, Martinou JC, Demaurex N. Ca(2+) homeostasis during mitochondrial fragmentation and perinuclearclustering induced by hFis1. J Biol Chem. 2004; 279(21): 22704-14.
    45. de BOM, Scorrano L. Mitofusin 2 tethers endoplasmic reticulum to mitochondria . Nature. 2008; 456(7222): 605-10.
    46. Chen H, Chomyn A, Chan DC. Disruption of fusion results in mitochondrial heterogeneity and dysfunction. J Biol Chem. 2005; 280(28): 26185-92.
    47. Paltauf-Doburzynska J, Malli R, Graier WF. Hyperglycemic conditions affect shape and Ca2+ homeostasis of mitochondria in endothelial cells. J Cardiovasc Pharmacol. 2004; 44(4): 423-36.
    48. Solinas G, Naugler W, Galimi F, Lee MS, Karin M. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates. Proc Natl Acad Sci USA. 2006; 103(44): 16454-9.
    49. Katakam PV, Jordan JE, Snipes JA, Tulbert CD, Miller AW, Busija DW. Myocardial preconditioning against ischemia-reperfusion injury is abolished in Zucker obese rats with insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2007; 292 (2): R920-6.
    50. Yu T, Robotham JL, Yoon Y. Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A. 2006; 103(8): 2653-8.
    51. Abdul-Ghani MA, Muller FL, Liu Y, Chavez AO, Balas B, Zuo P. Deleterious action of FA metabolites on ATP synthesis: possible link between lipotoxicity, mitochondrial dysfunction, and insulin resistance. Am J Physiol Endocrinol Metab. 2008; 295(3): E678-85.
    52. Mannella CA. Structure and dynamics of the mitochondrial inner membrane cristae. Biochim Biophys Acta. 2006; 1763(5-6): 542-8.
    53. Santel A. Get the balance right: mitofusins roles in health and disease. Biochim Biophys Acta. 2006; 1763 (5-6): 490-9.
    54. Masako K, Yoko H, Hisashi S, Ryotaro H, Kenji K. Bidirectional Ca2+ couplingof mitochondria with the endoplasmic reticulum and regulation of multimodal Ca2+ entries in rat brown adipocytes. Am J Physiol Cell Physiol. 2007; 292(2): C896-C908.
    55. Parone PA, Da Cruz S, Tondera D, Mattenberger Y, James DI, Maechler P, Barja F, Martinou JC.Preventing mitochondrial fission impairs mitochondrial function and leads to loss of mitochondrial DNA. PLoS ONE. 2008; 3(9): e3257.
    56. Kamei Y, Ohizumi H, Fujitani Y, Nemoto T, Tanaka T, Takahashi N, Kawada T, Miyoshi M, Ezaki O, Kakizuka A. PPARgamma coactivator 1beta/ERR ligand 1 is an ERR protein ligand, whose expression induces a high-energy expenditure and antagonizes obesity. Proc Natl Acad Sci U S A. 2003; 100(21): 12378-83.
    57. Wu Z, Puigserver P, Andersson U, Zhang C, Adelmant G, Mootha V, Troy A, Cinti S, Lowell B, Scarpulla RC, Spiegelman BM. Mechanisms controlling mitochondrial biogenesis and respiration through the thermogenic coactivator PGC-1. Cell. 1999; 98(1): 115-24.
    58. Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ, Rizzuto R. Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell. 2004; 16(1): 59-68.
    59. Pich S, Bach D, Briones P, Liesa M, Camps M, Testar X, Palacín M, Zorzano A. The Charcot-Marie-Tooth type 2A gene product, Mfn2, up-regulates fuel oxidation through expression of OXPHOS system. Hum Mol Genet. 2005; 14(11): 1405- 15.
    60. Rodríguez-Pe?a A, EscriváH, Handler AC, Vallejo CG. Thyroid hormone increases transcription of GA-binding protein/nuclear respiratory factor-2 alpha-subunit in rat liver. FEBS Lett. 2002; 514(2-3): 309-14.
