一种新的胰高血糖素样肽-1类似物及其缓释技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰高血糖素样肽-1(glucagon-like peptide-1, GLP-1)是由肠道L细胞分泌的一种肠肽激素,具有多种生理功能,有显著的血糖浓度依赖的刺激胰岛素分泌作用,可以降低空腹和餐后血糖,在2型糖尿病的临床治疗中具有较好的应用前景。但由于GLP-1在体内半衰期很短,被二肽基肽酶-Ⅳ(DPP-IV)的快速降解和肾脏代谢作用,使其临床应用受到了很大限制。因此,开发更稳定的新型GLP-1类似物或缓释制剂,延长其体内有效作用时间已成为近年来关注的热门课题。
     本文首先构建纤维素结合域(CBD)与链霉亲和素(SA)的融合蛋白,制备了表而生物偶联SA的纤维素磁性微球(SA-CBD-MCMS),通过生物素(biotin)结合的Oligo(dT),建立了从细胞或组织中快速提取mRNA的方法,并从大鼠胰腺中提取mRNA,克隆了大鼠GLP-1受体(GLP-1R)。并将含有GLP-1 R基因的重组表达载体pcDNA3.1(+)/GLP-]R转染含有增强型绿色荧光蛋白(EGFP)报告基因的CHO/EGFP细胞,经抗性筛选、流式细胞分选和功能性分析,得到了稳定转染的细胞系CHO/EGFP/GLP-1R。该功能性报告基因细胞分析系统可以剂量依赖性的通过EGFP表达,对GLP-1 R激动剂的体外活性进行定性定量分析,为研究、开发和评价长效GLP-1类似物奠定了基础。
     本研究创新性地合成了含有31个氨基酸的新的GLP-1类似物KGLP-1,其结构是在天然GLP-1(7-37)酰胺的N端添加一个赖氨酸(Lys)。利用上述CHO/RGFP/GLP-1R细胞评价体系及自制DPP-IV粗酶液对KGLP-1的体外活性和稳定性进行分析。结果显示,KGLP-1能以剂量依赖的方式激活GLP-1 R,其EC50值(2.44 nmol/L)与天然GLP-1 (0.83 nmol/L)相比略有升高:但KGLP-1具有显著的抗DPP-Ⅳ降解作用,与DPP-Ⅳ粗提物作用12h后仍能保持80%的活性。进步体内活性分析结果表明,KGLP-1能以剂量依赖的方式显著降低小鼠体内的血糖水平,在同等剂量下,给药2h后仍具有明显的降血糖和促胰岛素分泌作用,而天然GLP-1在给药1h后活性即消失。在糖尿病模型小鼠实验中,KGLP-1也同样显示出了明显的降血糖作用(p<0.01)。
     为了改善KGLP-1的肾脏清除,本研究制备了KGLP-1与HSA的融合蛋白KGLP-1/HSA,并对其体内外活性、稳定性进行了分析。体外分析结果表明,KGLP-1/HSA具有与GLP-1相似的GLP-1R激动剂活性,EC50值为314 nmol/L,虽然其活性低于天然的GLP-1及类似物KGLP-1,但显示了明显的抗DPP-Ⅳ降解作用,12 h后仍能刺激CHO/EGFP/GLP-1R细胞产生较强的荧光,其强度为原来的84%。体内活性分析结果表明,虽然KGLP-1/HSA在给药后1h才表现出明显的降血糖、促胰岛素分泌的作用,但这种活性可以维持8h以上,而GLP-1与KGLP-1在给药1至2h后效果即不显著。以上结果表明,通过与HSA的融合,KGLP-1/HSA能明显地减缓其体内代谢清除率,延长其体内作用时间。
     此外,本研究还对KGLP-1的注射缓释制剂进行了探索。利用复乳(W/O/W)溶剂挥发法制备了载KGLP-1的PLA和PLGA微球,分别考察了高聚物的种类、平均分子量等因素对微球形态、平均粒径、包封率和体外释药特性的影响。结果发现,该类微球的包封率都小于40%,药物损失大。而采用S/O/O溶剂萃取法制备的载KGLP-1的PLGA长效注射微球其形态特征、包封率、体外释药均显示了较好的结果。电镜分析显示微球表面相对光滑致密,大小均一,平均粒径为33.5μm,包封率为85.5%,微球初始6h的突释为15.3%,14d的累计释放总量达到69.5%。采用糖尿病模型大鼠皮下注射给药,对血糖和血清胰岛素水平的考察结果显示,载有KGLP-1的PLGA微球可以提供稳定的药物释放,实现了给药一次,缓释10 d,控制血糖、促进胰岛素分泌的效果。
     本论文以自行开发的SA-CBD-MCMS为工具,提取大鼠胰腺mRNA,克隆了大鼠GLP-1R。然后以GLP-1R为靶点构建了含有EGFP报告基因的功能性细胞分析系统CHO/EGFP/GLP-1R,以此作为GLP-1R激动剂体外活性评价的细胞模型。利用该模型对新型GLP-1类似物KGLP-1及其与HSA的融合蛋白KGLP-1/HSA进行体外活性、稳定性评价,结合KM小鼠、糖尿病模型动物的体内实验,证明了KGLP-1作为一种新的抗DPP-Ⅳ降解的GLP-1类似物的有效性,并通过与HSA的融合,可以延长其降低血糖、促进胰岛素分泌的作用时间。同时,采用PLGA为包埋材料,S/O/O溶剂萃取法成功制备了载KGLP-1的缓释微球制剂,实现了长效治疗的效果,为开发能够用于2型糖尿病临床治疗的长效GLP-1类药物及其缓释制剂奠定了理论基础。
Glucagon-like peptide-1 (GLP-1) is an incretin hormone that is released from intestinal L-cells into the circulation in response to orally ingested nutrients. The multifaceted physiological actions of GLP-1 include stimulation of insulin gene expression, stimulation of insulin secretion, tropic effects on beta-cells, inhibition of glucagon secretion, promotion of satiety, inhibition of food intake, and reduction of gastric emptying. all of which contribute to normalizing elevated glucose levels and make GLP-1 attractive as a candidate for the treatment of type 2 diabetes mellitus. However, its rapid degradation by dipeptidyl-peptidase IV (DPP-IV) and its renal clearance have limited the use of the native peptide in clinical settings. Consequently. multiple efforts that focus on the design of novel DPP-IV-resistant GLP-1 analogs or sustained-release formulation of GLP-1 are being pursued.
     In this study, by exploiting the affinity of cellulose binding domain (CBD) binding for cellulose, we creatively activated and connected biomatrices of micron-sized MCMS with SA. In addition, using biotinylated Oligo(dT) a one-step isolation method of mRNA from cells or tissues was developed and achieved. On this basis we successfully isolated mRNA from rat islet tissue and the gene encoding GLP-1R was amplified. The recombinant plasmid pcDNA3.1(+)/GLP-1R was conducted and transfected into a CHO/EGFP cell line. After resistance screening, flow cytometry sorting and functional analysis, the resulting stable recombinant CHO/EGFP/GLP-1R cell line was developed. This functional reporter gene assay system can be used to identify and for the quantitative analysis of in vitro activity of GLP-1R agonists. The results laid the approach foundation for the research and development on the long-acting GLP-1 analogs.
     Then we reported a novel GLP-1 analog designated KGLP-1, which was designed with an extra Lys in front of the N-terminal His of the native GLP-1. By using the above constructed CHO/EGFP/GLP-1R cells and DPP-IV extract, we determined its plasma stability and biological activity in vitro. The results suggested that KGLP-1 activated GLP-1R in a dose-dependent manner. The EC50 for KGLP-1 was 2.44 nmol/L, which was higher than that of native GLP-1 (0.83 nmol/L). But KGLP-1 revealed a marked enzymatic resistance to DPP-IV. After 12 h incubation with the DPP-IV extract at 37℃,80% of active KGLP-1 still remained. Further animal experiments confirmed that KGLP-1 reduced the blood glucose levels after intraperitoneal administration to KM mice in a dose-dependent manner. At the same moderate dose, the glucose-lowering ability of KGLP-1 was comparable with native GLP-1. Although native GLP-1 immediately showed significant glucose-lowering and insulin-secreting effects after administration in normal or diabetic model mice, the effect disappeared 1h after administration. Compared with native GLP-1, the significant blood glucose-lowering and insulinotropic activity of KGLP-1 lasted for at least 2 h after administration, demonstrating that KGLP-1 had a longer biological action.
