人肝脏特异性microRNA-122受转录因子FOXO1调控及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
microRNA(miRNA)是一类长度约20~24 nt的非编码单链小分子RNA,它们通过与目标mRNA分子的3’非翻译区(3'-untranslated region,3'-UTR)互补匹配导致该mRNA分子的翻译受到抑制或影响其稳定性,从而调控下游的生物学过程。近年来,除了对microRNA产生的剪接机制和下游功能展开了深入而广泛的研究,对于microRNA初始转录本生成的转录调控研究也是方兴未艾。
     人miR-122是我们所关注的一个肝脏特异性小RNA。它的初始转录本来源于人18号染色体上hcr基因的转录,其成熟本在进化过程中高度保守。miR-122在肝脏发育过程中持续表达,且随肝脏细胞的分化成熟表达增高。研究表明:在病理状态下,miR-122促进丙型肝炎病毒(HCV)在肝细胞内复制,并与肝细胞肝癌(HCC)的发生、发展及转移等过程密切相关;在生理状态下,miR-122参与肝细胞表型,肝脏的分化,发育与代谢,以及肝细胞应急应答等基本生命活动过程。miR-122的沉默可导致小鼠血浆胆固醇和甘油三酯水平的显著降低,说明miR-122是肝脏脂肪代谢的重要调控者。
     FOXO1是哺乳动物叉头蛋白家族O亚族四个成员之一。叉头蛋白家族中,特别是FOXO1在整个机体的能量代谢中起着至关重要的作用。在饥饿状态下,肝脏通过FOXO1在促进糖异生酶类表达中的关键作用维持血糖的水平。而在进食后,胰岛素分泌增加,通过PI3K-Akt途径磷酸化FOXO1使其出核,部分抑制糖异生酶类在肝脏中的表达。除了直接调控代谢,FOXO1还在骨骼肌和脂肪组织这两大维系能量稳态平衡的主要器官的形成过程中起重要作用。另外,FOXO1的表达可促进抗氧化应激的基因表达,从而起到细胞保护功能。FOXO1也能促进碳水化合物向脂肪酸的转换,使其在饥饿状态下成为主要的能量来源。
     本研究旨在探索糖脂代谢重要因子FOXO1对miR-122的转录调控作用及其调控机制。首先,我们利用UCSC网站和ECR browser等在线分析软件对miR-122成熟本上游5kb的片段进行生物信息学的分析,发现在之前本室鉴定的miR-122核心启动子区存在一个FOXO1的保守结合位点。然后利用瞬时转染和筛选稳定克隆两种办法将FOXO1的野生型表达质粒FOXO1-WT和有着三个磷酸化位点突变的核内组成型表达质粒FOXO1-CA及空载体对照在肝细胞系Huh7中表达,发现野生型FOXO1蛋白对miR-122的转录呈现正调控模式,而核内组成型表达的FOXO1蛋白对miR-122的转录呈现负调控模式。接着,运用双荧光素酶报告基因系统确定了FOXO1对miR-122上游启动子区存在转录调控作用,并利用miR-122上游调控区的片段截短和突变实验来确定了FOXO1调控miR-122转录的具体位点是miR-122核心启动子区的IRE(胰岛素应答元件)元件。最后,我们利用鉴定转录因子的经典方法凝胶迁移速率实验(EMSA)和染色质免疫共沉淀实验(ChIP)分别从体外和体内进一步确定了FOXO1可以直接结合于miR-122核心启动子区的IRE位点。同时发现FOXO1的这种结合在血清剥夺后的低营养状态下增强而在回复血清后的高营养状态下减弱,并且它与HNF4对该IRE位点的结合是竞争性的。
     综上所述,我们的研究首次发现FOXO1可作为miR-122的转录因子,通过结合到miR-122核心启动子区的IRE位点来调控miR-122初始转录本的转录。这种结合受营养状态密切相关的信号通路的影响,同时也受到HNF4对该位点结合的竞争,可最终参与到肝脏脂代谢的精细调控过程中。
MicroRNA(miRNA) is a kind of 20-24nt non-coding single strand small RNAs. They have been shown to extensively involve in the translational inhibition and/or degradation of a wide variety of mRNA molecules through imperfect pairing to their 3'-UTR (3'-untranslated region). Besides the biogenesis and functional research of microRNAs themselves, transcriptional control of pri-microRNA has attracted increasing attention.