    61. Puigserver P, Spiegelman BM. Peroxisome proliferator-activated receptorgamma coactivator 1 alpha (PGC-1 alpha): transcriptional coactivator and metabolic regulator. . Endocr Rev. 2003; 24(1): 78-90.
    62. Luo J, Sladek R, Bader JA, Matthyssen A, Rossant J, Giguère V. Placental abnormalities in mouse embryos lacking the orphan nuclear receptor ERR-beta. . Nature. 1997; 388(6644): 778-82.
    63. Yu S, Y.C. W, Wang XH, Ling MT, Ng CF, Chen S, Chan FL. Orphan nuclear receptor estrogen-related receptor-beta suppresses in vitro and in vivo growth of prostate cancer cells via p21(WAF1/CIP1) induction and as a potential therapeutic target in prostate cancer . Oncogene. 2008; 27(23): 3313-28.
    64. Giguère V. Transcriptional control of energy homeostasis by the estrogen-related receptors. Endocr Rev. 2008; 29(6): 677-96.
    65. Hackenbrock CR. Ultrastructural bases for metabolically linked mechanical activity in mitochondria. I. Reversible ultrastructural changes with change in metabolic steady state in isolated liver mitochondria. J Cell Biol. 1966; 30(2): 269-97.
    66. Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW. Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr. 2008; 40(5): 445-56.
    67. Miwa S, Brand MD. Mitochondrial matrix reactive oxygen species production is very sensitive to mild uncoupling. Biochem Soc Trans. 2003; 31(Pt 6): 1300-1.
    68. Chu AC, Ho PW, Kwok KH, Ho JW, Chan KH, Liu HF, Kung MH, Ramsden DB, Ho SL. Mitochondrial UCP4 attenuates MPP+ and dopamine-induced oxidative stress, mitochondrial depolarization, and ATP deficiency in neurons and is interlinked with UCP2 expression. Free Radic Biol Med. 2009; 46(6): 810-20.
    69. Rossmeisl M, Barbatelli G, Flachs P, Brauner P, Zingaretti MC, Marelli M, JanovskáP, HorákováM, Syrovy I, Cinti S, Kopecky J. Expression of the uncoupling protein 1 from the aP2 gene promoter stimulates mitochondrial biogenesis in unilocular adipocytes in vivo. Eur J Biochem. 2002; 269 (1): 19-28.
    70. Pecqueur C, Alves-Guerra MC, Gelly C, Levi-Meyrueis C, Couplan E, Collins S, Ricquier D, Bouillaud F, Miroux B.Uncoupling protein 2, in vivo distribution,induction upon oxidative stress, and evidence for translational regulation. J Biol Chem. 2001; 276(12): 8705-12.
    71. Mattiasson G, Shamloo M, Gido G, Mathi K, Tomasevic G, Yi S, Warden CH, Castilho RF, Melcher T, Gonzalez-Zulueta M, Nikolich K, Wieloch T.Uncoupling protein-2 prevents neuronal death and diminishes brain dysfunction after stroke and brain trauma. Nat Med. 2003; 9(8): 1062-8.
    72. Vincent AM, Olzmann JA, Brownlee M, Sivitz WI, Russell JW. Uncoupling proteins prevent glucose-induced neuronal oxidative stress and programmed cell death. Diabetes. 2004; 53(3): 726-34.
    73. Choi CS, Fillmore JJ, Kim JK, Liu ZX, Kim S, Collier EF, Kulkarni A, Distefano A, Hwang YJ, Kahn M, Chen Y, Yu C, Moore IK, Reznick RM, Higashimori T, Shulman GI. Overexpression of uncoupling protein 3 in skeletal muscle protects against fat-induced insulin resistance. J Clin Invest .2007; 117(7): 1995-2003.
    74. Ho PW, Chu AC, Kwok KH, Kung MH, Ramsden DB, Ho SL. Knockdown of uncoupling protein-5 in neuronal SH-SY5Y cells: Effects on MPP+-induced mitochondrial membrane depolarization, ATP deficiency, and oxidative cytotoxicity.J Neurosci Res. 2006; 84(6): 1358-66.
