POLD1在肝癌细胞中的表达及氯化两面针碱干预研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的
     探讨DNA聚合酶δ催化亚基基因(DNA polymerase delta catalytic subunit gene 1, POLD1)及其编码蛋白P125在原发性肝癌中的表达及意义,同时探讨p53对POLD1的调控模式,并观察氯化两面针碱对肝癌细胞中调控POLD1通路的干预作用。
     方法
     选用原发性肝癌患者手术切除标本20例,分别采用反转录聚合酶链反应(RT-PCR)法和western blot法检测POLD1基因表达,同时分析POLD1基因产物- P125蛋白与临床特征的相关性。设计合成针对p53基因的短发夹RNA(short hairpin RNA, shRNA),并构建pGPU6/GFP/Neo-p53 shRNA重组质粒。分别将PGPU6/GFP/Neo-p53 shRNA、无关序列对照质粒pGPU6/GFP/Neo-NC shRNA、真核表达载体pEGFP-p53和空载体pEGFP-C1转染至SMMC-7721细胞,G418抗性筛选,获得阳性克隆。MTT法测定生长曲线,克隆形成实验观察细胞的增殖,RT-PCR法及western blot法分别检测POLD1的mRNA及蛋白表达。运用SELDI技术对NC作用后SMMC-7721的蛋白组学进行研究。NC处理SMMC-7721细胞,采用MTT法和克隆形成实验观察细胞的增殖,RT-PCR法和/或荧光定量PCR及western blot法分别检测POLD1调控通路中各调控基因的表达和蛋白表达情况,并采用RNA干扰技术对其进行验证。
     结果
     与癌旁组织相比,肝癌组织中POLD1基因表达明显升高(0.70±0.34compared with 0.37±0.23, P<0.05);其编码蛋白P125表达与POLD1基因表达一致,在肝癌组织中的表达显著高于癌旁组织(0.63±0.19 compared with0.39±0.21,P<0.05)。P125蛋白的阳性表达率与肿瘤大小和临床分期有关(P<0.05),而与HBV是否感染、性别及年龄无明显关系(P>0.05)。p53低表达细胞系中的POLD1基因及蛋白P125表达比转染无关序列shRNA细胞系明显升高,而p53高表达细胞系中的POLD1基因及蛋白P125表达比转染空载体的细胞系降低。采用MTT法检测p53低表达细胞系和p53高表达细胞系的生长规律,p53低表达细胞系的生长速度明显比对照组快,而p53高表达细胞系的生长速度慢于对照组。稳定转染pGPU6/GFP/neo-p53 shRNA的SMMC-7721细胞的集落较大,局部集落间呈汇合形式,且集落数目多于对照组;相反,稳定转染pEGFP-p53的SMMC-7721细胞的集落数少于转染空载体的细胞,集落形成能力明显下降。
     NC处理SMMC-7721后筛选出有统计学意义的差异表达蛋白质峰14个,这些差异蛋白主要跟信号转导、细胞凋亡、细胞周期、代谢、免疫、转录、DNA复制及修复等通路有关。
     与阴性对照相比,NC作用SMMC-7721细胞后POLD1 mRNA的表达无明显变化。但0.3mg/L NC可明显降低SMMC-7721细胞P125表达水平,而0.15mg/L NC对SMMC-7721细胞P125的表达没有显著性差异。与阴性对照组比,NC明显提高p53 mRNA表达(P< 0.01).0.3~2.4mg/L NC均能不同程度的上调P53蛋白表达水平,其中0.3~0.6mg/L NC上调p53表达水平显著性差异相似(P<0.05),1.2mg/L和2.4mg/L NC与0mg/L NC相比显著性差异水平为P<0.01,结果与mRNA表达吻合。值得注意的是,0.15mg/L NC对P53蛋白表达水平不但不上调,而且还呈现下调趋势,这与该浓度NC上调p53 mRNA表达不吻合。结合NC对P125的表达结果,0.15mg/L NC对P125并无抑制作用,0.3mg/L NC上调P53,继而抑制P125表达。说明有可能存在其他调控因子影响p53 mRNA的翻译,这一现象值得我们继续深入研究。1.0mg/L NC处理p53显性失活的SMMC-7721细胞,p53 mRNA表达明显高于未处理的模型组7721-p53i,但并未回复到原有水平,表明1.0mg/L NC可诱导p53上调。
     NC作用SMMC-7721细胞48h后,不同程度的影响P21蛋白表达,其中2.4mg/L (P<0.01)和1.2mg/L (P<0.05) NC明显上调P21蛋白表达。有意思的是,0.5,0.3,0.6mg/L NC对肝癌细胞中的P21蛋白并无明显作用,但0.3,0.6mg/L NC却能明显上调细胞中的P53蛋白。因此我们进一步检测了p21 mRNA的表达情况。Real-time PCR结果显示,1.2和2.4mg/L NC对p21 mRNA表达明显增强(P<0.01),但0.6mg/L NC对p21 mRNA表达无明显影响,将NC浓度降至0.3mg/L或0.15mg/L, p21 mRNA表达反而降低。在p53干扰的SMMC-7721细胞中,p21mRNA表达明显降低,表明细胞存在正常的p53-p21途径。