     To delay the rapid renal clearance, we prepared a fusion protein of KGLP-1 with HSA. And the therapeutic potential of KGLP-1/HSA, with respect to its biological activity and metabolic stability in vitro and its in vivo antihyperglycemic and insulinotropic effects were investigated. It was found in vitro study that KGLP-1/HSA activated GLP-1R in a dose-dependent manner that paralleled GLP-1 and KGLP-1. The EC 50 value for KGLP-1/HSA was calculated to be 314 nmol/L, while KGLP-1 and native GLP-1, exhibited much smaller EC50 values. But KGLP-1/HSA revealed significant enzymatic resistance, and it still stimulated EGFP expression at 84.0% activity after incubation for 12 h. The in vivo test confirmed that although KGLP-1/HSA did not show marked antihyperglycemic and insulinotropic effects until 1 h after administration, the glucose-lowering and insulin-releasing effect of KGLP-1/HSA was still evident up to 8 h after administration. In contrast, although the blood glucose and insulin responses for both GLP-1 and KGLP-1 showed significant glucose-lowering and insulin-releasing effects immediately after administration, the effects of GLP-1 or KGLP-1 at a dose of 0.1μmol/kg disappeared 1-2 h after administration. Overall, The fusion protein KGLP-1/HSA maintained the glucose-lowering and insulinotropic action of native GLP-1, together with increased resistance to DPP-IV mediated inactivation and prolonged duration of action.
     Meanwhile, we made active exploration on injectable sustained-release formulation of KGLP-1. Firstly, using W/O/W emulsion method, we prepared KGLP-1-loaded PLA MS and PLGA MS, and examined the type of polymer, polymer average molecular weight on morphology, average particle size, encapsulation efficiency and release characteristics in vitro of MS. The results showed that their encapsulation efficiencies were all below 40%, which would cause big losses of drugs. Then KGLP-1 entrapped in long-acting injectable PLGA MS were prepared using the S/O/O solvent extraction method. The surface morphology of MS was examined by SEM and micrographs showed that the MS had a regular spherical shape with a relatively smooth surface and a homogeneous size. The particle diameter was 33.5μm, and the encapsulation efficiency was 85.5%. The MS released the entrapped peptide with a release rate of approximately 15.3% peptide during the first 6 h, followed by the release of 54.2% of the peptide over 2 weeks. Animal studies using alloxan-induced diabetic rats have been performed and the results suggested that the continuous release of KGLP-1 from the subcutaneously injected KGLP-1-loaded PLGA MS had sustained glucose-lowering and insulinotropic effects. The KGLP-1 MS formulation achieved controlled release in vivo for 10 days and exhibited sustained long-term pharmacological efficacy to maintain stable blood glucose level in a diabetic model.
     In summary, the thesis made use of self-developed SA-CBD-MCMS, isolated the mRNA of rat islet tissue and cloned the gene coding rat GLP-1R. Then the functional cell assay system CHO/EGFP/GLP-1R containing EGFP reporter gene was successfully developed for the analysis of in vitro activity of GLP-1R agonists. Using this cell line, the plasma stability and biological activity in vitro of a novel GLP-1 analogue (KGLP-1) and its fusion protein with HSA (KGLP-1/HSA) were examined. In combination with tests in KM mice and alloxan-induced diabetic animals, we confirmed that KGLP-1 is an effective GLP-1 analog with marked resistance to DPP-IV degradation and retained bioactivity that is normally associated with native GLP-1 both in vitro and in vivo. And the fusion protein of KGLP-1 with HSA maintained the glucose-lowering and insulinotropic action of native GLP-1, together with increased resistance to DPP-Ⅳmediated inactivation and prolonged duration of action. Furthermore, KGLP-1-loaded PLGA MS were prepared using the S/O/O solvent extraction method and, after a single injection in diabetic rats, the effects of KGLP-1 on glucose control were sustained for 10 days. It laid the well foundation for the development of long-acting GLP-1 drugs and their sustained-release formulations for the treatment of 2DM.
引文
[1]Wasada T. Glucagon-like peptide-1 (GLP-1). Nippon Rinsho,2004,62 (6):1175-1180.
    [2]Orskov C. Glucagon-like peptide-1, a new hormone of the entero-insular axis. Diabetologia, 1992,35 (8):701-711.
    [3]Mojsov S, Heinrich G, Wilson IB, et al. Preproglucagon gene expression in pancreas and intestine diversifies at the level of posttranscriptional processing. J Biol Chem,1986,261: 11880-11889
    [4]Beil GI, Santerre RF, Mullenbach GT. Hamster preproglucagon contains the sequence of glucagon and two related peptides. Nature,1983,302:716-718
    [5]柴三葆,杨金奎.胰高血糖素样肽-1研究进展.中华医学研究杂志,2004,10(1):86
    [6]Drucker DJ. Minireview the glucagon-like peptides. Endocrinology,2001,142(2):521-527
    [7]Vahl TP, Paty BW, Fuller BD, et al. Effects of GLP-1-(7-36)NH2, GLP-1-(7-37). and GLP-1-(9-36)NH2 on intravenous glucose tolerance and glucose-induced insulin secretion in healthy humans.J Clin Endocrinol Metab,2003,88 (4):1772-1779.
    [8]Maclntosh CG, Horowitz M, Verhagen MA, et al.Effect of small intestinal nutrient infusion on appetite, gastrointestinal hormone release, and gastric myoelectrical activity in young and older men.Am J Gastroenterol,2001,96 (4):997-1007.
    [9]Brubaker PL, Anini Y. Direct and indirect mechanisms regulating secretion of glucagon-like peptide-1 and glucagon-like peptide-2. Can J Physiol Pharmacol,2003,81 (11):1005-1012.
    [10]Vilsboll T, Krarup T, Sonne J, et al. Incretin secretion in relation to meal size and body weight in healthy subjects and people with type 1 and type 2 diabetes mellitus. J Clin Endocrinol Metab,2003,88 (6):2706-2713
    [11]Herrmann C, Goke R, Richter G, et al. Glucagon-like peptide-1 and glucose-dependent insulin-releasing polypeptide plasma levels in response to nutrients. Digestion,1995,56 (2): 117-126
    [12]Holst JJ. Glucagon-like peptide 1 (GLP-1):an intestinal hormone, signaling nutritional abundance, with an unusual therapeutic potential. Trends Endocrinol Metab,1999,10 (6): 229-235.
    [13]Elliott RM, Morgan LM, Tredger JA, et al. Glucagon-like peptide-1 (7-36)amide and glucose-dependent insulinotropic polypeptide secretion in response to nutrient ingestion in man:acute post-prandial and 24-h secretion patterns. J Endocrinol,1993,138 (1):159-166
    [14]De Leon DD, Crutchlow MF, Ham JY, et al. Role of glucagon-like peptide-1 in the pathogenesis and treatment of diabetes mellitus. Int J Biochem Cell Biol,2006,38 (5-6): 845-859
    [15]Bojanowska E. Physiology and pathophysiology of glucagon-like peptide-1 (GLP-1):the role of GLP-1 in the pathogenesis of diabetes mellitus, obesity, and stress. Med Sci Monit, 2005,11(8):RA271-278
    [16]Theodorakis MJ, Carlson O, Michopoulos S, et al. Human duodenal enteroendocrine cells: source of both incretin peptides, GLP-1 and GIP. Am J Physiol Endocrinol Metab,2006, 290 (3):E550-559
    [17]Dunning BE, Foley JE, Ahren B. Alpha cell function in health and disease:influence of glucagon-like peptide-1. Diabetologia,2005,48 (9):1700-1713.