    75. Prabhakaran K, Li L, Mills EM, Borowitz Jl, Isom GE. Up-regulation of uncoupling protein 2 by cyanide is linked with cytotoxicity in mesencephalic cells. J Pharmacol Exp Ther. 2005; 314(3): 1338-45.
    76. Wan CD, Wang CY, Liu T, Cheng R, Wang HB. Alleviation of ischemia/reperfusion injury in ob/ob mice by inhibiting UCP-2 expression in fatty liver. World J Gastroenterol. 2008; 14 (4): 590-4.
    77. Mills EM, Xu D, Fergusson MM, Combs CA, Xu Y, Finkel T. Regulation of cellular oncosis by uncoupling protein 2. J Biol Chem 2002; 277(30): 27385-92.
    1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes care. 2004; 27(5): 1047-53.
    2. American Diabetes Association. Type 2 diabetes in children and adolescents Diabetes care. 2000; 23(3): 381-9.
    3. Narayan KM, Boyle JP, Thompson TJ, Sorensen SW, Williamson DF. Lifetime risk for diabetes mellitus in the United States. JAMA. 2003; 290(14): 1884-90.
    4. Mathis D, Vence L, Benoist C. beta-Cell death during progression to diabetes. Nature. 2001; 414(6865): 792-8.
    5. Durham HA, Truett GE. Development of insulin resistance and hyperphagia in Zucker fatty rats Am J Physiol Regul Integr Comp Physiol. 2006; 290 (3): R652-R8.
    6. Cnop M, Welsh N, Jonas JC, Jo¨rns A, Lenzen S, Eizirik DL. Mechanisms of pancreaticβ-cell death in type 1 and type 2 diabetes:many differences, few similarities. Diabetes care. 2005; 54(Suppl 2): S97-S107.
    7. Delepine M, Nicolino M, Barrett T, Golamaully M, Lathrop GM, Julier C. EIF2AK3, encoding translation initiation factor 2-alpha kinase 3, is mutated in patients with Wolcott-Rallison syndrome. Nat Genet. 2000; 25(4): 406-9.
    8. Naidoo N. ER and aging-Protein folding and the ER stress response. Ageing Res Rev. 2009; 8(3): 150-9.
    9. Rasheva VI, Domingos PM. Cellular responses to endoplasmic reticulum stress and apoptosis. Apoptosis. 2009; 14(8): 996-1007.
    10. Willer M, Forte GM, Stirling CJ. Sec61p is required for ERAD-L: genetic dissection of the translocation and ERAD-L functions of Sec61P using novel derivatives of CPY. J Biol Chem. 2008; 283( 49 ): 33883-8.
    11. Credle JJ, Finer-Moore JS, Papa FR, Stroud RM, Walter P. On the mechanism ofsensing unfolded protein in the endoplasmic reticulum. Proc Natl Acad Sci U S A. 2005; 102(52): 18773-84.
    12. van Lith M, Hartigan N, Hatch J, Benham AM. PDILT, a divergent testis-specific protein disulfide isomerase with a non-classical SXXC motif that engages in disulfide-dependent interactions in the endoplasmic reticulum. J Biol Chem. 2005; 280(2): 1376-83.
    13. Baker KM, Chakravarthi S, Langton KP, Sheppard AM, Lu H, Bulleid NJ. Low reduction potential of Ero1alpha regulatory disulphides ensures tight control of substrate oxidation. EMBO J. 2008; 27(22): 2988-97.
    14. Kleizen B, Braakman I. Protein folding and quality control in the endoplasmic reticulum. Curr Opin Cell Biol. 2004; 16(4): 343-9.
    15. Brodsky JL. The protective and destructive roles played by molecular chaperones during ERAD (endoplasmic-reticulum-associated degradation). Biochem J. 2007; 404(3): 353-63.
    16. Ron D, Walter P. Signal integration in the endoplasmic reticulum unfolded protein response. Nat Rev Mol Cell Biol. 2007; 8(7): 519-29.