     The evolutionary highly conserved miR-122 becomes our focus as the dominant liver miRNA with comprehensive roles in the pathophysiology of the organ. MiR-122 was found promotes HCV replication in hepatocyte, and tightly related to the biogenesis, development and the migration of Hepatocellular carcinoma (HCC). Physiologically, miR-122 participates in the hepatocyte phenotype, the differentiation, development and metabolism of the liver, and the hepatocyte response to stimuli. Role of miR-122 in lipid metabolism was emphasized by the in vivo silencing of miR-122 with stably modified anti-sense RNA, which led to significant decrease of plasma cholesterol and triglyceride in mice.
     We have previously characterized the pri-hsa-miR-122 transcription from her gene at 18q21.31 of human genome and also identified a conserved HNF4 binding site within the pri-hsa-miR-122 promoter that is responsible for the liver specificity of miR-122 expression. Further exploration of the pri-hsa-miR-122, especially its promoter region will better fit the miRNA into a regulatory network comparable to its versatile pathophysiological functions.
     FOXO1 represents one of the four members in the mammalian forkhead box class O (FoxO) family. Forkhead proteins, FoxOl in particular, play significant roles in energy homeostasis of the body. In the fasted state, the liver is primarily responsible for maintaining glucose levels, with FoxOl playing a key role in promoting the expression of gluconeogenic enzymes. Following feeding, pancreatic beta cells secrete insulin, and partially suppress gluconeogenic enzyme expression in the liver by activating PI3K-AKT mediated FoxO1 exportation to the cytosol. It has also been found that FoxO1 regulated lipid/energy metabolism by promoting the switch from carbohydrate to fatty acid as the major energy source during starvation. In addition to directly regulating of metabolism, FoxO1 also plays a role in the formation of both adipose tissue and skeletal muscle, two major organs that are critical for maintaining energy homeostasis.
     In this study, we explored the possibility that FOXO1, the key transcriptional factor in glucose-lipid metabolism, regulates the transcription of miR-122, which also significantly involved in lipid metabolism. After scrutiny of the first 5kb upstream to the mature miR-122 with bioinformatics tools including UCSC and ECR browser, a conserved FoxO1 binding site was located in the miR-122 core promoter identified previously by our lab. Plasmids carrying either FOXO1-WT or FOXO1-CA(a constant active mutant of FoxO1) and the vector pEGFP-N2 itself were then transfected separately into Huh7cell line, both transiently and stably. The result indicated differentiated regulatory effects of FOXO1-WT, which positively regulated the transcription of miR-122, and FOXO1-CA, which regulated it negatively. The deviation in the interpretation of FoxO1 effects on miR122 implys potential dose-dependent regulatory pattern that demands further experimental evidence. Dual Luciferase Reporter Gene Assay for truncation and mutation of miR-122 promoter identified that the precise binding site of FOXO1 as the insulin response element (IRE) within miR-122 core promoter. The subsequent EMSA and ChIP assays demonstrated the binding of FOXO1 to the IRE site both in vitro and in vivo. The observed FoxO1 binding increased in low nutrient status imposed by serum deprivation and decreased upon serum recovery. Besides, the binding of FOXO1and HNF4 were found reciprocal with their binding sites adjacent to each other at the IRE site.
     Altogether, our study suggests FOXO1 as a new regulator to the transcription of pri-miR-122 through the IRE site of its core promoter. FoxO1 together with the previously identified HNF4, synergized and antagonized, in providing a delicate regulatory mechanism through which miR-122 may response to the nutrient status and other ambient stimuli of the host cells.
引文
Accili, D., and Arden, K.C. (2004). FoxOs at the crossroads of cellular metabolism, differentiation, and transformation. Cell 117,421-426.
    Altomonte, J., Cong, L., Harbaran, S., Richter, A., Xu, J., Meseck, M., and Dong, H.H. (2004). Foxol mediates insulin action on apoC-III and triglyceride metabolism. J Clin Invest 114,1493-1503.
    Bartel, D.P., and Chen, C.Z. (2004). Micromanagers of gene expression:the potentially widespread influence of metazoan microRNAs. Nat Rev Genet 5,396-400.
    Barthel, A., Schmoll, D., and Unterman, T.G. (2005). FoxO proteins in insulin action and metabolism. Trends Endocrinol Metab 16,183-189.
    Biggs, W.H.,3rd, Meisenhelder, J., Hunter, T., Cavenee, W.K., and Arden, K.C. (1999). Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci U S A 96, 7421-7426.
    Boura, E., Silhan, J., Herman, P., Vecer, J., Sulc, M., Teisinger, J., Obsilova, V., and Obsil, T. (2007). Both the N-terminal loop and wing W2 of the forkhead domain of transcription factor Foxo4 are important for DNA binding. J Biol Chem 282, 8265-8275.