p53干扰的SMMC-7721细胞经1.0mg/L NC处理48h后,p21 mRNA表达显著性升高,甚至高于p53显性细胞组。不同浓度NC可不同程度地上调C-myc、E2F、CyclinD和RB-1,其中0.15、0.3mg/L NC对C-myc和CyclinD的上调及0.15mg/L NC对E2F的上调均有显著性差异(P<0.05),0.6mg/L NC对E2F、CyclinD的上调和0.15~0.6mg/LNC对RB-1的上调均有极显著性差异(P<0.01),但0.3mg/L NC对C-myc、E2F的作用与对照组比无显著性差异,但呈上调趋势。与对照组相比,0.15、0.3mg/L NC显著性下调CyclinE mRNA表达(P<0.05),但0.6mg/L NC对CyclinE mRNA的表达不降反升。0.15~0.6mg/L NC对CDK4 mRNA的表达与对照组相比均有显著性下调作用(P<0.05)。0.15~0.6 mg/L剂量范围内对细胞的抑制作用呈现浓度和时间依赖性。光学显微镜观察细胞形态,发现在NC作用过程中,细胞形态逐渐变得不规则,大部分细胞贴壁不良,出现皱缩、变圆、脱落死亡,且随着浓度增加,死亡细胞增多。集落形成实验结果显示,NC(0.15,0.30,0.60mg/L)处理细胞10d后,细胞克隆大小及集落形成率随药物浓度增大而减小。NC可明显提高G2/M期的细胞比例,使S、G0/G1期的细胞比例减少。NC处理组的细胞凋亡率显著高于对照组(P<0.01),凋亡率随浓度增大而增高,也呈现出浓度依赖性。
     结论
     原发性肝癌与POLD1基因表达有关,检测其蛋白产物P125有利于判断肝癌的恶性程度。POLD1的表达受p53的抑制。肝癌细胞的增殖及集落形成能力随着p53表达波动的原因可能与p53的存在一定程度上抑制了POLD1的表达,使DNA复制受阻有关。NC在一定浓度范围内可剂量、时间依赖性抑制肝癌细胞增殖。NC阻滞了细胞周期G2/M期,诱导细胞凋亡。NC通过依赖和非依赖p53途径共同诱导p21上调,从而阻滞细胞周期;通过上调p53抑制P125表达,使DNA复制因缺乏DNA复制主要酶DNA复制酶δ的催化亚基而受到抑制;p53、RB-1、C-myc、E2F、CyclinD、CyclinE、CDK2、CDK4共同完成NC诱导的细胞凋亡。
AIM
     To investigate the expression of DNA polymerase delta catalytic subunit gene (POLD1) and its encoding protein P125 in hepatocellular carcinoma (HCC) and its significance. And to investigate the mode of regulation of p53 on POLD1 and observe the intervention effect of nitidine chloride d on POLD1 pathway in hepatoma cells.
     METHODS
     Reverse transcription polymerase chain reaction (RT-PCR) technique was used to detect the expression level of POLD1 insurgically resected HCC tissues in 20 cases, and P125 was detected by western blot. Short hairpin RNA(shRNA) sequences targeting human wild type p53 gene were designed and constructed recombinant plasmid pGPU6/GFP/Neo-p53 shRNA. SMMC-7721 cells were transfected with the recombinant plasmid and negative control vector respectively. Stable transfected clone was selected using G418. The proliferation was detected with MTT assay and clone form assay. The expression of POLD1 mRNA was detected by RT-PCR. P125 protein expression was detected by western bloting. In addition, proteomics was studied using SELDI technology. After treatment with NC, the proliferation of SMMC-7721 was detected with MTT assay and clone form assay. RT-PCR and western blot were used to detect genes and their proteins expression of regulating POLD1 pathway factors respectively.
