载脂蛋白J对诱导成肌细胞中CXCR4表达和迁移及潜在保护作用机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     在人体中心肌细胞属于最终分化细胞,一旦损伤只能由疤痕组织代替;如何修复或逆转已经坏死的心肌一直是多年来国内外专家研究的热点。成肌细胞(或肌原细胞,myoblast)来源于中胚层干细胞,具有增殖的潜能,可以相互融合,形成终末分化的肌纤维。现在已有多方研究报道证实,成肌细胞移植可以通过抑制心肌细胞的凋亡,减少心肌梗死面积,并改善受损心肌的功能,用于治疗心肌梗死、心力衰竭等缺血性心脏病。虽然目前还存在许多有待解决的问题,但这种治疗手段将可能成为治疗心肌损害和心力衰竭的重要新途径。
     目前由于细胞水平的治疗方案受分离技术、量化和临床应用的限制,使得干细胞移植治疗仍处于初级预备阶段。细胞治疗的一种替代措施就是识别和调控能够介导干细胞归巢移植到缺血的心肌中的某些分子,发展为分子治疗。干细胞的表面受体则是这些分子之一
     基质细胞衍生因子-1(SDF-1)是α组趋化因子家族的一个新成员,最早从骨髓的基质细胞中分离出来,其特异性受体CXCR4广泛地表达在许多组织和器官上,SDF-1/CXCR4在定向造血干细胞和间充质干细胞的动员和归巢以及调节免疫和炎症反应、调控造血、恶性肿瘤细胞的浸润转移、内皮细胞的迁移以及心血管发育和生后血管、神经生成等方面发挥着重要的作用,而细胞的归巢(homing)和定植(engraftment)对干细胞治疗方案和效果至关重要。在骨髓造血干细胞治疗局灶性脑缺血的研究中发现,损伤组织可能通过诱导SDF-1正调节表达与CXCR4相互作用使干细胞向损伤部位趋化集中,进而修复组织功能。研究还发现,促分裂原活化蛋白激酶(MAPK)和PI 3-kinase/Akt也在SDF-1/CXCR4介导的细胞迁移中发挥了重要的作用。然而在包括骨髓间充质干细胞在内的多种干细胞在体外培养扩增过程中CXCR4的表达水平显著降低,削弱了干细胞对SDF-1的靶向迁移作用,为干细胞的转移带来了很大的挑战。
     存在于血浆中高密度脂蛋白(HDL)和极高密度脂蛋白(vHDL)中的载脂蛋白J (Apolipoprotein-J),也称作丛生蛋白(clusterin),是近年来新发现的一种多功能的蛋白质,当细胞发生损伤、死亡和病理改变时表达增加。其功能主要包括1)调节细胞-细胞、细胞-基质相互作用;2)参与脂类交换和运输3)调节补体作用;4)与细胞凋亡有关;5)参与生殖功能6)参与内分泌、神经系统等疾病的病理生理过程。大量不同的心血管相关病理生理状态比如心肌炎、动脉粥样硬化都暗示了ApoJ的细胞保护作用,但保护的机制不甚明了。潜在的保护机制包括保护干细胞免受氧化损伤;在血管损伤期间调控血管平滑肌细胞和内皮细胞的迁移及增殖。与ApoJ息息相关的HDL一直被认为与冠心病的发病危险呈独立的负相关,因此其降低可以作为重要的预测指标,最近的报道发现HDL在PI3-K/MAPK的介导下通过激活内皮祖细胞向内皮层的募集参与受损内皮的修复,表明调节干细胞的迁移是一种新发重要的血管保护机制。
     我们的研究首次发现狗成肌细胞ApoJ的表达可以极大的降低细胞凋亡,稳定线粒体膜电位,阻止细胞色素C向胞浆的释放。然而,ApoJ在组织特异性干细胞迁移中的作用和潜在机制仍然是未知的。那么这个蛋白的表达是否在心脏干细胞增殖和迁移中发挥重要作用以及与SDF-1/CXCR4信号通路的关系是什么呢?对受损的心脏干细胞是否又有直接的保护作用呢?