    17. Malhotra JD, Kaufman RJ. The endoplasmic reticulum and the unfolded protein response. Semin Cell Dev Biol. 2007; 18(6): 716-31.
    18. Patil C, Walter P. Intracellular signaling from the endoplasmic reticulum to the nucleus: the unfolded protein response in yeast and mammals. Curr Opin Cell Biol. 2001; 13(3): 349-55.
    19. Kozutsumi Y, Segal M, Normington K, Gething MJ, Sambrook J. The presence of malfolded proteins in the endoplasmic reticulum signals the induction of glucose-regulated proteins. Nature. 1988; 332(6163): 462-4.
    20. Mori K, Ma W, Gething MJ, Sambrook J. A transmembrane protein with a cdc2+/CDC28-related kinase activity is required for signaling from the ER to the nucleus. Cell. 1993; 74 (4): 743-56.
    21. Welihinda AA, Kaufman RJ. The unfolded protein response pathway in Saccharomyces cerevisiae. Oligomerization and transphosphorylation of Ire1p (Ern1p) are required for kinase activation. J Biol Chem. 1996; 271(30): 18181-7.
    22. Niwa M, Patil CK, DeRisi J, Walter P. Genome-scale approaches for discovering novel nonconventional splicing substrates of the Ire1 nuclease. Genome Biol. 2005; 6 (1): R3.
    23. Lee AH, Chu GC, Iwakoshi NN, Glimcher LH. XBP-1 is required for biogenesis of cellular secretory machinery of exocrine glands. EMBO J. 2005; 24 (24): 4368-80.
    24. Lee AH, Iwakoshi NN, Glimcher LH. XBP-1 regulates a subset of endoplasmic reticulum resident chaperone genes in the unfolded protein response. Mol Cell Biol. 2003; 23(21): 7448-59.
    25. Pirot P, Naamane N, Libert F, Magnusson NE, Orntoft TF, Cardozo AK. Global profiling of genes modified by endoplasmic reticulum stress in pancreaticβ- cells reveals the early degradation of insulin mRNAs. Diabetologia. 2007; 50(5): 1006-14.
    26. Hollien J, Weissman JS. Decay of endoplasmic reticulumlocalized mRNAs during the unfolded protein response. Science. 2006; 313(5783): 104-7.
    27. Liu CY, Schroder M, Kaufman RJ. Ligand-independent dimerization activates the stress response kinases IRE1 and PERK in the lumen of the endoplasmic reticulum. J Biol Chem. 2000; 275(32): 24881-5.
    28. Bertolotti A, Zhang Y, Hendershot LM, Harding HP, Ron D. Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2000; 2(6): 326-32.
    29. Zhou J, Liu CY, Back SH, Clark RL, Peisach D, Xu Z. The crystal structure of human IRE1 luminal domain reveals a conserved dimerization interface required for activation of the unfolded protein response. Proc Natl Acad Sci USA. 2006; 103(39): 14343-8.
    30. Ishihara N, Eura Y, Mihara K. Mitofusin 1 and 2 play distinct roles in mitochondrial fusion reactions via GTPase activity. J Cell Sci. 2004; 117(Pt 26): 6535-46.
    31. Nadanaka S, Okada T, Yoshida H, Mori K. Role of disulfide bridges formed in the luminal domain of ATF6 in sensing endoplasmic reticulum stress. Mol Cell Biol. 2007; 27(3): 1027-43.
    32. Hong M, Luo S, Baumeister P, Huang JM, Gogia RK, Li M, Lee AS. Underglycosylation of ATF6 as a novel sensing mechanism for activation of the unfolded protein response . J Biol Chem. 2004; 279(12):11354-63.
    33. Yoshida H, Haze K, Yanagi H, Yura T, Mori K. Identification of the cis-acting endoplasmic reticulum stress response element responsible for transcriptional induction of mammalian glucoseregulated proteins. Involvement of basic leucine zipper transcription factors . J Biol Chem. 1998; 273(50): 33741-9.