    Brunet, A., Bonni, A., Zigmond, M.J., Lin, M.Z., Juo, P., Hu, L.S., Anderson, M.J., Arden, K.C., Blenis, J., and Greenberg, M.E. (1999). Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96, 857-868.
    Chang, J., Guo, J.T., Jiang, D., Guo, H., Taylor, J.M., and Block, T.M. (2008). Liver-specific microRNA miR-122 enhances the replication of hepatitis C virus in nonhepatic cells. J Virol 82,8215-8223.
    Chang, J., Nicolas, E., Marks, D., Sander, C., Lerro, A., Buendia, M.A., Xu, C., Mason, W.S., Moloshok, T., Bort, R., et al. (2004). miR-122, a mammalian liver-specific microRNA, is processed from her mRNA and may downregulate the high affinity cationic amino acid transporter CAT-1. RNA Biol 1,106-113.
    Chang, J., Provost, P., and Taylor, J.M. (2003). Resistance of human hepatitis delta virus RNAs to dicer activity. J Virol 77,11910-11917.
    Clark, K.L., Halay, E.D., Lai, E., and Burley, S.K. (1993). Co-crystal structure of the HNF-3/fork head DNA-recognition motif resembles histone H5. Nature 364, 412-420.
    Coulouarn, C., Factor, V.M., Andersen, J.B., Durkin, M.E., and Thorgeirsson, S.S. (2009). Loss of miR-122 expression in liver cancer correlates with suppression of the hepatic phenotype and gain of metastatic properties. Oncogene 28, 3526-3536.
    Elmen, J., Lindow, M., Silahtaroglu, A., Bak, M., Christensen, M., Lind-Thomsen, A., Hedtjarn, M., Hansen, J.B., Hansen, H.F., Straarup, E.M., et al. (2008). Antagonism of microRNA-122 in mice by systemically administered LNA-antimiR leads to up-regulation of a large set of predicted target mRNAs in the liver. Nucleic Acids Res 36,1153-1162.
    Esau, C., Davis, S., Murray, S.F., Yu, X.X., Pandey, S.K., Pear, M., Watts, L., Booten, S.L., Graham, M., McKay, R., et al. (2006). miR-122 regulation of lipid metabolism revealed by in vivo antisense targeting. Cell Metab 3,87-98.
    Etiemble, J., Moroy, T., Jacquemin, E., Tiollais, P., and Buendia, M.A. (1989). Fused transcripts of c-myc and a new cellular locus, her in a primary liver tumor. Oncogene 4,51-57.
    Fabani, M.M., and Gait, M.J. (2008). miR-122 targeting with LNA/2'-O-methyl oligonucleotide mixmers, peptide nucleic acids (PNA), and PNA-peptide conjugates. RNA 14,336-346.
    Furuyama, T., Nakazawa, T., Nakano, I., and Mori, N. (2000). Identification of the differential distribution patterns of mRNAs and consensus binding sequences for mouse DAF-16 homologues. Biochem J 349,629-634.
    Ganjam, G.K., Dimova, E.Y., Unterman, T.G., and Kietzmann, T. (2009). FoxOl and HNF-4 are involved in regulation of hepatic glucokinase gene expression by resveratrol. J Biol Chem 284,30783-30797.
    Gatfield, D., Le Martelot, G., Vejnar, C.E., Gerlach, D., Schaad, O., Fleury-Olela, F., Ruskeepaa, A.L., Oresic, M., Esau, C.C., Zdobnov, E.M., et al. (2009). Integration of microRNA miR-122 in hepatic circadian gene expression. Genes Dev 23,1313-1326.
    Gilley, J., Coffer, P.J., and Ham, J. (2003). FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. J Cell Biol 162,613-622.
    Girard, M., Jacquemin, E., Munnich, A., Lyonnet, S., and Henrion-Caude, A. (2008). miR-122, a paradigm for the role of microRNAs in the liver. J Hepatol 48, 648-656.
    Greer, E.L., and Brunet, A. (2005). FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 24,7410-7425.
    Gross, D.N., van den Heuvel, A.P., and Birnbaum, M.J. (2008). The role of FoxO in the regulation of metabolism. Oncogene 27,2320-2336.
    Henke, J.I., Goergen, D., Zheng, J., Song, Y., Schuttler, C.G., Fehr, C., Junemann, C., and Niepmann, M. (2008). microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 27,3300-3310.