     目的
     利用CDNA转染ApoJ到体外培养的成肌细胞中而大大提高ApoJ的表达,探究ApoJ对CXCR4表达水平以及在不改变细胞周期前提下对由SDF-1/CXCR4介导的组织特异性干细胞迁移水平的影响;通过抗逆转录病毒药物体外人为造成对成肌细胞的细胞毒性作用,利用毒理学分析进一步评价ApoJ对细胞的保护作用。
     方法
     1.分离培养心脏成肌细胞,转染ApoJ基因片段并评价转染后的基因表达:胶原酶消化分离犬胚胎心肌组织,胰酶振荡消化,利用细胞计数器计算细胞数目并按照一定的浓度接种于细胞培养瓶中,加入细胞培养液进行培养放入培养箱培养10-14天。利用HindⅢ和EcoRV双酶切含有人ApoJ cDNA的pCMV-sport 6质粒,得到的目的基因片段,偶联pcDNA3真核表达载体,利用Lipofectamine介导法将pcDNA3-APOJ转染入成肌细胞,转染后的细胞分裂培养48h后进行G418筛选。Western blotting鉴定转染后成肌细胞中ApoJ的表达。BrdU Proliferation Assay检测评价转染与未转染细胞的增殖;流式细胞仪分析细胞周期,450nm波长下酶标仪测定吸光度(OD)。
     2.CXCR4表达水平检测和SDF-1对于细胞迁移的影响:实时定量PCR与Western blot测定CXCR4的表达,在成肌细胞中加入PE偶联的CXCR4抗体,通过Becton Dickinson荧光活化细胞流式分选仪(FACS),流式CELLQUEST分析荧光强度检测CXCR4阳性率。将细胞接种于含有SDF-1的培养基中,抚育后再移入含有Calcein-AM的培养基,通过荧光分析仪来检测迁移细胞的荧光活性。为了进一步验证细胞的运动性,在细胞生长至70%融合度时,去除培养液并用无菌的吸管头刮除一部分表面细胞,加入培养液再重新培养。细胞DAPI染色,相差倒置显微镜和荧光显微镜检证实该损伤,随机选取5个视野进行照相和计数。
     3.评价ApoJ对受损细胞的保护作用:制备核苷酸逆转录酶抑制剂(NRTI)药物储存溶液,按照人体中血药浓度Cmax配成同等浓度溶液,并按照比例稀释为1:1,1:2,1:4,1:8,分别处理未转染组和转染组细胞。24小时后计数法计算细胞死亡率;利用体外毒理学分析试剂盒(In vitro toxicology assay)检测2种细胞遭到药物破坏后释放于培养液中的乳酸脱氢酶(LDH)活性,以分光光度计测得OD值表示,并在相差显微镜下观察记录细胞形态学变化。为了探讨ApoJ保护受损细胞的机制,采用ELISA法测定受损后细胞的细胞色素C (Cyt-C)含量和罗丹明123检测线粒体膜电位。
     结果
     1、犬胚胎心脏干细胞或者或者称之为成肌细胞分离提取后,并稳定转染ApoJ cDNA; Western Blot结果证实了转染后成肌细胞中ApoJ的表达显著增加。
     由于细胞在不同的周期阶段会表现为不同的迁移能力,ApoJ转染后的成肌细胞通过血清饥饿(serum starvation)使之与对照组细胞同步化。溴脱氧尿嘧啶核苷(BrdU)标记的细胞通过流式细胞仪分析显示2组细胞有相同细胞周期,在Go/Gl, S和M相所占的细胞百分比无明显差异(P>0.05):G1相分别为ApoJ细胞组73.6%±4.6% vs对照细胞组70.1%±5.1%;S相两组细胞分别为ApoJ细胞组13.8%±5.3% vs.对照组15.4%±4.9%。
     在流式细胞仪进行BrdU染色标记分析中显示,ApoJ并未改变成肌细胞的增殖,450nm波长下OD值比较无显著差异(对照组1.81±0.03 vs.ApoJ组细胞1.79±0.02.P>0.05)
     2、实时定量PCR分析趋化因子受体CXCR4的表达:与未转染基因的对照组成肌细胞相比,ApoJ转染后的细胞表现为CXCR4 mRNA的表达显著提高,琼脂糖凝胶电泳证实在ApoJ阳性的细胞RNA样本中CXCR4 cDNA含量比对照组提高了4倍,而18S rRNA条带并没有明显差别。
     利用抗CXCR4抗体标记染色转染组和对照组细胞后流式细胞术测定单细胞水平上CXCR4的表达,结果表明ApoJ表达阳性的转染细胞组细胞表明CXCR4表达是增加的。免疫染色同样显示了CXCR4的高阳性表达率(29.8%±3.4% in ApoJ cells vs.10.5±2.1% in wild type cells, p<0.01).