    [18]Feng XH, Liu XM, Zhou LH, et al. Expression of glucagon-like peptide-1 in the taste buds of rat circumvallate papillae. Acta Histochem,2008,110(2):151-154
    [19]Shin YK, Martin B, Golden E, et al. Modulation of taste sensitivity by GLP-1 signaling. J Neurochem,2008,106 (1):455-463
    [20]Mooney M, Kelly CMN, Flatt PR, et al. Aminopeptidase resistant glycated glucagon-like peptide-1 (7-36) amide shows potent insulinotropic action in vivo. Diabetologia,1998.41 (Supp 1):A183
    [21]Lee S, Yabe D, Nohtomi K. et al. Intact glucagon-like peptide-1 levels are not decreased in Japanese patients with type 2 diabetes. Endocr J,2010,57 (2):119-126
    [22]Shinde J, Taldone T, Barletta M, et al. Alpha-glucosidase-inhibitory activity of Syzygium cumini (Linn.) Skeels seed kernel in vitro and in Goto-Kakizaki (GK) rats. Carbohydr Res. 2008,343(7):1278-1281
    [23]Liu L, Deng Y, Yu S, et al. Berberine attenuates intestinal disaccharidases in streptozotocin-induced diabetic rats. Pharmazie,2008,63 (5):384-388
    [24]Delzenne NM, Cani PD, Neyrinck AM. Modulation of glucagon-like peptide 1 and energy metabolism by insulin and oligofructose:experimental data. J Nutr,2007,137 (11 Suppl): 2547S-2551S
    [25]Cani PD, Hoste S, Guiot Y, et al. Dietary non-digestible carbohydrates promote L-cell differentiation in the proximal colon of rats. Br J Nutr,2007,98 (1):32-37
    [26]Thorens B. Expression cloning of the pancreatic bete cell receptor for the gluco-incretin hormone glucagon-like peptide 1. Proc Natl Acad Sci USA,1992,89 (18):8641-8645
    [27]Nishizawa M, Nakabayashi H, Kawai K, et al. The hepatic vagal reception of intraportal GLP-1 is via receptor different from the pancreatic GLP-1 receptor. J Auton Nerv Syst, 200080 (1-2):14-21
    [28]Tibaduiza EC, Chen C, Beinborn M. A small molecule ligand of the glucagons-like peptide-1 receptor targets its amino-terminal hormone binding domain. J Biol Chem,2001, 276(41):37787-37793
    [29]Sandhu H, Wiesenthal SR, MacDonnald PE, et al. Glucagons-like peptide-1 increase insulin sensitivity in depancreatized dogs. Diabetes,1999,48(5):1045-1053
    [30]Satoh F, Beak SA, Small CJ, et al. Characterization of human and rat glucagons-like peptide-1 receptors in the neurointer mediate lobe lack of coupling toeither stimulationor inhibition of adenylyl cyclase. Endocrinology,2000,141(4):1301-1309
    [31]Moens K, Heimberg H, Flamez D, et al. Expression and functional activity of glucagon, glucagon-like peptide 1, and glucose-dependent insulinotropic peptide receptors in rat pancreatic islet cells. Diabetes,1996,45 (2):257-261
    [32]Heller RS, Kiefer TJ, Habener JF. Insulinotropic glucagon-like peptide 1 receptor expression in glucagon-producing alpha-cells of the rat endocrine pancreas. Diabetes,1997, 46 (5):785-791
    [33]Wildhage I, Trusheim H, Goke B, et al. Gene expression of the human glucagons-like peptide-1 receptor is regulated by Spl and Sp3. Endocrinology,1999,140(2):624~631
    [34]Widmann C, Dolci W, Thorens B. Internalization and homologous desensitization of the GLP-1 receptor depend on phosphorylation of the receptor carboxyl tail at the same three sites. Mol Endocrinol,1997,11(8):1094-1102
    [35]Holz GG, Leech CA, Heller RS, et al. cAMP-dependent mobilization of intracellular Ca2+ stores by activation of ryanodine receptors in pancreatic beta-cells A Ca2+ signaling system stimulated by the insulinotropic hormone glucagons-like peptide-1(7~37). J Biol Chem, 1999,274(20):14147-14156
    [36]Hui HX, Wright C. Perfetti R. Glucagons-like peptide-1 induces differentiation of islet duodenal homeobox-1-positive
    [37]Leech CA, Holz GG, Chepurny O, et al. Expression of cAMP-regulated guaninenucleotide exchange factors in pancreaticβ-cells. Biochem Biophys Res Commun,2000,278:44~47
    [38]Kjems LL, Holst JJ, Volund A, et al. The influence of GLP-1 on glucose-stimulated insulin secretion:effects on beta-cell sensitivity in type 2 and nondiabetic subjects. Diabetes,2003, 52 (2):380-386
    [39]Ahren B. Incretins and islet function. Curr Opin Endocrinol Diabetes,2006,13:154-161
    [40]Wang Y, Egan JM, Raygada M, et al. Glucagons-like peptide-1 affect gene transcription and messenger ribonucleic acid stability of components of the insulin secretory system in RIN 1046-38 cell. Endocrinology,1995,136:4910-4917
    [41]Fehmann HC, Habener JF. Insulinotropiv hormone glucagon-like peptide-1 (7-37) stimulation of proinsulin gene expression and proinsulin biosynthesis in insulinoma beta TC-lcells. Endocrinology,1992,130 (1):159-166
    [42]Franklin 1, Gromada J, Gjinovci A, et al. Beta-cell secretory products activate alpha-cell ATP-dependent potassium channels to inhibit glucagon release. Diabetes,2005,54 (6): 1808-1815
    [43]Komatsu R, Matsuyama T, Namba M, et al. Glucagonostatic and insulinotropic action of glucagonlike peptide 1-(7-36)-amide. Diabetes,1989,38 (7):902-905
    [44]Sandhu H, Wiesenthal SR, MacDonald PE, et al. Glucagon-like peptide-1 increases insulin sensitivity in depancreatized dogs. Diabetes,1999,48 (5):1045-1053
    [45]Baggio LL, Drucker DJ. Therapeutic approaches to preserve islet mass in type 2 diabetes. Annu Rev Med,2006,57:265-281
    [46]Mu J, Woods J, Zhou YP, et al. Chronic inhibition of dipeptidyl peptidase-4 with a sitagliptin analog preserves pancreatic beta-cell mass and function in a rodent model of type 2 diabetes. Diabetes. Diabetes,2006,55 (6):1695-1704
    [47]Stoffers DA, Kieffer TJ, Hussain MA, et al. Insulinotropic glucagon-like peptide 1 agonists stimulate expression of homeodomain protein IDX-1 and increase islet size in mouse pancreas. Diabetes,2000,49 (5):741-748.
    [48]Farilla L, Bulotta A, Hirshberg B, et al. Glucagon-like peptide 1 inhibits cell apoptosis and improves glucose responsiveness of freshly isolated human islets. Endocrinology,2003, 144 (12):5149-5158
    [49]Wang Q, Li L, Xu E, et al. Glucagon-like peptide-1 regulates proliferation and apoptosis via activation of protein kinase B in pancreatic INS-1 beta cells. Diabetologia.2004,47 (3): 478-487
    [50]Hoist JJ. Glucagons-like peptide-1(GLP-1) a newly discovered GI hormone. Gastroenterology,1994,107:1948-1955
    [51]Schirra J. Katschinski M. Weidmann C. et al. Gastric emptying and releasing of incretin hormones after glucose ingestion in humans. J Clin Invest,1996,97:92-103
    [52]Meier JJ. Gallwitz B. Salmen S.et al. Normalization of glucose concentrations and deceleration of gastric emptying after solid meals during intravenous glucagon-like peptide 1 in patients with type 2 diabetes.J Clin Endocrinol Metab,2003.88 (6):2719-2725
    [53]Verdich C, Flint A. Gutzwiller JP. et al. A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. J Clin Endocrinol Metab. 2001.86 (9):4382-4389
    [54]Turton MD, O'Shea D. Gunn I. et al. A role for glucagons-like peptide-1 in the central regulation of feeding. Nature,1996,379:69-72
    [55]Kanse SM, Kreymann B, Ghatei MA, et al. Identification and characterization of glucagon-like peptide 7-36 amide-binding sites in the rat brain and lung. FEBS Lett,1988, 241 (1-2):209-212
    [56]Turton MD, O'Shea D, Gunn I, et al. A role for glucagon-like peptide-1 in the central regulation of feeding. Nature,1996,379 (6560):69-72