     RESULTS
     The expression level of POLD1 mRNA was clearly observed in hepatomatic tissues compared with matched tumor-adjacent noncancerous tissues (0.70±0.34 compared with 0.37±0.23, P<0.05). The level of P125 expression in hepatomatic tissues was significantly higher than in tumor-adjacent tissues (0.63±0.19 compared with 0.39±0.21, P<0.05), which similared with POLD1 expression. In addition, P125 expression was correlated with tumor size and clinical stages, but not correlated with HBV infection, age and sex.
     POLD1 gene and protein expression, which were significantly lower in high p53 expression cell line than the empty vector cell line, were significantly higher in low p53 expression cell line than transfected unrelated sequence shRNA cell line. MTT assay results showed that growth rate of p53 shRNA group was significantly faster than the control group, and pEGFP-p53 group was slower than the control group.
     The shape and the number of colonies in pGPU6/GFP/neo-p53 shRNA group were larger than the control group. In addition, local convergence was found between colonies. In contrast, the number of colonies in transfected pEGFP-p53 cells was less than empty vector cell line, and colony formation decreased significantly.
     14 protein peaks were significant changes after treatment with NC in SMMC-7721 cells, which related to the signal transduction proteins, apoptosis, cell cycle, metabolism, immunity, transcription, DNA replication and repair pathways.
     Compared with the negative control, POLD1 mRNA expression did not change in NC group. However,0.3mg/L NC can significantly reduce the expression of P125 in SMMC-7721 cells, and 0.15mg/L NC was no significant difference. Compared with negative control group, NC significantly increased p53 mRNA expression (P<0.01).0.3 to 2.4mg/L NC could increase the expression of P53 protein in different degree, the levels of 0.3 and 0.6mg/L NC were P<0.05 too, and 1.2mg/L and 2.4mg/L NC were P<0.01, which consistent with p53 mRNA expression. It is worth noting,0.15mg/L NC did not increase P53 protein expression, but showing a downward trend, which is not coincidence with the p53 mRNA expression.0.15mg/L NC had no inhibitory effect on the P125, but 0.3mg/L NC inhibited P125 expression following P53 was upragulated. These results illustrated that there could be other regulatory factors affecting the translation of p53 mRNA, which deserved our continued in-depth study. p53 mRNA expresse was significantly increased in dominant inactivation of p53 cells after treatment with 1.0mg/L NC
     Defferent concentration of NC had defferent effect on P21 expression in SMMC-7721 cells.2.4mg/L (P<0.01) and 1.2 mg/L (P<0.05) NC significantly increased P21 expression. Interestingly,0.5,0.3 and 0.6mg/L NC had no significant effect on P21 protein in liver cells, but 0.3 and 0.6mg/L NC could significantly increase the P53 protein expression. Further studies shown that 1.2, and 2.4mg/L NC significantly increased the expression of p21 mRNA (P<0.01), but 0.6mg/L NC had no significant effect on the expression of p21 mRNA and 0.3, and 0.15mg/L NC reduced p21 mRNA expression. The expression of p21 mRNA was significantly decreased in SMMC-7721 cells when p53 was silenced, which indicated that the cell line had normal p53-p21 pathway. After treated with 1.0mg/L NC for 48h, p21mRNA expression was increased significantly in p53-interfered cells, which was higher than that of p53 overexpression cell lines. Different concentrations of NC could regulate C-myc, E2F, CyclinD and RB-1 in various degree, which 0.15 and 0.3mg/L NC group could upregulate CyclinD and C-myc expression significantly (P<0.05), 0.15mg/L and 0.6mg/L NC upregulated E2F expression significantly (P<0.05, P<0.01),0.6mg/L NC upregulated CyclinD expression significantly (P<0.01) and 0.15~0.6mg/L NC upregulated RB-1 expression significantly (P<0.01). However,0.3mg/L NC had no significant effect on C-myc and E2F. Compared with the control group,0.15,0.3 mg/L NC significantly reduced CyclinE mRNA expression (P<0.05), but 0.6mg/L NC increased CyclinE mRNA expression.0.15,0.3 and 0.6mg/L NC, compared with the control group, had significant downward effect on expression of CDK4 mRNA (P<0.05). Within range of 0.15, 0.3 and 0.6 mg/L dose, NC had a concentration- and time-dependent inhibition effect on cell proliferation. Cell morphology was observed under the light microscope. Cells gradually become irregular after exposing to NC. Because of the poor adhesion, most cells showed shrunken and round, even death, and the higher concentration of NC, the more dead cells. Colony-forming assay results showed that NC (0.15,0.30 and 0.60mg/L) treated cells for 10 d, colony size and formation rate decreased too. NC could significantly improve the G2/M phase cell percentage, so that S, G0/G1 phase cells reduced proportionally. NC treatment group were significantly higher apoptosis rate (P<0.01), the apoptosis rate increased with increasing concentration, but also showing a concentration dependent manner.