    Hirota, K., Daitoku, H., Matsuzaki, H., Araya, N., Yamagata, K., Asada, S., Sugaya, T. and Fukamizu, A. (2003). Hepatocyte nuclear factor-4 is a novel downstream target of insulin via FKHR as a signal-regulated transcriptional inhibitor. J Biol Chem 278,13056-13060.
    Hirota, K., Sakamaki, J., Ishida, J., Shimamoto, Y., Nishihara, S., Kodama, N., Ohta, K., Yamamoto, M., Tanimoto, K., and Fukamizu, A. (2008). A combination of HNF-4 and Foxo1 is required for reciprocal transcriptional regulation of glucokinase and glucose-6-phosphatase genes in response to fasting and feeding. J Biol Chem 283,32432-32441.
    Huang, H., Regan, K.M., Lou, Z., Chen, J., and Tindall, D.J. (2006). CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 314,294-297.
    Huang, H., and Tindall, D.J. (2007). Dynamic FoxO transcription factors. J Cell Sci 120, 2479-2487.
    Jacobs, F.M., van der Heide, L.P., Wijchers, P.J., Burbach, J.P., Hoekman, M.F., and Smidt, M.P. (2003). FoxO6, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 278,35959-35967.
    Jopling, C.L., Norman, K.L., and Sarnow, P. (2006). Positive and negative modulation of viral and cellular mRNAs by liver-specific microRNA miR-122. Cold Spring Harb Symp Quant Biol 71,369-376.
    Kaestner, K.H., Knochel, W., and Martinez, D.E. (2000). Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 14,142-146.
    Kamagate, A., and Dong, H.H. (2008). FoxO1 integrates insulin signaling to VLDL production. Cell Cycle 7,3162-3170.
    Kimura, K.D., Tissenbaum, H.A., Liu, Y., and Ruvkun, G. (1997). daf-2, an insulin receptor-like gene that regulates longevity and diapause in Caenorhabditis elegans. Science 277,942-946.
    Kops, G.J., de Ruiter, N.D., De Vries-Smits, A.M., Powell, D.R., Bos, J.L., and Burgering, B.M. (1999). Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 398,630-634.
    Krutzfeldt, J., Rajewsky, N., Braich, R., Rajeev, K.G., Tuschl, T., Manoharan, M., and Stoffel, M. (2005). Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685-689.
    Kutay, H., Bai, S., Datta, J., Motiwala, T., Pogribny, I., Frankel, W., Jacob, S.T., and Ghoshal, K. (2006). Downregulation of miR-122 in the rodent and human hepatocellular carcinomas. J Cell Biochem 99,671-678.
    Lagos-Quintana, M., Rauhut, R., Yalcin, A., Meyer, J., Lendeckel, W., and Tuschl, T. (2002). Identification of tissue-specific microRNAs from mouse. Curr Biol 12, 735-739.
    Lin, C.J., Gong, H.Y., Tseng, H.C., Wang, W.L., and Wu, J.L. (2008). miR-122 targets an anti-apoptotic gene, Bcl-w, in human hepatocellular carcinoma cell lines. Biochem Biophys Res Commun 375,315-320.
    Lin, K., Dorman, J.B., Rodan, A., and Kenyon, C. (1997). daf-16:An HNF-3/forkhead family member that can function to double the life-span of Caenorhabditis elegans. Science 278,1319-1322.
    Matsumoto, M., Han, S., Kitamura, T., and Accili, D. (2006). Dual role of transcription factor FoxO1 in controlling hepatic insulin sensitivity and lipid metabolism. J Clin Invest 116,2464-2472.
    Mohamed, J.S., Lopez, M.A., and Boriek, A.M. Mechanical stretch upregulates microRNA-26a and induces human airway smooth muscle hypertrophy by suppressing glycogen synthase kinase-3{beta}. J Biol Chem.
    Moroy, T., Etiemble, J., Bougueleret, L., Hadchouel, M., Tiollais, P., and Buendia, M.A. (1989). Structure and expression of hcr, a locus rearranged with c-myc in a woodchuck hepatocellular carcinoma. Oncogene 4,59-65.
    Moroy, T., Marchio, A., Etiemble, J., Trepo, C., Tiollais, P., and Buendia, M.A. (1986). Rearrangement and enhanced expression of c-myc in hepatocellular carcinoma of hepatitis virus infected woodchucks. Nature 324,276-279.
    Niepmann, M. (2009). Activation of hepatitis C virus translation by a liver-specific microRNA. Cell Cycle 8,1473-1477.
    O'Donnell, K.A., Wentzel, E.A., Zeller, K.I., Dang, C.V., and Mendell, J.T. (2005). c-Myc-regulated microRNAs modulate E2F1 expression. Nature 435,839-843.