    [57]Bose AK, Mocanu MM, Carr RD, et al. Glucagon-like peptide 1 can directly protect the heart against ischemia/reperfusion injury. Diabetes,2005,54 (1):146-151
    [58]Hassan M, Eskilsson A, Nilsson C, et al. In vivo dynamic distribution of 1311-glucagon-like peptide-1 (7-36) amide in the rat studied by gamma camera. Nucl Med Biol,1999,26:413-420
    [59]Orskov C, Andreasen J, Hoist JJ. All products of proglucagon are elevated in plasma form uremic patients. J Clin Endocrinol Metab,1992,74:379-384
    [60]Conarello SL, Li Z, Ronan J, et al. Mice lacking dipeptidyl peptidase Ⅳ are protected against obesity and insulin resistance. Proc Natl Acad Sci USA,2003,100(11):6825-6830
    [61]Hupe-Sodmann K, McGregor GP, Bridenbaugh R, et al. Characterisation of the processing by human neutral endopeptidase 24.11 of GLP-l(7-36) amide and comparison of the substrate specificity of the enzyme for other glucagon-like peptides. Regul Pept,1995,58: 149-156
    [62]Hopsu-Havu VK, Glenner GG A new dipeptide naphthylamidase hydrolyzing glycyl-prolyl-beta-naphthylamide. Histochemie,1966,7 (3):197-201
    [63]Hong WJ, Doyle D. Molecular dissection of the NH2-terminal signal/anchor sequence of rat dipeptidyl peptidase IV. J Cell Biol,1990,111 (2):323-328
    [64]Aertgeerts K, Ye S, Tennant MG, et al. Crystal structure of human dipeptidyl peptidase IV in complex with a decapeptide reveals details on substrate specificity and tetrahedral intermediate formation. Protein Sci,2004,13 (2):414-421
    [65]Bongers J, Lambros T, Ahmad M, et al. Kinetics of dipeptidyl peptidase IV proteolysis of growth hormone-releasing factor and analogs. Biochim Biophys Acta,1992,1122 (2):147-153
    [66]Martin RA, Cleary DL. Guido DM, et al. Dipeptidyl peptidase IV (DPP-IV) from pig kidney cleaves analogs of bovine growth hormone-releasing factor (bGRF) modified at position 2 with Ser. Thr or Val. Biochim Biophys Acta,1993,1164 (3):252-260
    [67]Proost P, Struyf S, Schols D, et al. Truncation of macrophage-derived chemokine by CD26/dipeptidyl-peptidase IV beyond its predicted cleavage site affects chemotactic activity and CC chemokine receptor 4 interaction. J Biol Chem,1999,274 (7):3988-3993
    [68]Nausch I, Mentlein R, Heymann E. The degradation of bioactive peptides and proteins by dipeptidyl peptidase IV from human placenta. Biol Chem Hoppe Seyler,1990,371 (11): 1113-1118
    [69]关子安主编.现代糖尿病学[M].天津:天津科学技术出版社,2001
    [70]项坤三.糖尿病类型及其临床特点[J].中国糖尿病杂志,1999,7(1):38-40
    [71]李利,王军等.糖尿病并发症研究进展[J].国外医学-内分泌学分册,2002,22(1):52-54
    [72]Rorsman P. The pancreatic beta-cell as a fuel sensor:an electrophysiologist's ciewpoint. Diabetologia,1997,40 (5):487-495
    [73]Guay DR. Repaglinide, a novel, short-acting hypoglycemic agent for type 2 diabetes mullitus. Pharmacotherapy,1998,18 (6):1195-1204
    [74]Owens DR. Repaglinide-prandial glucose regulator:a new class of oral antidiabetic drugs. Diabet Med,1998,15 (Suppl 4):S28-S36
    [75]Nauck MA, Heimesaat MM, Orskov C, et al. Preserved incretin activity of glucagons-like peptide-(7-36)amide but not of synthetic human gastric inhibitory polypeptide in patients with type-2 diabetes mellitus. J Clin Invest,1993,91:301-307
    [76]Bailey CJ, Turner RC. Metformin. N Engl J Med,1996,334 (9):574-579
    [77]DeFronzo RA, Goodman AM. Efficacy of metformin in patients with non-insulin-dependent diabetes mellitus. The Multicenter Metformin Study Group. N Engl J Med,1995,333 (9):541-549
    [78]Salpeter SR, Greyber E, Pasternak GA, et al. Risk of fatal an nonfatal lactic acidosis with metformin use in type 2 diabetes mellitus. Cochrane Database Syst Rev,2010,20 (1): CD002967
    [79]Junge B, Matzke M, Stoltefuss J. Chemistry and structure-activity relationships of glucosidase inhibitors. In Handbook of Experimental Pharmacology:Oral Antidiabetics. Kuhlmann J, Puls W, Eds. Berlin, Springer,1996,119.411-467
    [80]Lebovitz HE:Alpha-glucosidase inhibitors. Endocrinol Metab Clin N Am,1997, 26:539~551
    [81]Bayraktar M, Vanthield H, Adalar N. A comparison of acarbose versus met form in as an adjuvant therapy in sulfonylurea treated NIDDM patients. Diabetes Care,1996,19: 252~254
    [82]Chalk C, Benstead TJ, Moore F. Aldose reductase inhibitors for the treatment of diabetic polyneuropathy. Cochrane Database Syst Rev,2007,17 (4):CD004572
    [83]Maladkar M. Rajadhyaksha G, Venkataswamy N. et al. Efficacy, safety, and tolerability of Epalrestat compared to Methylcobalamine in patients with diabetic neuropathy. Int J Diabetes Dev Ctries,2009,29 (1):28-34
    [84]Suzuki A. Nakauchi H. Taniguchi H. Glucagon-like peptide-1 (1037) converts intestinal epothelial cells into insulin-producing cells. Proc Natl Acad Sci USA,2003,100 (9): 5034-5039
    [85]Ahren B. New strategy in type 2 diabetes tested in clinical trials:Glucagon-like peptide 1 (GLP-1) affects basic caused of the disease. Lakartidningen,2005,102(8):545-549
    [86]Ahren B. Enhancement or prolongation of GLP-1 activity as a strategy for treatment of type 2 diabetes. Drug Discov Today,2004,1:207-212
    [87]Ahren B, Schmitz O. GLP-1 receptor agonists and DPP-4 inhibitors in the treatment of type 2 diabetes. Horm Metab Res,2004,36 (11-12):867-876
    [88]Eng L, Kleinman WA, Singh L, et al. Isolation and characterization of exendin-4, an exendin-3 analogue, from Heloderma suspectum venom. Further evidence for an exendin receptor on dispersed acini from guinea pig pancreas. J Biol Chem,1992,267 (11): 7402-7405
    [89]Andersen NH, Brodsky Y, Neidigh JW, et al. Medium-dependence of the secondary structure of exendin-4 and glucagon-like peptide-1. Bioorg Med Chem,2002,10(1):79-85
    [90]Deacon CF. Therapeutic strategies based on glucagon-like peptide-1. Diabetes,2004,53 (9): 2181-2189
    [91]Nielsen LL, Young AA, Parkes DG Pharmacology of exenatide (synthetic exendin-4):a potential therapeutic for improved glycemic control of type 2 diabetes. Regul Pept,2004, 117(2):77-88
    [92]Hargrove DM, Kendall ES, Reynolds JM, et al. Biological activity of AC3174, a peptide analog of exendin-4. Regul Pept,2007,141 (1-3):113-119
    [93]Iltz JL. Baker DE, Setter SM, et al. Exenatide:an incretin mimetic for the treatment of type 2 diabetes mullitus. Clin Ther,2006,28 (5):652-665
    [94]Nielsen LL, Baron AD. Pharmacology of exenatide (synthetic exendin-4) for the treatment of type 2 diabetes. Curr Opin Investig Drugs,2003,4 (4):401-405
    [95]Ohneda A, Ohneda K, Ohneda M, et al. The structure-function relationship of GLP-1 related peptides in the endocrine function of the canine pancreas. Tohoku J Exp Med,1991, 165:209-221
    [96]Gallwitz B, Schmidt WE, Conlon JM, et al. Glucagon-like peptide-1(7-36) amide: characterization of the domain responsible for binding to its receptor on rat insulinoma RINm5F cells. J Mol Endocrinol,1990,5:33-39
    [97]Adelhorst K, Hedegaard BB, Knudsen LB, et al. Structure activity studies of glucagon-like peptide-1. J Biol Chem,1994,269:6275-6278
    [98]Parker JC, Andrews KM, Rescek DM, et al. Structure-function analysis of a series of glucagon-like peptide-1 analogs. J Pept Res,1998,52:398-409