     CONCLUSION:
     The positive rate of POLD1 mRNA and P125 in HCC is significantly correlated with the pathological staging. POLD1 may be used as a diagnostic maker and a potential therapeutic target. p53 can inhibit the expression of POLD1. The cell proliferation and colony formation of liver cancer changes with the expression of p53, which the reason may be due to fluctuations in the presence of POLD1 to some extent inhibited the expression of the DNA replication blocked on. NC in a certain range of concentration in a dose- and time- dependent inhibition of liver cell proliferation. NC block the cell cycle G2/M phase and induce apoptosis. NC and non-reliance by relying on co-induction of p21 increases p53 pathway, thus blocking cell cycle; by upregulating the expression of p53 inhibition of P125, the lack of DNA replication DNA replication DNA replication enzyme 8 key enzyme catalytic subunit and is inhibited; p53, RB-1, C-myc, E2F, CyclinD, CyclinE, CDK2 and CDK4 together to complete NC-induced apoptosis.
引文
[I]Jemal A, Siegel R, Ward E, et al. Cancer Statistics,2009[J]. CA Cancer J Clin.,2009,59(4):225-249.
    [2]Yuen MF, Hou JL, Chutaputti A. Hepatocellular carcinoma in the Asia pacific region[J]. J Gastroenterol Hepatol,2009,24(3):346-353.
    [3]Xu H, Zhang P, Liu L, et al. A Novel PCNA-Binding Motif Identified by the Panning of a Random Peptide Display Library[J]. Biochemistry,2001,40(14):4512-4520.
    [4]Naryzhny S. Proliferating cell nuclear antigen:a proteomics view[J]. Cellular and Molecular Life Sciences, 2008,65(23):3789-3808.
    [5]Chang LS, Zhao L, Zhu L, et al. Structure of the gene for the catalytic subunit of human DNA polymerase delta (POLD1)[J]. Genomics,1995,28(3):411-419.
    [6]Hsu H, Lee MY. A novel PCNA-binding motif identified by the panning of a random peptide display library [J]. Biochemistry,2001,40(14):4512.
    [7]Hindges R, Hubscher U. DNA polymerase delta, an essential enzyme for DNA transactions[J]. Biol Chem, 1997,378(5):345-362.
    [8]Shevelev IV, U H. The 3'-5'exonucleases[J]. Nat Rev Mol Cell Biol,2002,3(5):364-376.
    [9]宋楠萌,桑建利,徐恒.增殖细胞核抗原(PCNA)的分了结构及其生物学功能研究进展[J].自然科学进展,2006,16(10):1201-1209.
    [10]徐珩,刘谦.DNA复制调控与人类重大疾病--我国生物医学科学中长期战略发展的一个方向[J].中国生物工程杂志,2003,23(10):1-8.
    [11]Zeng XR, Hao H, Jiang Y, et al. Regulation of human DNA polymerase delta during the cell cycle[J]. J Biol Chem,1994,269(39):24027-24033.
    [12]陆海霞.EZH2在肝细胞癌中的表达及miR-101对EZH2表达的调控研究.南宁:广西医科大学,2010.
    [13]Longley M, Pierce A, Modrich P. DNA polymerase delta is required for human mismatch repair in vitro[J]. J Biol Chem,1997,272(16):10917-10921.
    [14]Parsons J, Preston B, Dianov G. DNA polymerase delta dependent repair of DNA single strand breaks containing 3'-end proximal lesions[J]. Nucleic Acids Res,2007,35(4):1054-1063.