    Ogg, S., Paradis, S., Gottlieb, S., Patterson, G.I., Lee, L., Tissenbaum, H.A., and Ruvkun, G. (1997). The Fork head transcription factor DAF-16 transduces insulin-like metabolic and longevity signals in C. elegans. Nature 389,994-999.
    Pedersen, I.M., Cheng, G., Wieland, S., Volinia, S., Croce, C.M., Chisari, F.V., and David, M. (2007). Interferon modulation of cellular microRNAs as an antiviral mechanism. Nature 449,919-922.
    Prieur, X., Schaap, F.G., Coste, H., and Rodriguez, J.C. (2005). Hepatocyte nuclear factor-4alpha regulates the human apolipoprotein AV gene:identification of a novel response element and involvement in the control by peroxisome proliferator-activated receptor-gamma coactivator-1alpha, AMP-activated protein kinase, and mitogen-activated protein kinase pathway. Mol Endocrinol 19, 3107-3125.
    Randall, G., Panis, M., Cooper, J.D., Tellinghuisen, T.L., Sukhodolets, K.E., Pfeffer, S., Landthaler, M., Landgraf, P., Kan, S., Lindenbach, B.D., et al. (2007). Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci USA 104,12884-12889.
    Rena, G., Guo, S., Cichy, S.C., Unterman, T.G., and Cohen, P. (1999). Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 274,17179-17183.
    Rena, G., Woods, Y.L., Prescott, A.R., Peggie, M., Unterman, T.G., Williams, M.R., and Cohen, P. (2002). Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 21,2263-2271.
    Speckmann, B., Walter, P.L., Alili, L., Reinehr, R., Sies, H., Klotz, L.O., and Steinbrenner, H. (2008). Selenoprotein P expression is controlled through interaction of the coactivator PGC-1alpha with FoxO1a and hepatocyte nuclear factor 4alpha transcription factors. Hepatology 48,1998-2006.
    Tang, E.D., Nunez, G., Barr, F.G., and Guan, K.L. (1999). Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 274,16741-16746.
    Tsai, W.C., Hsu, P.W., Lai, T.C., Chau, G.Y., Lin, C.W., Chen, C.M., Lin, C.D., Liao, Y.L., Wang, J.L., Chau, Y.P., et al. (2009). MicroRNA-122, a tumor suppressor microRNA that regulates intrahepatic metastasis of hepatocellular carcinoma. Hepatology 49,1571-1582.
    van der Vos, K.E., and Coffer, P.J. (2008). FOXO-binding partners:it takes two to tango. Oncogene 27,2289-2299.
    Varnholt, H., Drebber, U., Schulze, F., Wedemeyer, I., Schirmacher, P., Dienes, H.P., and Odenthal, M. (2008). MicroRNA gene expression profile of hepatitis C virus-associated hepatocellular carcinoma. Hepatology 47,1223-1232.
    Weigel, D., Jurgens, G., Kuttner, F., Seifert, E., and Jackle, H. (1989). The homeotic gene fork head encodes a nuclear protein and is expressed in the terminal regions of the Drosophila embryo. Cell 57,645-658.
    Woods, Y.L., Rena, G., Morrice, N., Barthel, A., Becker, W., Guo, S., Unterman, T.G., and Cohen, P. (2001). The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J 355,597-607.
    Xuan, Z., and Zhang, M.Q. (2005). From worm to human:bioinformatics approaches to identify FOXO target genes. Mech Ageing Dev 126,209-215.
    Yamakuchi, M., Lotterman, C.D., Bao, C., Hruban, R.H., Karim, B., Mendell, J.T., Huso, D., and Lowenstein, C.J. P53-induced microRNA-107 inhibits HIF-1 and tumor angiogenesis. Proc Natl Acad Sci U S A 107,6334-6339.
    Zhao, Y., Samal, E., and Srivastava, D. (2005). Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis. Nature 436, 214-220.
    Andersson MG, Haasnoot PC, Xu N, Berenjian S, Berkhout B, Akusjarvi G:Suppression of RNA interference by adenovirus virus-associated RNA. J Virol 2005,79:9556-9565.
    Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Edgar R:NCBI GEO:mining tens of millions of expression profiles--database and tools update. Nucleic Acids Res 2007,35:D760-D765.
    Bartel B and Bartel DP:MicroRNAs:at the root of plant development? Plant Physiol 2003,132: 709-717.
    Bartel, DP:MicroRNAs:Genomics, biogenesis, mechanism, and function. Cell 2004,116:281-297.
    Bentwich I:Prediction and validation of microRNAs and their targets. FEBS Letters 2005,579: 5904-5910.