    [99]Watanabe Y, Kawai K, Ohashi S, et al. Structure-activity relationships of glucagon-like peptide-1 (7-36)amide:insulinotropic activities in perfused rat pancreases, and receptor binding and cyclic AMP production in RINm5F cells. J Endocrinol,1994,140:45-52
    [100]Xiao Q. Giguere J. Parisien M, et al. Biological activities of glucagon-like peptide-1 analogues in vitro and in vivo. Biochemistry,2001,40:2860-2869
    [101]Chang X, Keller D, O'Donoghue SI, et al. NMR studies of the aggregation of glucagon-like peptide-1:formation of a symmetric helical dimer. FEBS Lett,2002,515:165-170
    [102]Suzuki S, Kawai K, Ohashi S, et al. Comparison of the effects of various C-terminal and N-terminal fragment peptides of glucagon-like peptide-1 on insulin and glucagon release from the isolated perfused rat pancreas. Endocrinology,1989,125:3109-3014
    [103]Furuse M, Bungo T, Shimojo M, et al. Effects of various Nterminal fragments of glucagon-like peptide-1 (7-36) on food intake in the neonatal chick. Brain Res,1998,807: 214-217
    [104]Heinemann L, Sinha K, Weyer C, et al. Time-action profile of the soluble, fatty acid acylated, long-acting insulin analogue NN304. Diabet Med,1999,16 (4):332-338
    [105]Knudsen LB, Nielsen PF, Huusfeldt po, et al. Potent derivatives of glucagon-like peptide-1 with pharmacokinetic properties suitable for once daily administration. J Med Chem,2000, 43 (9):1664-1669
    [106]Green BD, Gault VA, Mooney MH, et al. Degradation, receptor binding, insulin secreting and antihyperglycaemic actions of palmitate-derivatised native and Ala8-substituted GLP-1 analogues. Biol Chem,2004,385 (2):169-177
    [107]Lee SH, Lee S, Youn YS, et al. Synthesis, characterization, and pharmacokinetic studies of PEGylated glucagon-like peptide-1. Bioconjug Chem,2005,16(2):377-382
    [108]Youn YS, Chae SY, Lee S, et al. Evaluation of therapeutic potentials of site-specific PEGylated glucagon-ike peptide-1 isomers as a type 2 anti-diabetic treatment: Insulinotropic activity, glucose-stabilizing capability, and proteolytic stability. Biochem Pharmacol,2007,73 (1):84-93
    [109]Baggio LL, Huang Q, Brown TJ, et al. A recombinant human glucagon-like peptide (GLP-1)-1-albumin protein (albugon) mimics peptidergic activation of GLP-1 receptor-dependent pathways coupled with satiety, gastrointestinal motility, and glucose homeostasis. Diabetes,2004,53 (9):2492-2500
    [110]Weir AN, Nesbitt A, Chapman AP, et al. Formatting antibody fragments to mediate specific therapeutic functions. Biochem Soc Trans,2002,30 (4):512-516
    [111]Schmidt RE, Gessner JE. Fc receptors and their interaction with complement in autoimmunity. Immunol Lett,2005,100 (1):56-67
    [112]Kumar M, Hunag Y, Glinka Y, et al. Gene therapy of diabetes using a novel GLP-1/IgG1-Fc fusion construct normalizes glucose levels in db/db mice. Gene Ther,2007, 14(2):162-172
    [113]Soltani N, Kumar M, Glinka Y, et al. In vivo expression of GLP-1/IgG-Fc fusion protein enhances beta-cell mass and protects against streptozotocin-induced diabetes. Gene Ther. 2007.14(12):981-988
    [114]范益军.中药提取库中胰升血糖素样肽-1(GLP-1)受体激动剂的高通量筛选.重庆大学硕十论文,2005.
    [115]殷菲,邓小红,景佳佳.胰高血糖素样肽1受体激动的高通量筛选及作用机制研究.Chin Pharm J,2007,42 (1)):24-27
    [116]Chen D, Liao JY, Li N, et al. A nonpeptidic agonist of glucagon-like peptide-1 receptors with efficacy in diabetic db/db mice. PNAS,2007,104:943-948
    [117]Teng M, Johnson MD, Thomas C, et al. Small molecule ago-allosteric modulators of the human glucagon-like peptide-1 (hGLP-1) receptor. Bioorg Med Chem Lett,2007,17(19): 5472-5478
    [118]Knudsen LB, Kiel D, Teng M, et al. Small-molecule agonist for the glucagon-like peptide-1 receptor. PNAS,2007,104:937-942
    [119]Buse JB, Henry RR, Han J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in sulfonylurea-treated patients with type 2 diabetes. Diabetes Care,2004,27 (11): 2628-2635
    [120]Kendall DM, Riddle MC, Rosenstock J, et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 diabetes treated with metformin and a sulfonylurea. Diabetes Care,2005,28 (5):1083-1091
    [121]DeFronzo RA, Ratner RE, Han J, et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care,2005,28 (5):1092-1100
    [122]Blonde L, Klein EJ, Han J, et al. Interim analysis of the effects of exenatide treatment on A1C, weight and cardiovascular risk factors over 82 weeks in 314 overweight patients with type 2 diabetes. Diabetes Obes Metab,2006,8 (4):436-447
    [123]Denker PS, Dimarco PE. Exenatide (exendin-4)-induced pancreatitis:a case report. Diabetes Care,2006,29 (2):471
    [124]Zinman B, Hoogwerf B, Garcia SD, et al. Safety and efficacy of exenatide in patients with type 2 diabetes mellitus (T2DM) using thiazolidinediones (TZDs) or TZDs and metformin (MET) [J]. Diabetes,2006,55 (Suppl 1):A28
    [125]Bock T, Pakkenberg B, Buschard K. The endocrine pancreas in non-diabetic rats after short-term and long-term treatment with the long-acting GLP-1 derivative NN2211. APMIS, 2003,111 (12):1117-1124
    [126]Novo Nordisk. Press Release:Liraglutide provides significantly better glucose control than insulin glargine in phase 3 study [EB/OL]. (2007-06-21) [2008-03-12].
    [127]Harder H, Nielsen L, Tu DT, et al. The effect of liraglutide, a long-acting glucagon-like peptide 1 derivative, on glycemic control, body composition, and 24-h energy expenditure in patients with type 2 diabetes. Diabetes Care,2004,27 (8):1915-1921
    [128]Kim JG, Baggio LL. Bridon DP et al. Development and characterization of a glucagons-like peptide 1-albumin conjugate. Diabetes,2003,52:751
    [129]Leger R, Thibaudeau K, Robitaille M, et al. Identification of CJC-1131-albumin bioconjugate as a stable and bioactive GLP-1 (7-36) analog. Bioorg Med Chem Lett,2004, 14 (17):4395-439
    [130]Kim D, MacConell L, Zhuang D, et al. Effects of once-weekly dosing of a long-acting release formulation of exenatide on glucose control and body weight in subjects with type 2 diabetes. Diabetes Care,2007,30 (6):1487-1493
    [131]Lilly. Once-weekly exenatide showed statistical superiority in glucose control compared to Byetta in head-to-head study, both groups experienced significant weight loss-New Drug Application Filing Planned by the end of the first half of 2009 [EB/OL]. (2007-10-31) [2008-03-12]
    [132]Ratner RE, Rosenstock J, Boka G. A dose-finding study of the new GLP-1 agonist Ave0010 in type 2 diabetes insufficiently controlled with metformin. Presented at the 68th Annual meeting of the American Diabetes Association. June,2008. San Francisco
    [133]Nauck MA, Ratner RE, Kapitza C, et al. Treatment with the human once-weekly lucagon-like peptide-1 analog taspoglutide in combination with metformin improves glycemic control and lowers body weight in patients with tyoe 2 diabetes inadequately controlled with metformin alone:a double-blind placebo-controlled study. Diabetes Care, 2009,32 (7):1237-1243
    [134]王振敏.“谊生泰”在开发中-一种治疗Ⅱ型糖尿病的基因工程多肽药物生产技术获重大突破[J].上海工业,2002,2:36
    [135]Nauck MA, Meier JJ, Creutzfeldt W. Incretins and their analogues as new antidiabetic frugs. Drug News Perspect,2003,16 (7):413-422
    [136]Wen S. Lack of immunogenity of CJC1311, a long acting GLP-1 analogue for the treatment of type 2 diabetes. Diabetes,2004,53 (Suppl 2):A151