    [15]Goldsby RE, Hays LE, Chen X, et al. High incidence of epithelial cancers in mice deficient for DNA polymerase delta proofreading[J]. Proc Natl Acad Sci U S A,2002,99(24):15560-15565.
    [16]Venkatesan RN, Treuting PM, Fuller ED, et al. Mutation at the polymerase active site of mouse DNA polymerase delta increases genomic instability and accelerates tumorigenesis[J]. Mol Cell Biol,2007, 27(21):7669-7682.
    [17]Meng X, Zhou Y, Zhang S, et al. DNA damage alters DNA polymerase delta to a form that exhibits increased discrimination against modified template bases and mismatched primers[J]. Nucleic Acids Res, 2009,37(2):647-657.
    [18]Nishitani H, Lygerou Z. Control of DNA replication licensing in a cell cycle[J]. Genes to Cells,2002,7(6): 523-534.
    [19]Li B, Lee MY. Transcriptional regulation of the human DNA polymerase delta catalytic subunit gene POLD1 by p53 tumor suppressor and Sp1[J]. J Biol Chem,2001,276(32):29729-29739.
    [20]20.朱晓宇,徐恒,李莉,et al. P53亚细胞定位变化对POLD1基因启动子活性的影响[J].自然科学进展,2006,16(5):555-562.
    [21]Yael K, Lea M, Yocheved L, et al. Expression analysis using DNA microarrays demonstrates that E2F-1 up-regulates expression of DNA replication genes including replication protein A2[J]. Oncogene,2001, 20(11):1379-1387.
    [22]Ren B, Cam H, Takahashi Y, et al. E2F integrates cell cycle progression with DNA repair, replication, and G2/M checkpoints[J]. Genes & Dev.,2002,16(2):245-256.
    [23]el-Deiry W, Tokino T, Velculescu V, et al. WAF1, a potential mediator of p53 tumor suppression[J]. Cell, 1993,75(4):817-825.
    [24]Cao Z, Leng X. The role of p53 mutation in carcinogenesis of hepatoma and its clinical significance[J]. Sergury of Western Medicine,2000,27(3):130-133.
    [25]Shi L, Hsu H, Zhu XY, et al. The inhibition of p21 on DNA polymerase δ expression might affect the phenotype changes in the cell proliferation and carcinogenesis of MCF7[J]. Progression in Natural Science,2006,16(7):672-678.
    [26]谭晓虹.p21对肝癌细胞SMMC-7721生物学行为的影响及其与POLD1基因关系初探.南宁:广西医科大学,2010.
    [27]闫毓秀,张淑萍,静滑.p53基因研究进展[J].北京农学院学报,2009,24(2):74-78.
    [28]Hainaut P, Hollstein M. p53 and human cancer:the first ten thousand mutations[J]. Adv Cancer Res.,2000, 7781-137.
    [29]Vogelstein B, Lane D, Levine AJ. Surfing the p53 network[J][J]. Nature,2000,408(6810):307-310.
    [30]Levine AJ. p53, the cellular gatekeeper for growth and division[J]. Cell,1997,88(3):323-331.
    [31]Brugarolas J, Chandrasekaran C, Gordon JI, et al. Radiation-induced cell cycle arrest compromised by p21 deficiency[J]. Nature,1995,377(6549):552-557
    [32]1-Deiry W. Tokino T, Velculescu V, et al. WAF1, a potential mediator of p53 tumor suppression[J]. Cell, 1993,75(4):817-825.
    [33]Deng C, Zhang P, Harper JW, et al. Mice Lacking p21 CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control[J]. Cell,1995,82(4):675-684.
    [34]Waga S, Hannon GJ, Beach D, et al. The p21 in- hibitor of cyclin-dependent kinases controls DNA replication by interaction with PCNA[J]. Nature,1994,369(6481):574-578.
    [35]Smith ML. Chen IT, Zhan Q, et al. Interaction of the p53-Regulated Protein Gadd45 with Proliferating Cell Nuclear Antigen[J]. Science,1994,266(5189):1376-1380.
    [36]Downing JR. Targeted therapy in leukemia[J]. Mod Pathol,2008,21(S2):S2-S7.
    [37]Ullah MF. Cancer multidrug resistance (MDR):a major impediment to effective chemotherapy[J]. Asian Pac J Cancer Prev,2008,9(1):1-6.