     提取两组细胞总蛋白,应用相同的CXCR4抗体Western blot分析结果显示了转染细胞有明显的蛋白条带,而对照组中没有发现。
     对CXCR4/SDF-1介导的细胞迁移的影响:我们观察到ApoJ转染细胞表现为明显增加的对SDF-1的趋化性。在PI3激酶抑制剂作用下,这种迁移则受到影响,增加程度减低,与未转染细胞无明显差异,MAP/ERK激酶抑制剂的干预下不存在这种差异变化。除此之外,封闭CXCR4抗体(10μg/ml)同样导致ApoJ诱导的迁移受到抑制。趋化因子SDF-1对成肌细胞的趋化迁移实验“伤口愈合”(woundhealing)实验显示,在SDF-1的作用下,ApoJ转染的成肌细胞迁移能力得到显著增强,表现出对SDF-1趋化作用的反应性。
     3、LDH法分析药物对细胞的破坏作用:10种药物分别干预成肌细胞对照组和ApoJ转染组,24小时后观察到细胞形态的改变:细胞膜破溃,坏死,胞体破碎,碎片融合成片。LDH活性测定结果表明anti-HIV药物对犬胚心来源成肌细胞有一定的细胞毒性作用,随药物浓度的增加LDH释放增多。在其中四种药物去羟肌苷(Didanosine)、司他夫定(Zerit)、拉米夫定(Epivir)和去羟肌苷加(Viread)干预下,24h后与成肌细胞对照组相比,ApoJ阳性细胞的LDH释放有显著差异,表明破坏减轻(P<0.01),对细胞有保护作用。
     四种药物以浓度100mM干预对照组细胞和ApoJ组细胞4,8,16,24h后,以酶标仪检测细胞色素c的释放量。4,8,16h药物作用后,两组细胞的细胞色素c释放无显著差别,P>0.01;24h时,与ApoJ组比较,成肌细胞对照组的细胞色素c释放显著增高,有显著差异。P<0.01
     罗丹明123检测线粒体膜电位:选用去羟肌苷、司他夫定、拉米夫定、去羟肌苷加四种药物,浓度分别为25,50, and 100 mM,干预犬胚胎成肌细胞4,8,16h后,线粒体膜电位的变化用Rh123的荧光强度表示。在低浓度25mM、50 mM处理组,16h后没有表现为随时间差异而变化P>0.05;在高浓度100 mM时,拉米夫定、去羟肌苷、司他夫定在16h后表现为显著降低P<0.05,去羟肌苷加处理8h后即有显著降低P<0.05。以四种药物浓度为100mM,处理对照组细胞和ApoJ细胞,4,8,16h后,检测Rh123的荧光强度。在4h和8h时,对照组细胞和ApoJ组细胞的Rh123强度对比无明显差异;16h时,对照组的Rh123荧光强度显著降低,与ApoJ组比较有显著差异。P<0.01
     结论
     1、利用ApoJ cDNA稳定转染的犬胚胎心脏干细胞与未转染的成肌细胞生长周期与增殖相同,排除对细胞迁移速度的影响。
     2、ApoJ可以诱导体外心肌干细胞的CXCR4表达增高;通过稳定转染ApoJ导致的高表达也可以导致细胞对SDF-1趋化作用的反应性增强,并且数据表明该迁移作用的增加可以排除MAP/ERK的影响,是CXCR4依赖性的。这种CXCR4/SDF-1诱导的细胞迁移可能是通过PI3-kinase信号转导通路发挥作用。
     3、实验中所用核苷酸逆转录酶抑制剂目前广泛应用于临床治疗HIV病毒感染,研究表明此类药物可造成体外成肌细胞的破坏和死亡,载脂蛋白J可以对抗某些药物的破坏作用,其保护机制可能与ApoJ可以减轻药物毒性诱导的细胞凋亡有关。不但可以为AIDS治疗前景提供新思路,亦可作为临床筛选药物的指标之一。
Background
     In mature human body, cardiac myocytes belong to the final differentiated cells, once damaged can only be replaced by scar tissue. How to Repair or reversing myocardial necrosis has been a hot spot for domestic and international experts to study for many years. A myoblast is a type of progenitor cell that gives rise to myocytes, Derived from mesodermal, with potential of proliferation, can be integrated with each other to form terminal muscle fibers. Many studies have now been reported to confirm that myoblast transplantation can inhibit the apoptosis of myocardial cells, reduce infarction size,improve cardiac function, participate in the treatment of myocardial infarction, heart failure and other ischemic heart disease. Although there are still many problems need to be solved, but this treatment may become the new method for myocardial damage and heart failure.
     The application of cell-based therapy for the treatment of heart disease remains in its preliminary phase, because cell therapy encounters significant challenges in isolation techniques, scalability and ease of clinical application. An alternative to cell therapy is to identify and modulate the molecules that mediate homing and engraftment of stem cells to the ischemic myocardium and to develop molecular therapies based on these discoveries. One of these molecules is surface receptor on stem cells. The chemokine, stromal cell-derived factor-1 (SDF-1), and its unique receptor CXCR4, are essential for normal cardiovascular development and play a critical role in postnatal vasculogenesis. Importantly, cell mobilization and homing of hematopoietic and mesenchymal stem cells depend on SDF-1 and CXCR4. Moreover, both MAP kinase (MAPK) and, particularly, phosphatidyl-inositol 3-kinase (PI 3-kinase)/Akt play central roles in SDF-1/CXCR4-mediated cell migration. However, it is still a challenge to enhance stem cell migration through modulating CXCR4/SDF-1, since the expression level of CXCR4 is low on some stem cells.