    Brown D, Shingara J, Keiger K, Shelton J, Lew K, Cannon B, Wowk S, Byrom M, Cheng A, Wang X, et al.:Cancer-related miRNAs uncovered by the mirVana miRNA microarray platform. Ambion TechNotes Newsletter 2005,12:8-11.
    Bucher E, Hemmes H, de Haan P, Goldbach R, Prins M:The influenza A virus NS1 protein binds small interfering RNAs and suppresses RNA silencing in plants. J Gen Virol 2004,85:983-991.
    Burnside J, Bernberg E, Anderson A, Lu C, Meyers BC, Green PJ, Jain N, Isaacs G, Morgan RW: Marek's disease virus encodes Micro-RNAs that map to meq and the latency-associated transcript. J Virol 2006,80:8778-8786.
    Cai X, Hagedorn CH, Cullen BR:Human microRNAs are processed from capped, polyadenylated transcripts that can also function as mRNAs. RNA 2004,10:1957-1966.
    Cai X, Schafer A, Lu S, Bilello JP, Desrosiers RC, Edwards R, Raab-Traub N, Cullen BR: Epstein-Barr virus microRNAs are evolutionarily conserved and differentially expressed. PLoS Pathog 2006,2:e23.
    Caldas C and Brenton JD:Sizing up miRNAs as cancer genes. Nat Med 2005,11:712-714.
    Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M, Rai K, et al.:Frequent deletions and down-regulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 2002,99:15524-15529.
    Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, Shimizu M, Cimmino A, Zupo S, Dono M, et al.:MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 2004,101:11755-11760.
    Calin GA, Ferracin M, Cimmino A, Di LG, Shimizu M, Wojcik SE, et al.:A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. N Engl J Med 2005, 353:1793-1801.
    Castoldi M, Schmidt S, Benes V, Noerholm M, Kulozik AE, Hentze MW, et al.:A sensitive array for microRNA expression profiling (miChip) based on locked nucleic acids (LNA). RNA 2006,12: 913-920.
    Chapman EJ, Prokhnevsky AI, Gopinath K, Dolja VV, Carrington JC:Viral RNA silencing suppressors inhibit the microRNA pathway at an intermediate step. Genes Dev 2004,18: 1179-1186.
    Ciafre SA, Galardi S, Mangiola A, Ferracin M, Liu CG, Sabatino G, et al.:Extensive modulation of a set of microRNAs in primary glioblastoma. Biochem Biophys Res Commun 2005,334: 1351-1358.
    Croce CM and Calin GA:miRNAs, cancer, and stem cell division. Cell 2005,122:6-7.
    Cummins JM and Velculescu VE:Implications of micro-RNA profiling for cancer diagnosis. Oncogene 2006,25:6220-6227.
    Denli AM, Tops BBJ, Plasterk RHA, Ketting RF, Hannon GJ:Processing of primary microRNAs by the microprocessor complex. Nature 2004,432:231-235.
    Dunoyer P, Lecellier CH, Parizotto EA, Himber C, Voinnet O:Probing the microRNA and small interfering RNA pathways with virus-encoded suppressors of RNA silencing. Plant Cell 2004,16: 1235-1250.
    Eder M and Scherr M:MicroRNA and lung cancer. N Engl J Med 2005,352:2446-2448.
    Elbashir SM, Lendeckel W, Tuschl T:RNA interference is mediated by 21- and 22-nucleotide RNAs. Genes Dev 2001,15:188-200.
    Esquela-Kerscher A and Slack FJ:Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006, 6:259-269.
    Gregory RI, Yan KP, Amuthan G, Chendrimada T, Doratotaj B, Cooch N, Shiekhattar R:The microprocessor complex mediates the genesis of microRNAs. Nature 2004,432:235-240.
    Gregory RI and Shiekhattar R:MicroRNA biogenesis and cancer. Cancer Res 2005,65:3509-3512.
    Grimm D, Streetz KL, Jopling CL, Storm TA, Pandey K, Davis CR, et al.:Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 2006,441:537-541.
    Gupta A, Gartner JJ, Sethupathy P, Hatzigeorgiou AG, Fraser NW:Anti-apoptotic function of a microRNA encoded by the HSV-1 latency-associated transcript. Nature 2006,442:82-85.
    Hariharan M, Scaria V, Pillai B, Brahmachari SK:Targets for human encoded microRNAs in HIV genes. Biochem Biophys Res Commun 2005,337:1214-1218.