    [137]Yamamoto H, Kishi T, Lee CE, et al. Glucagon-like peptide-1-responsive catecholamine neurons in the area postrema link peripheral glucagon-like peptide-1 with central autonomic control sites. J Neurosci,2003,23 (7):2939-2946
    [138]Ahren B, Foley JE. The islet enhancer vildagliptin:mechanisms of improved glucose metabolism. Int J Clin Pract Suppl,2008,159:8-14
    [139]Demuth HU, Mclntosh CH, Pederson RA. Type 2 diabetes-therapy with dipeptidyl peptidase IV inhibitors. Biochim Biophys Acta,2005,1751 (1):33-44
    [140]Hunziker D, Hennig M, Peters JU. Inhibitors of dipeptidyl peptidase Ⅳ-recent advances and structural views. Curr Top Med Chem,2005,5 (16):1623-1637
    [141]Thomberry NA, Weber AE. Discovery of JANUVIA (Sitagliptin), a selective dipeptidyl peptidase IV inhibitor for the treatment of type 2 diabetes. Curr Top Med Chem,2007,7 (6): 557-568
    [142]Drucker DJ, Nauck MA. The incretin system:glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet,2006,368 (9548):1696-1705
    [143]Aschner P. Kipnes MS. Lunceford JK. et al. Effect of the dipeptidyl peptidase-4 inhibitor sitagliptin as monotherapy on glycemic control in patients with type 2 diabetes. Diabetes Care,2006.29 (12):2632-2637
    [144]Nathan DM, Buse JB, Davidson MB, et al. Management of hyperglycemia in type 2 diabetes:A consensus algorithm for the initiation and adjustment of therapy:a consensus statement from the American Diabetes Association and the European Association for the study of diabetes. Diabetes Care,2006,29 (8):1963-1972
    [145]Sitagliptin/metformin (Janumet) for type 2 diabetes. Med Lett Drugs Ther,2007,49 (1262): 45-47
    [146]Mari A, Scherbaum WA, Nilsson PM, et al. Characterization of the influence of vildagliptin on model-assessed-cell function in patients with type 2 diabetes and mild hyperglycemia. J Clin Endocrinol Metab,2008,93 (1):103-109
    [147]Bosi E, Camisasca RP, Collober C, et al. Effects of vildagliptin on glucose control over 24 weeks in patients with type 2 diabetes inadequately controlled with metformin. Diabetes Care,2007,30 (4):890-895
    [148]Mari A, Scherbaum WA, Nilsson PM, et al. Characterization of the influence of vildagliptin on model-assessed-cell function in patients with type 2 diabetes and mild hyperglycemia [J]. J Clin Endocrinol Metab,2008,93 (1):103-109
    [149]Defronzo R. Program and abstracts of the 67th Annual Scientific sessions,2007, Chicago L
    [150]Deacon CF. Alogliptin, a potent and selective dipeptidyl peptidas-IV inhibitor for the treatment of type 2 diabetes. Curr Opin Investig Drugs,2008,9 (4):402-413
    [151]Lubbers T, Bohringer M, Gobbi L, et al.1,3-disusstituted 4-aminopiperidines as useful tools in the optimization of the 2-aminobenzo [a] quinolizine dipeptidyl peptidase Ⅳ inhibitors. Bioorg Med Chem Lett,2007,17 (11):2966-2970
    [152]Kaelin DE, Smenton AL, Eiermann GJ, et al.4-arylcyclohexylalanine analogs as potent, selective, and orally active inhibitors of dipeptidyl peptidase IV. Bioorg Med Chem Lett, 2007,17(21):5806-5811
    [153]Takasaki K, Nakajima T, Ueno K, et al. Effects of combination treatment with dipeptidyl peptidase IV inhibitor and sulfonylurea on glucose levels in rats. J Pharmacol Sci,2004,95 (2):291-293
    [154]Wargent E, Stocker C, Augstein P, et al. Improvement of glucose tolerance in Zucker diabetic fatty rats by long-term treatment with the dipeptidyl peptidase inhibitor P32/98: comparison with and combination with rosiglitazone. Diabetes Obes Metab,2005,7(2): 170~81
    [155]Holst JJ, Deacon CF. Glucagon-like peptide-1 and inhibitors of dipeptidyl peptidase IV in the treatment of type 2 diabetes mellitus. Curr Opin Pharmacol,2004,4 (6):589-596
    [156]Abbott CA, Yu DM, Woollatt E, et al. Cloning, expression and chromosomal localization of a novel human dipeptidyl peptidase (DPP) IV homolog. DPP8. Eru J Biochem,2000,267 (20):6140-6150
    [157]Olsen C, Wagtmann N. Identification and characterization of human DPP9, a novel homologue of dipeptidyl peptidase IV. Gene,2002,299 (1-2):185-193
    [158]Lankas GR, Leiting B, Roy RS, et al. Dipeptidyl peptidase IV inhibition for the treatment of type 2 diabetes:potential importance of selectivity over dipeptidyl peptidases 8 and 9. Diabetes,2005,54 (10):2988-2994
    [159]Amin HR, Chen HQ, Kowluru A, et al. Mastoparan-induced insulin secretion from insulin-secreting TC3 and INS-1 cells:evidence for its regulation by Pho subfamily Of G proteins [J]. Endocrinology,2003,144 (10):4508-4518
    [160]Noe BD, Andrews PC. Specific glucagon-related peptides isolated from anglerfish islets are metabolic cleavage products of (pre)proglucagon-Ⅱ [J]. Peptides,1986,7 (2):331-336
    [161]Marenah L, Shaw C, Orr DF, et al. Isolation and characterization of an unexpected class of insulinotropic peptides in the skin of the frog Agalychnis litodryas [J]. Regulatory Peptides, 2004,120:33-38
    [162]MarenAh L, Flatt RP, Orr DF, et al. Brevinin-1 and multiple insulin-releasing peptides in the skin of the frog Rana oalustris [J]. Journal of Endocrinology,2004,181:347-354
    [163]Marenah L, Flatt RP, Orr DF, et al. Skin secretion of the toad Bombina variegata contains multiple insulin-releasing peptides including bombesin and entirely novel insulinotropic structures [J]. Biol Chem,2004,385 (3-4):315-321
    [164]Marenah L, Mcclean S, Flatt PR, et al. Novel insulin-releasing peptides in the skin of Phayllomedusa trinitatis frog include 28 amino acid peptide from dermaseptin BIV precursor [J]. PANCREAS,2004,29 (2):110-115
    [165]Marenah L, Flatt RP, Shaw Chris, et al. Isolation and structual characterization of novel Rugosin A-like insulinotropic peptide from the skin secretion of Rana saharica frog [J]. Peptides,2005,26:2117-2123
    [166]Abdel-Wahab YH, Marenah L, Orr DF, et al. Isolation and structural characterization of a novel 13-amino acid insulin-releasing peptide from the skin secretion of Agalychnis calcarifer [J]. Biol Chem,2005,386 (8):581-587
    [167]Marenah L, Flatt RP, Orr DF, et al. Characterization of naturally occuring peptides in the skin secretion of Rana pipiens frog reveal pipinin-1 as the novel insulin-releasing agent [J]. Peptide Res,2005,66:204-210
    [168]Toyama MH, Carneiro EM, Marangoni S, et al. Biochemical characterization of two crotamine isoforms isolated by a single step RP-HPLC from Crotalus durissus terrificus (South American rattlesnake) venom and their action on insulin secretion by pancreatic islets [J]. Biochimica et Biophysica Acta,2000,1474:56-60
    [169]Toyama MH, Carneiro EM, Marangoni S, et al. Isolation and characterization of a Convulxin-like protein from Crotalus durissus collilineatus venom [J]. Journal of Protein Chemistry,2001,20 (7):585-591
    [170]Almind K, Ambye, Pedersen O, et al. Discovery of amino acid variants in the human glucose-dependent insulintropc polypeptide (GIP) receptor:the impact on the pancreatic beta cell responses and functional expression studies in Chinese hamster fibroblast cells [J]. Diabetologia,1998,41:1194-1198
    [171]Rose CA, Kim Y. Precipitation of insulinotropin in the presence of protamine:Effect of phenol and zinc on the isophane ratio and the insulinotropin concentration in the supermatant. Pharm Res,1995,12:1284-1288
    [172]李晓丽,林东子,张志珍.GLP-1与糖尿病基因治疗.医学分子生物学杂志,2008,5(5):449-453.