     Apolipoprotein-J (ApoJ, also designated clusterin), found in high-density lipoproteins (HDL), is a stress-responding, chaperone-like protein. The cytoprotection of ApoJ has been suggested in a number of different cardiovascular-related pathophysiological conditions, such as atheroscelrosis and myocarditis, whereas the mechanism of protection of ApoJ requires further study. The potential protective mechanisms of ApoJ include protecting stem cells against oxidative injury, modulating vascular smooth muscle cell and endothelial cell migration and proliferation during vascular injury. HDL, which is associated with ApoJ, is shown to be inversely related to the incidence of coronary heart disease and, hence, could be used as a powerful predictor for future coronary events. Potential protective mechanisms of HDL include reverse cholesterol transport, endothelial protection, anti-oxidation, and anti-inflammation. More recently, it has been reported that HDL promotes the repair of injured endothelium by stimulating the recruitment of endothelial progenitor cells into the endothelial layer. Some effects of HDL are mediated through PI3 kinase and MAPK, including PI3 kinase-dependent endothelial cell migration. These findings suggest that modulating migration of some stem cells is a potentially important atheroprotective mechanism to be added to the other known properties of these lipoproteins.
     We have recently shown that expression of ApoJ by cDNA transfection markedly reduces apoptosis in fetal cardiac stem cells or myoblasts, restores the mitochondrial membrane potential, and prevents the release of cytochrome C from the mitochondria into the cytoplasm. However, the effects of ApoJ on tissue-specific stem cell migration and its potential mechanisms are unknown. In this study, we examined the effects of ApoJ on canine fetal cardiac stem cell proliferation and migration, and the relationship of ApoJ with the SDF-1/CXCR4 signaling pathway. Furthermore, we need to know whether ApoJ have a direct protective effect on damaged cardiac stem cells?
     Objective
     To determine whether ApoJ exerts a protective effect on cardiovascular cells against a toxic agent, such as anti-HIV drug nucleotide analogue reverse transcriptase inhibitors(NRTI), and explore the effect of ApoJ on CXCR4 expression and SDF-1/CXCR4 mediated migration by tissue-specific stem cell without altering the cell cycle, ApoJ expression was induced in canine fetal myoblasts by stable cDNA transfection.
     Methods
     1. Cardiac stem cell cultures were prepared from myoblasts isolated from fetal dog heart by collagenase digestion. The myoblast tissues were suspended in trypsin and placed in a shaking water bath. After dissociation, the cells were counted using a hemacytometer and plated in tissue culture flasks. The cells were cultured in an incubator for 10-14 days before use. Overexpression of Apo J in stem cells:Human Apo J cDNA corresponding to human ApoJ was isolated from pCMV-sport 6 plasmid by using Hind III and EcoRV. The resulting fragment, containing the full length human ApoJ cDNA, was ligated into the mammalian expression vector pcDNA3, and transfected into stem cells using Lipofectamine2000. Transfected cells were split 48 h later and maintained in medium containing G418. Evaluate the ApoJ expression in the transfected myoblasts with Western blotting analysis. Cell proliferation was assessed with a BrdU Proliferation Assay. the cells were exposed to anti-BrdU monoclonal antibody followed by peroxidase-conjugated goat anti-mouse substrate. The colored reaction product was quantified by measuring absorbance at 450 nm and 595 nm. Cell cycle analysis were analyzed by FACScan flow cytometry.
     2. CXCR4 expression and migration to SDF-1:Applying real-time PCR and Western blot analysis to determine the expression of CXCR4.Flow cytometry is for its positive percentage which method is:Myoblast cells were stained with PE-conjugated anti-CXCR4, then sorted with a triple-laser fluorescence-activated cell sorter. The data were collected using a FACSCalibur machine and analyzed by using CELLQUEST. 10,000 events.
     Myoblast cells were placed in the culture medium and 100 nM SDF-1 for measuring the migratory capacity of myoblast cells. After incubation the medium was removed, and the insert was transferred to a second plate containing Calcein-AM solution. Then, the fluorescence of migrated cells was read in a fluorescence plate reader with bottom reading capabilities at excitation/emission wavelengths of 485/530 nm. To assess cell motility, cells were seeded at a density of 5×105 cells and grown to 70% confluence. The medium was removed from the plates and a wound was generated in each plate using a sterile pipette tip. Movement across the wound was assessed by microscopic examination and multiple fields were photographed with microscope equipped with a SPOT digital camera. Cells were stained with DAPI.
     3. Evaluat the protection of ApoJ to damaged cells:NRTI drug stock solution were made with 5 different NRTI drug and DPBS. Interfere in the wide-type myoblasts and ApoJ transfected myoblasts with concentrations of 1:1,1:2,1:4, andl:8 Cmax.24 hours later,counting method was used for cell mortality; In vitro toxicological analysis suite and spectrophotometry of LDH which was released in the culture medium after cell damage were used to test cell viability. Absorbance was measured at 490 nm. In the phase contrast microscope, cells were observed by morphological changes.