    He H, Jazdzewski K, Li W, Liyanarachchi S, Nagy R, Volinia S, et al.:The role of microRNA genes in papillary thyroid carcinoma. Proc Natl Acad Sci U S A 2005,102:19075-19080.
    He L, Thomson JM, Hemann M, Hernando-Monge E, Mu D, Goodson S, Powers S, Cordon-Cardo C, Lowe S, Hannon GJ, et al.:A microRNA polycistron as a potential human oncogene. Nature 2005, 435:828-833.
    Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al.:MicroRNA gene expression deregulation in human breast cancer. Cancer Res 2005,65:7065-7070.
    Johnson SM, Lin SY, Slack FJ:The time of appearance of the C. elegans let-7. Dev Biol 2003,259: 364-379.
    Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A, Labourier E, Reinert KL, Brown D, Slack FJ:RAS is regulated by the let-7 microRNA family. Cell 2005,120:635-647.
    Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P:Modulation of hepatitis C virus RNA abundance by a liver-specific microRNA. Science 2005,309:1577-1581.
    Kim VN:MicroRNA biogenesis:coordinated cropping and dicing. Nat Rev Mol Cell Biol 2005,6: 376-385.
    Kim N, Chae HS, Oh ST, Kang JH, Park CH, Park WS, Takada K, Lee JM, Lee WK, Lee SK: Expression of viral microRNAs in Epstein-Barr virus-associated gastric carcinoma. J Virol 2007, 81:1033-1036.
    Kirchhoff F, Greenough TC, Brettler DB, Sullivan JL, Desrosiers RC:Brief report:absence of intact nef sequences in a long-term survivor with nonprogressive HIV-1 infection. N Engl J Med 1995, 332:228-232.
    Kluiver J, Poppema S, de Jong D, Blokzijl T, Harms G, Jacobs S, Kroesen BJ, van den Berg A:BIC and miR-155 are highly expressed in Hodgkin, primary mediastinal and diffuse large B cell lymphomas. J Pathol 2005,207:243-249.
    Kluiver J, Haralambieva E, de Jong D, Blokzijl T, Jacobs S, Kroesen BJ, et al.:Lack of BIC and
    microRNA miR-155 expression in primary cases of Burkitt lymphoma. Genes Chromosomes Cancer 2006,45:147-153.
    Krutzfeldt J, Rajewsky N, Braich R, Rajeev KG, Tuschl T, Manoharan M, et al.:Silencing of microRNAs in vivo with/'antagomirs/'. Nature 2005,438:685-689.
    Kumar A:The silent defense:Micro-RNA directed defense against HIV-1 replication. Retrovirology 2007,4:26.
    Lecellier CH, Dunoyer P, Arar K, Lehmann-Che J, Eyquem S, Himber C, Saib A, Voinnet O:A cellular microRNA mediates antiviral defense in human cells. Science 2005,308,557-560.
    Lee Y, Jeon K, Lee JT, Kim S, Kim VN:MicroRNA maturation:stepwise processing and subcellular localization. EMBO J 2002,21:4663-4670.
    Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN:The nuclear RNase III drosha initiates microRNA processing. Nature 2003,425:415-419.
    Lee Y, Kim M, Han J, Yeom KH, Lee S, Baek SH, Kim VN:MicroRNA genes are transcribed by RNA polymerase Ⅱ. EMBO J 2004,23:4051-60.
    Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ:Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004,305: 1437-1441.
    Liu J, Valencia-Sanchez MA, Hannon GJ, Parker R:MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nat Cell Biol 2005,7:719-723.
    Lu J, Getz G, Miska E, Alvarez-Saavedra E, Lamb J, Peck D, Sweet-Cordero A, Ebert B, Mak R, Ferrando A, et al.:MicroRNA expression profiles classify human cancers. Nature 2005,435: 834-838.
    Ma JB, Yuan YR, Meister G, Pei Y, Tuschl T, Patel DJ:Structural basis for 5[prime]-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 2005,434:666-670.
    Mallory AC, Reinhart BJ, Bartel D, Vance VB, Bowman LH:A viral suppressor of RNA silencing differentially regulates the accumulation of short interfering RNAs and micro-RNAs in tobacco. Proc Natl Acad Sci U S A 2002,99:15228-15233.
    Maniataki E and Mourelatos Z:A human, ATP-independent, RISC assembly machine fueled by pre-miRNA. Genes Dev 2005,19:2979-2990.
    Maziere P and Enright AJ:Prediction of microRNA targets. Drug Discov Today 2007,12:452-458.
    Meister G, Landthaler M, Patkaniowska A, Dorsett Y, Teng G, Tuschl T:Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol Cell 2004,15:185-197.