    [173]Homes E, Korsnes L. Magnetic DNA hybridization properties of oligonucleotide probes attached to superparamagnetic beads and their use in the isolation of poly(A) mRNA from eukaryotic cells. Genet Anal Tech Appl,1990,7 (6):145-150
    [174]Jakobsen KS, Breivold E, Homes E. Purification of mRNA directly from crude plant tissues in 15 minutes using magnetic oligo dT microspheres. Nucleic Acids Res,1990,18 (12): 3669
    [175]Karrer EE, Lincoln JE, Hogenhout S, et al. In situ isolation of mRNA from individual plant cells:creation of cell-specific cDNA libraries. Proc Natl Acad Sci USA,1995,92 (9): 3814-3818
    [176]Bach HJ, Hartmann A, Trevors JT, et al. Magnetic capture-hybridization method for purification and probing of mRNA for neutral protease of Bacillus cereus. J Microbiol Methods,1999,37 (2):187-192
    [177]Pang X, Zhou D, Song Y, et al. Bacterial m RNA purification by mahnetic capture-hybridization method. Microbiol Immunol,2004,48 (2):91-96
    [178]Sarkar TR, Irudayaraj J. Carboxyl-coated magnetic nanoparticles for mRNA isolation and extraction of supercoiled plasmid DNA. Anal Biochem,2008,379 (1):130-132
    [179]Van Tilbeurgh H, Tomme P, Claeyssens M, et al. Limited proteolysis of the cellobiohydrolase I from Trichoderma reeser. Separation of functional domains. FEBS Lett, 1986,204 (2):223-227
    [180]Gilkes NR, Warren RA, Miller RC Jr, et al. Precise excision of the cellulose binding domains from two cellulomonas fimi cellulases by a homologous protease and the effect on catalysis. J Biol Chem,1988,263 (21):10401-10407
    [181]Bayer EA, Shimon LJ, Shoham Y, et al. Cellulosomes-structure and ultrastructure. J Struct Biol,1998,124 (2-3):221-234
    [182]Kauffmann C, Shoseyov O, Shpigel E, et al. Novel methodology for enzymatic removal of atrazine from water CBD-fusion protein immobilized cellulose. Environ Sci Technol,2000, 34 (7):1292-1296
    [183]Cao Y, Zhang Q, Wang C, et al. Preparation of novel immunomagnetic cellulose microspheres via cellulose biding domain-protein A linkage and its use for the isolation of interferon alpha-2b. J Chromatogr A,2007,1149 (2):228-235
    [184]孙丹,曹宇,白钢,等.纤维素磁性微球的制备及其生物活化研究.Ion Exch Absorpt, 2009,25(1):17-24
    [185]Cao Y. Bai G, Chen JQ, et al, Preparation and characterization of magnetic microspheres for the purification of interferon α-2b. J Chromatogr B,2006,833:236-244
    [186]Lucas MC, Jacobson JW, Giles NH. Characterization and in vitro translation of polyadenylated messenger ribonucleic acid from Neurospora creassa. J Bacteriol,1977.130 (3):1192-1198
    [187]Kariv 11, Stevens ME, Behrens DL, et al. High throughput quantitation of cAMP production mediate by activation of seven transmembrane domain receptor. J Biomol Screen,1999,4 (1):27-32
    [188]Harden TK, Boyer JL, Dougherty RW. Drug analysis based on signaling responses to G-protein-coupled receptors. J Recept Signal Transduct Res,2001,21 (2-3):167-190
    [189]Gabriel D, Vernier M, Pfeifer MJ, et al. High throughput screening technologies for direct AMP measurement. Assay Drug Dev Technol,2003,1 (2):291-303
    [190]Fink JS, Verhave M, Kasper S, et al. The CGTCA sequence motif is essential for biological activity of the vasoactive intestinal peptide gene cAMP-regulated enhancer. Proc Natl Acad Sci USA,1988,85 (18):6662-6666
    [191]Hill SJ, Baker JQ Rees S. Reporter-gene systems for the study of G-protein-coupled receptors. Curr Opin Pharmacol,2001,1 (5):526-532
    [192]Green BD, Mooney MH, Gault VA, et al. N-terminal His(7)-modification of glucagon-like peptide-1 (7-36) amide generates dipeptidyl peptidase Ⅳ-stable analogues with potent antihyperglycaemic activity. J Endocrinol,2004,180 (3):379-388
    [193]Pan CQ, Buxton JM, Yung SL, et al. Design of a long acting peptide functioning as both a glucagon-like peptide-1 receptor agonist and a glucagon receptor antagonist. J Biol Chem, 2006,281 (18):12506-12515
    [194]Hargrove DM, Kendall ES, Reynolds JM, et al. Biological activity of AC3174, a peptide analog of exendin-4. Regul Pept,2007,141 (1-3):113-119
    [195]Thorkildsen C, Neve S, Larsen BD, et al. Glucagon-like peptide 1 receptor agonist ZP10A increases insulin mRNA expression and prevents diabetic progression in db/db mice. J Pharmacol Exp Ther,2003,307 (2):490-496
    [196]Green BD, Gault VA, Mooney MH, et al. Novel dipeptidyl peptidase IV resistant analogues of glucagon-like peptide-1 (7-36) amide have preserved biological activities in vitro conferring improved glucose-lowering action in vivo. J Mol Endocrinol,2003,31 (3): 529-540
    [197]河金福,谢彦,等.多参数流式细胞术在非霍奇金淋巴瘤诊断中的应用.中华病理学杂志,2006,35(4):203-208
    [198]魏熙胤.流式细胞仪的发展历史及其原理和应用进展.现代仪器,2006,4:8-11
    [199]Carroll S, Al-Rubeai M. The selection of high-producing cell lines using flow cytometry and cell sorting. Expert Opin Biol Ther,2004,4 (11):1821-1829
    [200]Brezinsky SC, Chiang GG, Szilvasi A, et al. A simple method for enriching populations of transfected CHO cells for cells of higher specific productivity. J Immunol Methods,2003, 277(1-2):141-155
    [201]苏庸春.71例儿童急性髓系白血病多参数FCM免疫表型分析.第三军医大学学报.2006,28(5):472-474
    [202]陈葆国.多参数流式细胞术鉴别诊断单核细胞相关性白血病的意义.中国免疫学杂志.2006,22(3):237-240
    [203]杨怀德.FCM在微生物学中的应用.医学综述,2006,12(13):825-827
    [204]Grogan WM. Guide to FCM methods [M]. New York:Marcel Dekker Inc,1990:1-20
    [205]Chen J, Bai G, Yang Y, et al. Identifying glucagon-like peptide-1 mimetics using a novel function reporter gene high-throughtput screening assay. Peptides,2007,28 (4):928-934
    [206]廖容.糖尿病研究与动物模型[J].实验动物科学与管理,2001,18(2):36
    [207]叶燕丽.四氧嘧啶制作大鼠糖尿病模型[J].实验动物科学与管理,2001,18(2):53-55
    [208]于得民.实验性链脲左菌素糖尿病动物模型的研究.中国糖尿病杂志,1995,3(2):10
    [209]Ito M, Kondo Y, Nakatani A, et al. New model of progressive non-insulin-dependent diabetes mellitus in mice induced by streptozotocin. Biol Pharm Bull,1999,22 (9): 988-999
    [210]Gallwitz B, Ropeter T, Morys-Wortmann C, et al. GLP-1-analogues resistant to degradation by dipeptidyl-peptidase IV in vitro. Regul Pept,2000,86:103~111
    [211]O'Harte FP, Mooney MH, Kelly CM, et al. Degradation and glycemic effects of His(7)-glucitol glucagonlike peptide-1 (7-36)amide in obese diabetic ob/ob mice. Regul Pept,2001,96:95-104
    [212]David R, Macnair C, Kenny AJ. Proteins of the kidney microvillar membrane:The amphipatic form of dipeptidyl peptidase Ⅳ. Biochem J 1979,179:379-95
    [213]Peter TJ. Serum albumin. Adv Protein Chem,1985,37:161-245
    [214]Osborn BL, Olsen HS, Nardelli B, et al. Pharmacokinetic and pharmacodynamic studies of a human serum albumin-interferon-alpha fusion protein in cynomolgus monkeys. J Pharmacol Exp Ther,2002,303:540-548
    [215]马国昌.人血清白蛋白与G-CSF融合蛋白在毕赤酵母中的表达及表达产物的纯化与鉴定.浙江大学硕士论文,2008
    [216]周利苹,张莲芬,雷楗勇,等.人血清白蛋白-C肽融合蛋白在毕赤酵母中的分泌表达. 生物技术通报,2008,3:71-75
    [217]范华英,孟繁平,齐栋,等.抗人乙酰胆碱受体scFv-人血清白蛋白融合蛋白的构建记载大肠杆菌中的表达.细胞与分子免疫学杂志,2006,22(4):507-509
    [218]Agerso H, Vicini P. Pharmacodynamics of NN2211, a novel long acting GLP-1 derivative. Eur J Pharm Sci,2003,19:141-150