     Results:
     1. Synchronization of cell cycle in canine wild type and ApoJ-transfected fetal myoblasts. Canine fetal cardiac stem cells or myoblasts were isolated and transfected stably with or without ApoJ cDNA. The stable expression of ApoJ in the transfected cells was confirmed by PCR and Western blot. Because cells at different phases of cell cycle show different capacities of migration, ApoJ-transfected myoblasts were synchronized with wild type control cells through serum starvation. Analysis of myoblasts with BrdU incorporation by flow cytometry revealed that wild type and ApoJ-transfected myoblasts had a similar cell cycle. There were no differences in the percentages of cells in Go/Gl, S and M phases between untransfected myoblasts and ApoJ-transfected. Flow cytometry showed that 73.6%±4.6% of ApoJ-transfected canine fetal myoblasts and 70.1%±5.1% of wild-type myoblasts were in the Gl phase of the cell cycle (Figure 1B). Similarly, we found no substantial differences between the two groups in the percentage of cells in S phase (13.8%±5.3% of ApoJ-transfected fetal myoblasts vs.15.4%±4.9% of wild-type myoblasts). Furthermore, ApoJ did not alter the proliferation of canine fetal myoblasts as determined by BrdU incorporation assay (1.81±0.03 in wild-type myoblasts vs.1.79±0.02 absorbance in ApoJ-transfected myoblasts).
     2. After synchronization of cell cycle, expression of the chemokine receptor CXCR4 was analyzed by use of real time quantitative PCR. Compared to untransfected control cells, ApoJ-transfected myoblasts showed markedly increased expression of CXCR4 mRNA. Also, agarose gel electrophoresis demonstrated a four-fold increase in the expression of CXCR4 cDNA in the RNA samples from ApoJ-positive cells. By contrast, no difference in the 18S rRNA bands was found between wild type and ApoJ-expressing cells.
     Flow cytometry study clearly illustrates an increased of cell surface expression of CXCR4 in myoblasts transfected with ApoJ. Furthermore, ApoJ-transfected myoblast showed a much higher positivity in CXCR4 immunostaining as compared to wild type cells (29.8%±3.4% in ApoJ cells vs.10.5±2.1% in wild type cells, p< 0.01).
     Western blot analysis was conducted using total protein extracts of ApoJ-expressing and wild type cells with the same antibodies for flow cytometry. A single clear CXCR4 protein band was detected in ApoJ-transfected myoblast while this protein band was not found in wild type cells.
     In ApoJ-transfected cells, we observed a marked increase in the migratory response of canine fetal myoblasts to SDF-1 (100 nM). The ApoJ-induced increase in canine fetal myoblast migration in response to SDF-1 was attenuated by the addition of the PI3 kinase inhibitor, but not by the mitogen-activated protein/ERK kinase inhibitor,. In addition, the increased migration of ApoJ-transfected canine fetal myoblasts was inhibited by pretreatment with blocking anti-CXCR4 antibody (10μg/ml). The wound healing was increased in ApoJ-transfected myoblasts compared to wild type myoblast
     3. After 24 hours of the intervention of five NRTIdrugs(didanosin, Epivir, Zerit, ZIaGen, Viread),the cell morphology:the cell membrane rupture, necrosis, cell body broken, debris fused into pieces. Counting estimate the concentration of dead cells (control group vs ApoJ group) were didanosine 75.25%±9.22% vs70.31%±3.92%, Epivir 53.54%±2.76% vs 58.02%±10.8%, Zerit 62.65%±4.63% vs 32.21%±8.34%, ZIaGen 65.39%±4.75% vs 60.7%±14.6%, Viread 50.65%±2.63% vs 27.12%±5.35%, which Zerit and Viread have significant differences between two group cells (P<0.05). In vitro toxicological analysis showed that the release of LDH by myoblasts in the control group and Apo J transfected group increased with an increase in the drug concentration. Most drugs did not cause LDH release in the two kinds of cultured cells except for Viread (P=0.045) and Zerit (P=0.029), which caused the release of LDH at a low concentration by Apo J transgenic myogenic cells (P<0.05).
     Conclusions:
     1. ApoJ cDNA stable transfection of canine fetal cardiac stem cells has the same cell cycle and proliferation with non-transfected myoblast can exclude the impact of them to migration.
     2. ApoJ induced expression of CXCR4 in cardiac myoblasts. We also have shown that ApoJ overexpression by stable transfection increases SDF-1-induced migration in canine fetal cardiac myoblasts. These data indicate that the ApoJ-induced increase in migration of canine fetal myoblasts is CXCR4 dependent. These data indicate that the ApoJ-induced increase in migration of canine fetal myoblasts is CXCR4 dependent.