    34. Okada T, Yoshida H, Akazawa R, Negishi M, MoriK. Distinct roles of activating transcription factor 6 (ATF6) and doublestranded RNA-activated protein kinase-like endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein response . Biochem J. 2002; 366(Pt 2): 585-94.
    35. Ni M, Lee AS. ER chaperones in mammalian development and human diseases . FEBS Lett. 2007; 581(19): 3641-51.
    36. Rutkowski DT, Kang SW, Goodman AG, Garrison JL, Taunton J, Katze MG, Kaufman RJ, Hegde RS. The role of p58IPK in protecting the stressed endoplasmic reticulum. Mol Biol Cell. 2007; 18(9): 3681-91.
    37. Kondo S, Murakami T, Tatsumi K, Ogata M, Kanemoto S, Otori K, Iseki K, Wanaka A, Imaizumi K.. OASIS, a CREB/ATFfamily member, modulates UPR signalling in astrocytes. Nat Cell Biol. 2005; 7(2): 186-94.
    38. Nagamori I, Yabuta N, Fujii T, Tanaka H, Yomogida K, Nishimune Y, Nojima H. Tisp40, a spermatid specific bZip transcription factor, functions by binding to the unfolded protein response element via the Rip pathway. Genes Cells. 2005; 10(6):575-94.
    39. Zhang K, Shen X, Wu J, Sakaki K, Saunders T, Rutkowski DT, Back SH, Kaufman RJ. Endoplasmic reticulum stress activates cleavage of CREBH to induce a systemic inflammatory response. Cell. 2006; 124(3): 587-99.
    40. Lu PD, Harding HP, Ron D. Translation reinitiation at alternative open reading frames regulates gene expression in an integrated stress response. J Cell Biol. 2004; 167(1): 27-33.
    41. Vattem KM, Wek RC. Reinitiation involving upstream ORFs regulates ATF4 mRNA translation in mammalian cells . Proc Natl Acad Sci U S A. 2004; 101(31): 11269-74.
    42. Harding HP, Zhang Y, Zeng H, Novoa I, Lu PD, Calfon M, Sadri N, Yun C, Popko B, Paules R, Stojdl DF, Bell JC, Hettmann T, Leiden JM, Ron D. An integrated stress response regulates amino acid metabolism and resistance to oxidative stress . Mol Cell. 2003; 11(3): 619-33.
    43. Pirot P, Ortis F, Cnop M, Ma Y, Hendershot LM, Eizirik DL, Cardozo AK.Transcriptional regulation of the endoplasmic reticulum stress gene chop in pancreatic insulin-producing cells. Diabetes. 2007; 56(4): 1069-77.
    44. Harding H, P., Zhang Y, Ron D. Protein translation and folding are coupled by an endoplasmic-reticulum-resident kinase . Nature. 1999; 397(6716): 271-4.
    45. Harding HP, Novoa I, Zhang Y, Zeng H, Wek R, Schapira M, Ron D. Regulated translation initiation controls stress-induced gene expression in mammalian cells. Mol Cell. 2000; 6(5): 1099-108.
    46. Urano F, Wang X, Bertolotti A, Zhang Y, Chung P, Harding HP, Ron D. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science. 2000; 287(5453): 664-6.
    47. Nishitoh H, Matsuzawa A, Tobiume K, Saegusa K, Takeda K, Inoue K, Hori S, Kakizuka A, Ichijo H. ASK1 is essential for endoplasmic reticulumstress-induced neuronal cell death triggered by expanded polyglutamine repeats. Genes Dev. 2002; 16(11): 1345-55.
    48. Oeppen J, Vaupel JW. Demography. Broken limits to life expectancy. Science. 2002; 296(5570): 1029-31.
    49. Scheuner D, Mierde DV, Song B, Flamez D, Creemers JW, Tsukamoto K, Ribick M, Schuit FC, Kaufman RJ. Control of mRNA translation preserves endoplasmic reticulum function inβ-cells and maintains glucose homeostasis . Nat Med. 2005; 11(7): 757-64.