    [219]Rolin B, Larsen MO, Gotfredsen CF, et al. The long-acting GLP-1 derivative NN2211 ameliorates glycemia and increases beta-cell mass in diabetic mice. Am H Physiol Endocrinol Metab,2002,283 (4):E745-752
    [220]Meier JJ, Nauck MA, Kranz D, et al. Secretion, degradation, and elimination of glucagon-like peptide 1 and gastric inhibitory polypeptide in patients with chronic renal insufficiency and healthy control subjects. Diabetes,2004,53 (3):654-662
    [221]Holst JJ. Glucagon-like peptide-1:from extract to agent. The claude Bernard lecture,2005. Diabetologia,2006,49 (2):253-260
    [222]Chuang VT, Kragh-Hansen U, Otagiri M. Pharmaceutical strategies utilizing recombinant human serum albumin. Pharm Res,2002,19 (5):569-577
    [223]Koehler MF, Zobel F, Beresini MH, et al. Albumin affinity tags increase peptide half-life in vivo. Bioorg Med Chem Lett,2002,12 (20):2883-2886
    [224]Dennis MS, Zhang M, Meng YG, et al. Albuimn binding as a general strategy for improving the pharmacokinetics of proteins. J Biol Chem,2002,277 (38):35035-35043
    [225]Jiang ZY, Gao R, Wang YQ, et al. Problems and solutions in pegylation of protein and peptide drugs. Yao Xue Xue Bao,2002,37 (5):396-400
    [226]Chou JZ, Place GD, Waters DG, et al. A radioimmunoassay for LY315 902, an analog of glucagon-like insulinotropic peptide, and its application in the study of canine pharmacokinetics. J Pharm Sci,1997,86:768~773
    [227]Bloom M, Bock J, Duttaroy A, et al. Albugon fusion protein:a long acting analogue of GLP-1 that provides lasting antidiabetic effect in animal. Diabetes,2003,52:A112
    [228]Dou WF, Lei JY, Zhang LF, et al. Expression, purification, and characterization of recombinant human serum albumin fusion protein with two human glucagon-like peptide-1 mutants in Pichia pastoris. Protein Expr Purif,2008,61 (1):45-49
    [229]Huang J, Sakamuri S, Leedom T, et al. CVX-73:a GLP-1 mimetic CovX-Body with potent incretin bioactivity and extended pharmacokinetics in rodent and non-human primate. Diabetes,2007,56 (Suppl 1):A141
    [230]Melder RJ, Osborn BL, Riccobene T, et al. Oharmacokinetics and in vitro and in vivo anti-tumor response of an interleukin-2-human serum albumin fusion protein in mice. Cancer Immunol Immunother,2005,54 (6):535-547
    [231]Osborn BL, Sekut L, Corcoran M, et al. Albutropin:a growth hormone-albumin fusion with improved pharmacokinetics and pharmacodynamics in rats and monkeys. Eur J Pharmacol, 2002,456(1-3):149-158
    [232]Duttaroy A, Kanakaraj P, Osborn BL, et al. Development of a long-acting insulin analog using albumin fusion technology. Diabetes,2005,54 (1):251-258
    [233]Plamboeck A, Hoist JJ, Carr RD, et al. Neutral endopeptidase 24.11 and dipeptidyl peptidase IV are both mediators of the degradation of glucagon-like peptide 1 in the anaesthetized pig. Diabetologia,2005,48 (9):1882-1890
    [234]Wang YM, Sato H, Horikoshi I. In vitro and in vivo evaluation of taxol release from poly (lactic-co-glycolic acid) microspheres containing iso-propyl myristate and degradation of the microspheres. J Control Release,1997,49:157-166
    [235]Herrmann J, Bodmeier R. Biodegradable, somatostatin acetate containing microspheres prepared by various aqueous and non-aqueous solvent evaporation methods. Eru J Pharm Biopharm,1998,45 (1):75-82
    [236]Frangione-Beebe M. Rose RT. Kaumaya PT. et al. Microencapsulation of a synthetic peptide epitope for HTLV-1 in biodegradable poly (D. L-lactide-co-glycolide) microspheres using a novel encapsulation technique. J Microencapsul,2001,18 (5):663-677
    [237]马光辉.微球和微囊的制备与应用研究.科技潮.2006.12:36
    [238]李孝红,袁明龙,熊成尔,等.聚乳酸及其共聚物的合成和在生物医学上的应用[J].高分子学报.1999,3:24-32
    [239]闽思泽,吴魏.绿色化学与化工[M].北京:化学工业出版社.2000
    [240]Rathbone MJ, Kinder JE. Fike K. et al. Recent advances in bovine reproductive endocrinology and physiology and their imoact on drug delivery system design for the control of the estrous cycle in cattle. Advanced Drug Delivery Reviews,2001,50 (2): 277-320
    [241]任杰,宋金星.聚乳酸及其共聚物在缓释药物中的研究及应用[J].同济大学学报,2003,31(9):1054-1058
    [242]贡长生.加快发展我国绿色精细化工[J].现代化工,2003,23(12):5-7
    [243]De Jalon EG, Blanco-Prieto MJ, Ygartua P, et al. PLGA microparticles:possible vehicles for topical drug delivery. Int J Pharm,2001,226 (1-2):181-184
    [244]Shive MS, Anderson JM. Biodegradation and biocompatibility of PLA and PLGA microspheres. Adv Drug Deliv Rev,1997,28 (1):5-24
    [245]Schnieders J, Gbureck U, Thull R, et al. Controlled release of gentamicin from calcium phosphate-poly (lactic acid-co-glycolic acid) composite bone cement. Biomaterials,2006, 27 (23):4239-4249
    [246]崔红星,张倩.聚乳酸类可吸收手术缝合线的研究进展.合成纤维,2004,10(4):15-16
    [247]吴之中,张政朴,鲁格,等.聚乳酸的合成降解及在骨折内固定材料的应用.高分子通报,2000,8(1):73-79
    [248]赵建华,廖维宏,陈建梅.聚乳酸类骨修复材料的研究进展.创伤外科杂志,2003,5(3):232-234
    [249]Gabler F, Frauenschuh S, Ringe J, et al. Emulsion-based synthesis of PLGA-microspheres for the in vitro expansion of porcine chondrocytes. Biomol Eng,2007,24 (5):515-520
    [250]Minuth WW, Strehl R, Schumacher, et al. Tissue engineering-von der zellbiologie zum kunstlichen gewebe [J]. Wiley-VCH, EWeinhein,2003,179-181
    [251]Chognot D, Six JL, Leonard M, et al. Physicochemical evaluation of PLA nanoparticles stabilized by water-soluble MPEO-PLA block copolymers. J Colloid Interface Sci,2003, 268 (2):441-447
    [252]Heya T, Okada H, Ogawa Y, et al. In vitro and in vivo evaluation of thyrotrophin releasing hormone release from copoly (dl-lactic/glycolic acid) microspheres. H Pharm Sci,1994,83 (5):636-640
    [253]Hildebrand GE, Tack JW. Microencapsulation of peptides and proteins. Int J Pharm,2000, 196(2):173-176
    [254]Kukizaki M, Goto M. Preparation and evaluation of uniformaly sized solid lipid microcapsules using membrane emulsification. Colloids and Surfaces A:Physicochemical and Eng Aspects,2007,293 (1-3):87-94
    [255]缪桦,陈立新,王海军,等.微胶囊阻燃剂的研究进展.中国塑料,2005,19(5):4-8
    [256]许时缨.微胶囊技术与应用[M].北京,化学工业出版社.2001.70-71
    [257]Sipos P, Csoka 1, Srcic S, et al. Influence of preparation conditions on the properties of Eudragit microspheres produced by a double emulsion method. Drug Development Research,2005,64(1):41-54
    [258]Luong-Van E, Grondahl L, Nurcombe V, et al. In vitro biocompatibility and bioactivity of microencapsulated heparin sulfate. Biomaterials,2007,28 (12):2127-2136
    [259]刘志挺,吕竹芬,陈燕忠.溶剂蒸发法在微球制备中的应用及研究进展.广东药学院学报,2007,23(5):596-600
    [260]Takei T, Yoshida M, Hatate Y, et al. Lactic acid bacteria-enclosing poly (epsilon-caprolactone) microcapsules as soil bioamendment. J Biosci Bioeng,2008,106 (3): 268-272
    [261]谢锐,褚良银,陈文梅,等.膜乳化法制备单分散高分子微球和微囊的研究进展.膜科学与技术,2004,24(4):61-65
    [262]Yin D, Lu Y, Zhang H, et al. Preparation of glucagon-like peptide-1 loaded PLGA microspheres:characterizations, release studies and bioactivities in vitro/in vivo. Chem Pharm Bull,2008,56 (2):156-161
    [263]Choi S, Baudys M, Kim SW. Control of blood glucose by novel GLP-1 delivery using biodegradable triblock copolymer of PLGA-PEG-PLGA in type 2 diabetic rats. Pharm Res, 2004,21 (5):827-831

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700