    [38]国家中医药管理局,《中华草本》编委会.中华本草,上部[M].1999.
    [39]黄治勋,李志和.两面针抗肿瘤有效成分的研究[J].化学学报,1980(06):535-542.
    [40]杨仓良.毒药本草:北京:中国中医药出版社,1993.
    [41]刘丽敏,刘华钢,罗丹.氯化两面针碱体外和体内的抗肿瘤作用[J].中国药理学与毒理学杂志,2009,23(3):214-218.
    [42]刘华钢,秦三海,王博龙,等.氯化两而针碱体外诱导两种鼻咽癌株的细胞凋亡[J].华西药学杂志,2007,22(5):514-516.
    [43]刘丽敏,刘华钢.氯化两面针碱的抗肝癌活性及对DNA拓扑异构酶的影响[J].中国药理学通报,2010,26(4):497-500.
    [44]王博龙,刘华钢,杨斌,等.氯化两面针碱体外对人口腔鳞癌多药耐药细胞KBV200的抗癌活性[J].中国药理学与毒理学杂志,2007,21(6):512-515.
    [45]王博龙,刘华钢,秦三海,等.氯化两面针碱对KB及KBV200细胞周期的影响及其机制[J].广西医科大学学报,2007,24(2):220-222.
    [46]Del Poeta M, Chen SF, Von Hoff D, et al. Comparison of in vitro activities of camptothecin and nitidine derivatives against fungal and cancer cells[J]. Antimicrob Agents Chemother,1999,43(12):2862-2868.
    [47]Sethi VS. Inhibition of mammalian and oncornavirus nucleic acid polymerase activities by alkoxybenzophenanthridine alkaloids[J]. Cancer Res,1976,36(7 PT 1):2390-2395.
    [48]陈大年,罗成仁.Rb基因的抗癌性[J].中华医学遗传学杂志,1995,12(4):255-258.
    [49]Shiio, Y, Yamamoto, T, Yamaguchi, N. Negative regulation of Rb expression by the p53 gene product[J]. Proc Natl Acad Sci USA,1992,89(12):5206-5210.
    [50]Wu Z, Yu Q. E2F1-mediated apoptosis as a target of cancer therapy[J]. Curr Mol Pharmacol,2009,2(2): 149-160.
    [51]Lazzerini Denchi E, Helin K. E2F1 is crucial for E2F-dependent apoptosis[J]. EMBO Rep.,2005,6(7): 661-668.
    [52]Wu X, Levine A. p53 and E2F-1 cooperate to mediate apoptosis[J]. Proc. Natl. Acad. Sci. USA,1994,91(9): 3602-3606.
    [53]Qin X, Livingston D, Kaelin J, WG. et al. Deregulated transcription factor E2F-1 expression leads to S-phase entry and p53-mediated apoptosis[J]. Proc Natl Acad Sci U S A.,1994,91(23):10918-10922.
    [54]Hershko T. Chaussepied M, Oren M, et al. Novel link between E2F and p53:proapoptotic cofactors of p53 are transcriptionally upregulated by E2F[J]. Cell Death Differ,2005,12(4):377-383.
    [55]Dang C. c-Myc target genes involved in cell growth, apoptosis, and metabolism[J]. Mol Cell Biol 1999, 19(1):1-11.
    [56]Dang C, KA. OD, Zeller K, et al. The c-Myc target gene network[J]. Semin Cancer Biol 2006,16(4): 253-264.
    [57]Gao P, Tchernyshyov I, Chang T, et al. c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism[J]. Nature,2009,458(7239):762-765.
    [58]Murphy D, Junttila M, Pouyet L. et al. Distinct thresholds govern Myc's biological output in vivo[J]. Cancer Cell,2008,14(6):447-457.
    [59]Lin CP, Liu CR, Lee CN, et al. Targeting c-Myc as a novel approach for hepatocellular carcinoma[J]. World J Hepatol,2010,2(1):16-20.
    [60]周明华,陈思颖,李美芳,等.细胞周期与细胞凋亡[J].生理科学进展,1996,27(4):319-323.
    [61]李志琴,章静波.细胞周期及其调控[J].生理科学进展,2002,33(2):187-189.
    [62]蔡秋凤,江瑞胜,欧阳高亮,等.细胞周期检控点[J].细胞生物学杂志,2005,27:479-483.