    50. Van Lommel L, Janssens K, Quintens R, Tsukamoto K, Vander Mierde D, Lemaire K, Denef C, Jonas JC, Martens G, Pipeleers D, Schuit FC. Probe-independent and direct quantification of insulin mRNA and growth hormone mRNA in enriched cell preparations. Diabetes. 2006; 55(12): 3214-20.
    51. Herbach N, Rathkolb B, Kemter E, Pichl L, Klaften M, de Angelis MH, Halban PA, Wolf E, Aigner B, Wanke R. Dominantnegative effects of a novel mutated Ins2 allele causes early-onset diabetes and severeβ-cell loss in Munich Ins2C95S mutant mice. Diabetes. 2007; 56(5): 1268-76.
    52. Elouil H, Bensellam M, Guiot Y, Vander Mierde D, Pascal SM, Schuit FC, Jonas JC. Acute nutrient regulation of the unfolded protein response and integrated stress response in cultured rat pancreatic islets. Diabetologia. 2007; 50(7): 1442-52.
    53. Dowling PO, Driscoll LO, Sullivan F, Dowd A, Henry M, Jeppesen PB, Meleady P, Clynes M. Proteomic screening of glucose-responsive and glucose non-responsive MIN-6 cells reveals differential expression of proteins involved in protein folding, secretion and oxidative stress. Proteomics. 2006; 6(24): 6578-87.
    54. Lipson KL, Fonseca SG, Ishigaki S, Nguyen LX, Foss E, Bortell R, Rossini AA, Urano F. Regulation of insulin biosynthesis in pancreaticβ-cells by an endoplasmic reticulum-resident protein kinase IRE1 . Cell Metab. 2006; 4(3):245-54.
    55. ardozo AK, Ortis F, Storling J, Feng YM, Rasschaert J, Tonnesen M. Cytokines downregulate the sarcoendoplasmic reticulum pump Ca2+ ATPase 2b and deplete endoplasmic reticulum Ca2+, leading to induction of endoplasmic reticulum stress in pancreatic beta-cells. Diabetes. 2005; 54(2): 452-61.
    56. yadomari S, Takeda K, Takiguchi M, Gotoh T, Matsumoto M, Wada I. Nitric oxide-induced apoptosis in pancreatic betacells is mediated by the endoplasmic reticulum stress pathway. Proc Natl Acad Sci USA. 2001; 98(19): 10845-50.
    57. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease . Physiol Rev. 2007; 87(1): 315-424.
    58. Wankerl M, Boheler KR, Fiszman MY, Schwartz K. Molecular cloning and analysis of the human cardiac sarco(endo)plasmic reticulum Ca2+-ATPase (SERCA2) gene promoter. J Mol Cell Cardiol. 1996; 28(10): 2139-50.
    59. Pacher P, Beckman JS, Liaudet L. Nitric oxide and peroxynitrite in health and disease. Physiol Rev. 2007; 87(1): 315-424.
    60. Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, D.L. E. Free fatty acids and cytokines induce pancreaticβ-cell apoptosis by different mechanisms: role of nuclear factor-κB and endoplasmic reticulum stress. Endocrinology. 2004; 145(11): 5087-96.
    61. Pirot P, Eizirik DL, Cardozo AK. Interferon-gamma potentiates endoplasmic reticulum stress-induced death by reducing pancreatic beta-cell defence mechanisms. Diabetologia. 2006; 49(6): 1229-36.
    62. Zhang W, Feng D, Li YM, Iida K, McGrath B, Cavener DR. PERK EIF2AK3 control of pancreaticβcell differentiation and proliferation is required for postnatal glucose homeostasis. Cell Metab. 2006; 4(6): 491-7.
    63. Inoue H, Tanizawa Y, Wasson J, Behn P, Kalidas K, Bernal-Mizrachi E, Bernal-Mizrachi E, Mueckler M, Marshall H, Donis-Keller H, Crock P, Rogers D,Mikuni M, Kumashiro H, Higashi K, Sobue G, Oka Y, Permutt MA. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (Wolfram syndrome). Nat Genet. 1998; 20(2): 143-8.