     3. The NRTIs drugs in our study are widely used in clinical treatment of HIV infection, studies have shown that these drugs can cause myoblasts damaged and death in vitro, meanwhile apolipoprotein J can counter the destructive effects of certain drugs, such as Viread and Zerit. The protection mechanism of ApoJ are perhaps mediated, in part, through attenuating cell apoptosis induced by cytotoxic actions,oxidative stress and altered calcium homeostasis.This study provides the first experimental evidence to the AIDS treatment propects and clinical drug screening.
引文
1. Campion DR.The muscle satellite cell:a review. Int Rev Cytol.1984;87:225-51
    2. Asakura A.Komaki M.Muscle satellite cells are multipotential stem cells that exhibit myogenic, osteogenic,and adipogenic differentiation.Differentiation.2001 Oct; 68(4-5):245-53.
    3. Zammit P.Beauchamp J.The skeletal muscle satellite cell:stem cell or son of stem cell Differentiation.2001 Oct; 68(4-5):193-204.
    4. Atkins BZ.Lewis RW. Intracardic transplantation of skeletal myoblasts yield two populations of striated cells in situ. Ann Thorac Surg.1999 Jan; 67(1):124-9.
    5. Taylor D.Atkins B.Hungspreungs P. Regenerating functional myocardium: Improved performance after skeletal myoblast transplantation. Nat Med 1998; 4:929-33.
    6. Scorsin M.Hagege A.Vilquin J T. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg.2000 Jun;119(6):1169-75.
    7. Reinecke H.Poppa V. Electromechanical coupling between skeletal and cardiac muscle:implications for infarct repair. J.cell bio.CB.2000.149:3731-740
    8. Menasche P.Myoblast transplantation for heart failure.The Lancet.2001. 9252:279-280
    9. Blau HM, Webster C.Isolation and characterization of human muscle cells.Proc Natl Acad Sci U S A.1981 Sep; 78(9):5623-7.
    10. Siminiak T.Kalawski R.Fiszer D Autologous skeletal myoblast transplantation for the treatment of postinfarction myocardial injury:phase clinical study with 12 months of follow-up 2004(03)
    11. Vogel G. Cell biology. Stem cells:new excitement, persistent questions. Science. 2000; 290:1672-1674.
    12. Yon SN, Kurachi K. Implanted myoblasts not only fuse with myofibers but also survive muse[e precursor cells[J]. J Cell Sci,1993,105:957-963.
    13. Hughes SM, Blau HM. Migration of myobasts across basal lamina during skeletal muscle development[J]. Nature,1990,345(6273):350-353.
    14. Fouts K, Fernandes B, Mal N, et al. Eleetrophysiological consequenee of skeletal myoblast transplantation in normal and infarcted caninemyocardium[J]. Heart Rhythm,2006,3(4):452-461.
    15. Hata H, Matsumiya G, Miyagawa S, et al. Grafted skeletal myoblast sheets attenuate myocardial remedeling in pacing-induced canine heart failure model[J]. J Thorac Cardiovasu Surg,2006,132(4):918-924.
    16. Chiu RJS, Zibaitis A, Kao RL, Cellular cardiomyoplasty:myocardial regeneration with satellite cell transplantation[J]. Ann Thorac Surg,1995.60: 12-18.
    17. Tambara K, Sakakibara Y, Sakaguchi G, et al. Transplanted skeletal myoblasts can fully replace the infarcted myocardium when they survive in the host in large numbers. Circulation,
    18. Rondo TA, Blau HM. Primary mouse myoblast purification, characterization, and transplantation for cell-mediated gene therapy[J]. J Cell Biol.1994,125(6): 1275-1287.
    19. Lawson—Smith MJ, McGeachie JK. The identification of myogenic cells in skeletal muscle witll emphasis on the abe of tritiated thymidine autoradiography and desmin antibodies[J]. J Anat,1998,192(Pt2):161-171.
    20. Lu Y, Shansky J, Del TaRo M, et al. Recombinant vascular endothelial growth factor secreted from tissue-engineered bioartificial muscles promotes localized angiogenesis[J]. Circulation,2001.104(5):594-599.
    21. Ye L, Haider Kh H, Tan RS, el al. Transplantation of nanoparticle transfected skeletal myoblasts over-expressing vascular endothelial growth factor-165 for cardiac repair. Criculation,2007,116:113-120.
    22. Liu Q,Muruve DA. Molecular basis of the inflammatory response to adenovirus vevtors. Gene Ther,2003,10:935-940
    23. Shi Q, et al. Evidence for Circulating Bone Marrow-Derived Endothelial Cells. Blood 1998;92:362-367
    24. Ferrari G., et al. Muscle Regeneration by Bone Marrow-Derived Myogenic Progenitors Science 1998;279:1528-1530
    25. Timothy R. Brazelton, Fabio M. V. Rossi, Gilmor I. Keshet, Helen M. Blau. From Marrow to Brain:Expression of Neuronal Phenotypes in Adult Mice. Science 2000; 290:1775-1779.