    [63]王广良,倪虹,陈力审校.细胞周期检测点与肿瘤发生[J].国外医学肿瘤学分册,2004,31(6):406-209.
    [64]陈广祥,陈丽.细胞周期及其调控与肿瘤[J].临床军医杂志,2002,30(6):78-79.
    [65]Vidal M. A Biological Atlas of Functional Maps[J]. Cell,2001(104):333-339.
    [66]褚福亮,王福生.蛋白质谱分析方法特点及其在蛋白组学研究领域中的应用[J].世界华人消化杂志,2002,10(12):1431-1435.
    [67]Anderson NI, Anderson NG. Proteome and proteomics:new technol-ogies, new concepts, and new words[J]. Electrophoresis,1998,19(11):1853-1861.
    [68]Blackstock WP, Weri WP. Proteomics:quantitative and physical mapping of cellular proteins[J]. TrendsBiotechno,1999,17(3):121-127.
    [69]吴益峰,孙德光,工立明.肝细胞肝癌相关蛋白质组学研究进展[J].医学综述,2009,15(24):3681-3684.
    [70]张军,王惠芳SELDI-TOF-MS技术[J].生命的化学,2005,25(5):415-417.
    [71]Zhu, H, Snyder, M. Protein chip technology[J]. Curr opin Chem Biol,2003,7(1):55-63.
    [72]徐文鸿,陈益定,胡跃,等.激光解吸电离-飞行时间质谱技术和cM10蛋白质芯片检测术前大肠癌分期的意义[J].中华肿瘤杂志,2006,28(10):753-757.
    [73]孙春玲,乔杰,高冬霞.凋亡调控蛋白Bcl-2、Bax、P53和PDCD5在多囊卵巢综合征各级卵泡的表达[J].中国妇产科临床杂志,2006,7(2):122-125.
    [74]Nagase H, Woessner JF. Matrix metalloproteinases[J]. J Biol Chem,1999(274):21491-21494.
    [75]Yoshiji H, Kuriyama S, Yoshii J, et al. Tissue inhibitor of metalloproteinase-1 attenuates spontaneous liver fibrosis resolution in the transgenic mouse[J]. Hepatol 2002,36850-860.
    [76]王爱民,王宝恩,张莉,等.原发性肝癌患者血清间质胶原酶活性的研究[J].中华消化杂志,1998,18(6):376.
    [77]Templeton NS, Brown PD, Levy AT, et al. Cloning and Characterization of Human Tumor Cell Interstitial Collagenase[J]. Cancer Research,1990,50(17):5431-5437.
    [78]Kawakami T, Furukawa Y, Sudo K, et al. Isolation and mapping of a human gene (PDCD2) that is highly homologous to Rp8, a rat gene associated with programmed cell death[J]. Cytogenet Cell Genet 1995,71(1):41-43.
    [79]Hurwitz J, Weissbach A. The formation of 2-keto-3-deoxyheptonic acid in extracts ofescherichia coliB.Ⅱ.enzymic studies[J]. J Biol Chem,1959,234(4):710-712.
    [80]Harvey WR. Physiology of V-ATPases[J]. J Exp Biol,1992,172:1-17.
    [81]Hamil KG, Liu Q, Sivashanmugam P, et al. Cystatin 11:A New Member of the Cystatin Type 2 Family[J]. Endocrinology,2002,143(7):2787-2796.
    [82]何娟,冯震博.半胱氨酸蛋白酶抑制剂与恶性肿瘤的研究进展[J].医学综述,2010,16(3):374-376.
    [83]于肠,史忠诚,杜玉荣,等.人RNF181基因表达的降低可以抑制人肺癌细胞系A549的增殖[J].国际遗传学杂志,2010,33(4):11-14.
    [1]Wang JJ, Li J, Geng MY. Recent progress in the study on antitumor drugs targeting hypoxia-inducible factor-1 [J]. Yao Xue Xue Bao,2008,43(6):565-9.
    [2]Kruger EA, Blagosklonny MV, Dixon SC, et al. UCN-01, a protein kinase C inhibitor, inhibits endothelial cell proliferation and angiogenic hypoxic response[J]. Invasion Metastasis,1998, 18(4):209-18.
    [3]Escuin D, Kline ER, Giannakakou P. Both microtubule-stabilizing and microtubule-destabilizing drugs inhibit hypoxia-inducible factor-lalpha accumulation and activity by disrupting microtubule function [J]. Cancer Res,2005,65(19):9021-8.