    Meltzer P:Small RNAs with big impacts. Nature 2005,435:745-746.
    Metzler M, Wilda M, Busch K, Viehmann S, Borkhardt A:High expression of precursor microRNA-155/BIC RNA in children with Burkitt lymphoma. Genes Chromosomes Cancer 2004, 39:167-169.
    Michael MZ, O'Connor SM, van Holst PeN, Young GP, James RJ:Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 2003,1:882-891.
    Mineno J, Okamoto S, Ando T, Sato M, Chono H, Izu H, et al.:The expression profile of microRNAs in mouse embryos. Nucl Acids Res 2006,34:1765-1771.
    Nair V and Zavolan M:Virus-encoded microRNAs:Novel regulators of. gene expression. Trends Microbiol 2006,14:169-175.
    Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, et al.:A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 2006,312:436-439.
    O'Donnel K, Wentzel E, Zeller K, Dang C, Mendell J:c-Myc-regulated microRNAs modulate E2F1 expression. Nature 2005,435:839-843.
    Omoto S, Ito M, Tsutsumi Y, Ichikawa Y, Okuyama H, Brisibe EA, et al.:HIV-1 nef suppression by virally encoded microRNA. Retrovirology 2004,1:44.
    Omoto S and Fujii YR:Regulation of human immunodeficiency virus 1 transcription by nef microRNA. J Gen Virol 2005,86:751-755.
    Pfeffer S, Sewer A, Lagos-Quintana M, Sheridan R, Sander C,Grasser FA, et al:Identification of microRNAs of the herpesvirus famil. Nat Methods 2005,2:269-276.
    Salvi R, Garbuglia AR, Di CA, Pulciani S, Montella F, Benedetto A:Grossly defective nef gene sequences in a human immunodeficiency virus type 1-seropositive long-term nonprogressor. J Virol 1998,72:3646-3657.
    Sano M, Kato Y, Taira K:Sequence-specific interference by small RNAs derived from adenovirus VAI RNA. FEBS Lett 2006,580:1553-1564.
    Sarnow P, Jopling CL, Norman KL, Schutz S, Wehner KA:MicroRNAs:expression, avoidance and subversion by. vertebrate viruses. Nature Rev Microbiol 2006,4:651-659.
    Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK:Host-virus interaction:a new role for microRNAs. Retrovirology 2006,3:68.
    Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK:Host-virus genome interactions:macro roles for microRNAs. Cell Microbiol 2007,9:2784-2794.
    Scaria V and Jadhav V:MicroRNAs in viral oncogenesis. Retrovirology 2007,4:82.
    Sullivan CS and Ganem D:MicroRNAs and viral infection. Mol Cell 2005,20:3-7.
    Taganov KD, Boldin MP, Chang KJ, Baltimore D:NF-kappaBdependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 2006,103:12481-12486.
    Takamizawa J, Konishi H, Yanagisawa K, Tomida S, Osada., Endoh H, Harano T, Yatabe Y, Nagino M, Nimura Y, et al.:Reduced expression of the let-7 microRNAs in human lung cancers in association with shortened postoperative survival. Cancer Res 2004,64:3753-3756.
    Triboulet R, Mari B, Lin YL, Chable-Bessia C, Bennasser Y, Lebrigand K, et al.:Suppression of microRNA-silencing pathway by HIV-1 during virus replication. Science 2007,315:1579-1582.
    Vastrik I, D'Eustachio P, Schmidt E, Joshi-Tope G, Gopinath G, Croft D, de BB, Gillespie M, Jassal B, Lewis S, Matthews L, Wu G, Birney E, Stein L:Reactome:a knowledge base of biologic pathways and processes. Genome Biol 2007,8:R39.
    Vester B and Wengel J:LNA (locked nucleic acid):high-affinity targeting of complementary RNA and DNA. Biochemistry 2004,43:13233-13241.
    Weiler J, Hunziker J, Hall J:Anti-miRNA oligonucleotides (AMOs):ammunition to target miRNAs implicated in human disease? Gene Ther 2005,13:496-502.
    Yao Y, Zhao Y, Xu H, Smith LP, Lawrie CH, Sewer A, Zavolan M, Nair V:Marek's Disease Virus Type 2 (MDV-2)-Encoded MicroRNAs Show No Sequence Conservation with Those Encoded by MDV-1. J Virol 2007,81:7164-7170.
    Yeung ML, Bennasser Y, Myers TG, Jiang G, Benkirane M, Jeang KT:Changes in microRNA expression profiles in HIV-1-transfected human cells. Retrovirology 2005,2:81.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700