    26. Petersen.B.E. et al. Bone Marrow as a Potential Source of Hepatic Oval Cells. Science 1999;284:1168-1170
    27. Christopher R. R. Bjornson, Rodney L. Rietze, Brent A. Reynolds, M. Cristina Magli, Angelo L. Vescovi.Turning Brain into Blood:A Hematopoietic Fate Adopted by Adult Neural Stem Cells in Vivo.Science.1999;283,:534-537
    28. Soonpaa MH, Field LJ. Survey of studies examining mammalian cardiomy-ocyte DNAsynthesis. Circ. Res.1998; 83:15-26
    29. Packer M, Lee WH, Kessler PD, Gottlieb SS, Bernstein JL, et al. Role of neurohormonal mechanisms in determin-ing survival in patiens with severe chronic heart failure. Circulation.1987;75:IV80-92
    30. Kathyjo A.et at.Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin Invest.2001;107:1395-1402
    31. Weintraub H, Campbell GL, Holtzer H. Identification of a developmen-tal program using bromodeoxyuridine. J. Mol. Biol.1972; 70:337-50
    32. Gratzer WB.Preparation of spectrin.Methods Enzymol.1982;85 Pt B:475-80.
    33. Robinson SW, et al. Arterial delivery of genetically labeled skeletal myoblasts to the murine heart:long-term survival and phenotypic modification of implanted myoblasts. Cell Transplant.1996; 5:77-91
    34. Murry CE, Wiseman RW, Schwartz SM, et al. Skeletal myoblast transplantation for repair of myocardial necrosis. J Clin Invest.1996; 98:2512-2523.
    35. Dorfman J, Duong M, Zibaitis A, et al. Myocardial tissue engineering with autologous myoblast implantation. J Thorac Cardiovasc Surg.1998; 116:744-751.
    36. Marelli D, Desrosiers C, el-Alfy M, et al. Cell transplantation for myocardial repair:an experimental approach. Cell Transplant.1992; 1:383-390.
    37. Atkins BZ, Lewis CW, Kraus WE, et al. Intracardiac transplantation of skeletal myoblasts yields two populations of striated cells in situ. Ann Thorac Surg. 1999;67:124-129.
    38. Taylor DA, Atkins BZ, Hungspreugs P, et al. Regenerating functional myocardium:improved performance after skeletal myoblast trans-plantation. Nat Med.1998;4:929-933.
    39. Marelli D, Desrosiers C, El-Alfy M, Kao RL, Chiu RCJ. Cell transplantation for myocardial repair:an experimental approach. Cell Transplant.1992; 1:383-90
    40. Taylor DT, Silvesti F, Bishop SP, An-nex BH, Lilly RE, et al. Delivery of primary autologous skeletal myoblasts into rabbit heart by coronary infusion:a potential approach to myocardial repair. Proc. Am. Assoc. Physicians. 1997; 109:245-53
    41. Van Meter CH, Claycomb WC, Delcarpio JB, Smith DM, deGruiter H, Smart F, Ochsner JL. Myoblast transplantation in the porcine model:a potential technique for myocardial repair. J Thorac Cardiovasc Surg.1995; 110(5):1442-8
    42. Scorsin M, Hagege A, Vilquin JT, Fiszman M, Marotte F, Samuel JL, Rappaport L,Schwartz K, Menasche P. Comparison of the effects of fetal cardiomyocyte and skeletal myoblast transplantation on postinfarction left ventricular function. J Thorac Cardiovasc Surg.2000;119(6):1169-75.
    43. Tomita S, Li RK, Weisel RD, Mickle DA, Kim EJ, Sakai T, Jia ZQ. Autologous transplantation of bone marrow cells improves damaged heart function. Circulation.1999;100(19 Suppl):Ⅱ247-56
    44. Orlic D et al.Bone marrow cells regenerate infracted myocardium.Nature 2001; 410:701-705
    45. Koh GY, Soonpaa MH, Klug MG, Pride HP, Cooper BJ, Zipes DP, Field LJ. Stable fetal cardiomyocyte grafts in the hearts of dystrophic mice and dogs. J Clin Invest.1995;96(4):2034-42
    46. M. Iijima and P. Devreotes, Tumor suppressor PTEN mediates sensing of chemoattractant gradients, Cell 109 (2002), pp.599-610.
    47. F. Liu, S. Wagner, R.B. Campbell, J.A. Nickerson, C.A. Schiffer and A.H. Ross, PTEN enters the nucleus by diffusion, J. Cell. Biochem.96 (2005), pp.221-234.