    [4]Zhou YD, Kim YP, Mohammed KA, et al. Terpenoid tetrahydroisoquinoline alkaloids emetine, klugine, and isocephaeline inhibit the activation of hypoxia-inducible factor-1 in breast tumor cells [J]. J Nat Prod,2005,68(6):947-50.
    [5]Cai XF, Jin X, Lee D, et al. Phenanthroquinolizidine alkaloids from the roots of Boehmeria pannosa potently inhibit hypoxia-inducible factor-1 in AGS human gastric cancer cells [J]. J Nat Prod,2006,69(7):1095-7.
    [6]Kung AL, Zabludoff SD, France DS, et al. Small molecule blockade of transcriptional coactivation of the hypoxia-inducible factor pathway [J]. Cancer Cell,2004,6(1):33-43.
    [7]Staab A, Loeffler J, Said HM. et al. Effects of HIF-1 inhibition by chetomin on hypoxia-related transcription and radiosensitivity in HT 1080 human fibrosarcoma cells [J]. BMC Cancer,2007,7:213.
    [8]Cook KM, Hilton ST, Mecinovic J, et al. Epidithiodiketopiperazines block the interaction between hypoxia-inducible factor-lalpha (HIF-lalpha) and p300 by a zinc ejection mechanism[J]. J Biol Chem,2009,284(39):26831-8.
    [9]Sato N, Mizumoto K, Kusumoto M, et al.9-Hydroxyellipticine inhibits telomerase activity in human pancreatic cancer cells[J]. FEBS Lett,1998,441 (2):318-21.
    [10]Zhang L, Jiang J, Tan R. Effects of matrine on telomerase activity and cell cycle in K562 cell[J]. Zhonghua Zhong Liu Za Zhi,1998,20(5):328-9.
    [11]周喜汉,韦星,黄赞松,等.苦参碱对结肠癌SW1116细胞增殖及端粒酶活性的影响[J].中药材,2009,32(6):923-5.
    [12]何百成,滕永真,杨俊卿,等.黄连总生物碱对铝致神经元退变的保护作用[J].中国药理学通报,2008,24(6):804-9.
    [13]Naasani I, Seimiya H, Yamori T, et al. FJ5002:a potent telomerase inhibitor identified by exploiting the disease-oriented screening program with COMPARE analysis [J]. Cancer Res,1999,59(16):4004-11.
    [14]谭波,马越鸣,王天明,等.大鼠口服泻心汤及其配伍组方中原小檗碱类成分尿排泄动力学[J].中国药理学通报,2008,24(5):644-8.
    [15]Guittat L, De Cian A, Rosu F, et al. Ascididemin and meridine stabilise G-quadruplexes and inhibit telomerase in vitro[J]. Biochim Biophys Acta,2005,1724(3):375-84.
    [16]Zhou JL, Lu YJ, Ou TM, et al. Synthesis and evaluation of quindoline derivatives as G-quadruplex inducing and stabilizing ligands and potential inhibitors of telomerase [J]. J Med Chem,2005,48(23):7315-21.
    [17]Franceschin M, Rossetti L, D'Ambrosio A, et al. Natural and synthetic G-quadruplex interactive berberine derivatives [J]. Bioorg Med Chem Lett,2006,16(6):1707-11.
    [18]刘华钢,李丹妮,刘丽敏.氯化两面针碱抗肿瘤作用机制研究进展[J].广西科学院学报,2009,25(3):187-91.
    [19]周庆峰,李明月,那广水,等.海洋生物多糖抗肿瘤作用机制的研究进展[J].中国药理学通报,2009,25(8):995-7.
    [20]刘华钢,秦三海,王博龙,等.氯化两面针碱体外诱导两种鼻咽癌株的细胞凋亡[J].华西药学杂志,2007,22(5):516-9.
    [20]Liu HG, Qin SH, Wang BL, et al. Effect of Nitidine chloride induced apoptosis in two nasopharyngeal carcinoma cell lines in vitro [J]. West China Journal of Pharmaceutical Sciences,2007,22(5):516-9.
    [21]秦三海,刘华钢,王博龙,等.氯化两面针碱体外诱导肺癌SPC-A-1、舌癌Tca8113两种肿瘤细胞株凋亡的研究[J].中国药理学通报,2007,23(2):279-80.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700