    64. Laybutt DR, Preston AM, Akerfeldt MC, Kench JG, Busch AK, Biankin AV, Biden TJ. Endoplasmic reticulum stress contributes toβcell apoptosis in type 2 diabetes. Diabetologia. 2007; 50(4): 752-63.
    65. Marchetti P, Bugliani M, Lupi R, Marselli L, Masini M, Boggi U, Filipponi F, Weir GC, Eizirik DL, Cnop M.. The endoplasmic reticulum in pancreaticβ-cells of type 2 diabetes patients. Diabetologia. 2007; 50(12): 2486-94.
    66. Huang CJ, Lin CY, Haataja L, Gurlo T, Butler AE, Rizza RA, Butler PC. High expression rates of human islet amyloid polypeptide induce endoplasmic reticulum stress mediatedβ-cell apoptosis, a characteristic of humans with type 2 but not type 1 diabetes. Diabetes. 2007; 56(8): 2016-27.
    67. Copanaki E, Schurmann T, Eckert A, Leuner K, Muller WE, Prehn JH, K?gel D. The amyloid precursor protein potentiates CHOP induction and cell death in response to ER Ca2+ depletion. Biochim Biophys Acta. 2007; 1773(2): 157-65.
    68. Oyadomari S, Koizumi A, Takeda K, Gotoh T, Akira S, Araki E, Mori M. Targeted disruption of the Chop gene delays endoplasmic reticulum stress-mediated diabetes. J Clin Invest. 2002; 109(4): 525-32.
    69. Yamada T, Ishihara H, Tamura A, Takahashi R, Yamaguchi S, Takei D, Tokita A, Satake C, Tashiro F, Katagiri H, Aburatani H, Miyazaki J, Oka Y.. WFS1-deficiency increases endoplasmic reticulum stress, impairs cell cycle progression and triggers the apoptotic pathway specifically in pancreaticβ-cells. Hum Mol Genet. 2006; 15(10): 1600-9.
    70. Riggs AC, Bernal-Mizrachi E, Ohsugi M, Wasson J, Fatrai S, Welling C, Murray J, Schmidt RE, Herrera PL, Permutt MA. Mice conditionally lacking the Wolfram gene in pancreatic isletβcells exhibit diabetes as a result of enhanced endoplasmic reticulum stress and apoptosis. Diabetologia. 2005; 48(11):2313-21.
    71. Ye J, Rawson RB, Komuro R, Chen X, Dave UP, Prywes R, Brown MS, Goldstein JL.. ER stress induces cleavage of membranebound ATF6 by the same proteases that process SREBPs. Mol Cell. 2000; 6(6): 1355-64.
    72. Karaskov E, Scott C, Zhang L, Teodoro T, Ravazzola M, Volchuk A. Chronic palmitate but not oleate exposure induces endoplasmic reticulum stress, which may contribute to INS-1 pancreaticβ-cell apoptosis. Endocrinology. 2006; 47(7): 3398-407.
    73. Lawrence MC, McGlynn K, Naziruddin B, Levy MF, Cobb MH. Differential regulation of CHOP-10/GADD153 gene expression by MAPK signaling in pancreaticβ-cells. Proc Natl Acad Sci USA. 2007; 104(28): 11518-25.
    74. Ozcan U, Cao Q, Yilmaz E, Lee AH, Iwakoshi NN, Ozdelen E, Tuncman G, G?rgün C, Glimcher LH, Hotamisligil GS. Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science. 2004; 306(5695): 457-61.
    75. Hirosumi J, Tuncman G, Chang L, G?rgün CZ, Uysal KT, Maeda K, Karin M, Hotamisligil GS. A central role for JNK in obesity and insulin resistance. Nature. 2002; 420(6913): 333-6.
    76. Wang D, Wei Y, Schmoll D, Maclean KN, Pagliassotti MJ. Endoplasmic reticulum stress increases glucose-6-phosphatase and glucose cycling in liver cells. Endocrinology. 2006; 147(1): 350-8.
    77. Hung JH., Su IJ, Lei HY, Wang HC, Lin WC, Chang WT, Huang W, Chang WC, Chang YS, Chen CC, Lai MD. Endoplasmic reticulum stress stimulates the expression of cyclooxygenase-2 through activation of NF-κB and pp38 mitogen-activated protein kinase. J Biol Chem. 2004; 279(45): 46384-92.
    78. Solinas G, Naugler W, Galimi F, Lee MS, Karin M. Saturated fatty acids inhibit induction of insulin gene transcription by JNK-mediated phosphorylation of insulin-receptor substrates. Proc Natl Acad Sci USA. 2006; 103(44): 16454-9.
    79. Wang D, Wei Y, Pagliassotti MJ. Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 2006; 147(2): 943-51.
    80. Goldstein JL, DeBose-Boyd RA, Brown MS. Protein sensors for membrane sterols. Cell. 2006; 124(1): 35-46.
    81. Werstuck GH, Lentz SR, Dayal S, Hossain GS, Sood SK, Shi YY, Zhou J, Maeda N, Krisans SK, Malinow MR, Austin RC. Homocysteine-induced endoplasmic reticulum stress causes dysregulation of the cholesterol and triglyceride biosynthetic pathways. J Clin Invest. 2001; 107(10): 1263-73.
    82. Wang H, Kouri G, Wollheim CB. ER stress and SREBP-1 activation are implicated inβ-cell glucolipotoxicity. J Cell Sci. 2005; 118(Pt 17): 3905-15.
    83. Nakatani Y, Kaneto H, Kawamori D, Yoshiuchi K, Hatazaki M, Matsuoka TA, Ozawa K, Ogawa S, Hori M, Yamasaki Y, Matsuhisa M.Involvement of endoplasmic reticulum stress in insulin resistance and diabetes. J Biol Chem. 2005; 280(1): 847-51.
    84. Ozawa K, Miyazaki M, Matsuhisa M, Takano K, Nakatani Y, Hatazaki M, Tamatani T, Yamagata K, Miyagawa J, Kitao Y, Hori O, Yamasaki Y, Ogawa S. The endoplasmic reticulum chaperone improves insulin resistance in type 2 diabetes. Diabetes. 2005; 54(3): 657-63.
    85. Welch WJ, Brown CR. Influence of molecular and chemical chaperones on protein folding. Cell Stress Chaperones. 1996; 1(3): 109-15.
    86. Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, G?rgün CZ, Hotamisligil GS.Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of type 2 diabetes. Science. 2006; 313(5790): 1137-40.
    87. Virtanen KA, Lonnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, Tolvanen T, Knuuti J, R?nnemaa T, Huupponen R, Nuutila P. Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulinstimulation in nonobese and obese humans. The Journal of clinical endocrinology and metabolism. 2002; 87(8): 3902-10.
    88. Fleischmann E, Kurz A, Niedermayr M, Schebesta K, Kimberger O, Sessler DI, Kabon B, Prager G. Tissue oxygenation in obese and non-obese patients during laparoscopy. Obes Surg. 2005; 15(6): 813-9.
    89. Yin J, Gao G, He Q, Zhou D, Guo Z, Ye J. Role of hypoxia in obesity-induced disorders of glucose and lipid metabolism in adipose tissue. American journal of physiology. 2009; 296(2): E333-E42.
    90. Hosogai N, Fukuhara A, Oshima K, Miyata Y, Tanaka S, Segawa K, Furukawa S, Tochino Y, Komuro R, Matsuda M, Shimomura I. Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes. 2007; 56(4): 901-11.
    91. Bashan N, Dorfman K, Tarnovscki T, Harman-Boehm I, Liberty IF, Bluher M, Ovadia S, Maymon-Zilberstein T, Potashnik R, Stumvoll M, Avinoach E, Rudich A.Mitogen-activated protein kinases, inhibitory-κB kinase, and insulin signaling in human omental versus subcutaneous adipose tissue in obesity. Endocrinology. 2007; 148(6): 2955-62.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700