    48. Radu, V. Neubauer, T. Akagi, H. Hanafusa and M.M. Georgescu, PTEN induces cell cycle arrest by decreasing the level and nuclear localization of cyclin D1, Mol. Cell. Biol.23 (2003), pp.6139-61349.
    49. Reinlib L,Field L.Cell transplantation as future therapy for cardiovascular disease? A workshop of the National Heart,Lung,and Blood Institute.Circulation. 2000;101:e182-e187
    1. Vogel G. Cell biology. Stem cells:new excitement, persistent questions. Science. 2000; 290:1672-1674.
    2. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell.2004; 116:639-648.
    3. Nagasawa T, Hirota S, Tachibana K.et al. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature.1996;382:635-638.
    4. Zou YR, Kottmann AH, Kuroda M, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595-599.
    5. Peled A, Petit I, Kollet O,et al. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science.1999;283:845-848.
    6. Hung SC, Pochampally RR, Hsu SC, et al. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE.2007;2:e416.
    7. Barbero S, Bonavia R, Bajetto A, et al. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res. 2003;63:1969-1974.
    8. Peng SB, Peek V, Zhai Y, et al. Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-lalpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res.2005;3:227-236.
    9. Wang JF, Park IW, Groopman JE. Stromal cell-derived factor-1alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells:roles of phosphoinositide-3 kinase and protein kinase C. Blood.2000;95:2505-2513.
    10. de Silva HV, Stuart WD, Duvic CR, et al. A 70-kDa apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins. J Biol Chem.1990;265:13240-13247.
    11. Wilson MR, Easterbrook-Smith SB. Clusterin is a secreted mammalian chaperone. Trends Biochem Sci.2000;25:95-98.
    12. Rosenberg ME, Girton R, Finkel D, et al. Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. Mol Cell Biol.2002;22:1893-1902.
    13.Negre-Salvayre A, Dousset N, Ferretti G, et al. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic Biol Med. 2006;41:1031-1040.
    14. Ishikawa Y, Akasaka Y, Ishii T, et al. Distribution and synthesis of apolipoprotein J in the atherosclerotic aorta. Arterioscler Thromb Vasc Biol.1998; 18:665-672.
    15. Miyata M, Biro S, Kaieda H, et al. Apolipoprotein J/clusterin is induced in vascular smooth muscle cells after vascular injury. Circulation. 2001;104:1407-1412.
    16. Trougakos IP, Poulakou M, Stathatos M, et al. Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type Ⅱ and during development of coronary heart disease or at myocardial infarction. Exp Gerontol.2002;37:1175-1187.
    17. McLaughlin L, Zhu G, Mistry M, et al. Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J Clin Invest.2000;106:1105-1113.
    18. Swertfeger DK, Witte DP, Stuart WD, et al. Apolipoprotein J/clusterin induction in myocarditis:A localized response gene to myocardial injury. Am J Pathol. 1996;148:1971-1983.
    19. Dumont P, Chainiaux F, Eliaers F, et al. Overexpression of apolipoprotein J in human fibroblasts protects against cytotoxicity and premature senescence induced by ethanol and tert-butylhydroperoxide. Cell Stress Chaperones.2002;7:23-35.
    20. Nofer JR, Levkau B, Wolinska I, et al. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem.2001;276:34480-34485.
    21. Krijnen PA, Cillessen SA, Manoe R, et al. Clusterin:a protective mediator for ischemic cardiomyocytes? Am J Physiol Heart Circ Physiol. 2005;289:H2193-2202.
    22. Sivamurthy N, Stone DH, Logerfo FW, Quist WC. Apolipoprotein J inhibits the migration, adhesion, and proliferation of vascular smooth muscle cells. J Vasc Surg.2001;34:716-723.
    23. Sivamurthy N, Stone DH, LoGerfo FW, Quist WC. Apolipoprotein J inhibits the migration and adhesion of endothelial cells. Surgery.2001;130:204-209.
    24. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. Jama.1986;256:2835-2838.
    25. Franceschini G. Epidemiologic evidence for high-density lipoprotein cholesterol as a risk factor for coronary artery disease. Am J Cardiol.2001;88:9N-13N.
    26. Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ. High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol. 2006;26:1144-1149.
    27. Viswambharan H, Ming XF, Zhu S, et al. Reconstituted high-density lipoprotein inhibits thrombin-induced endothelial tissue factor expression through inhibition of RhoA and stimulation of phosphatidylinositol 3-kinase but not Akt/endothelial nitric oxide synthase. Circ Res.2004;94:918-925.
    28. DeKroon R, Robinette JB, Hjelmeland AB, et al. APOE4-VLDL inhibits the HDL-activated phosphatidylinositol 3-kinase/Akt Pathway via the phosphoinositol phosphatase SHIP2. Circ Res.2006;99:829-836.
    29. Norata GD, Callegari E, Marchesi M, et al. High-density lipoproteins induce transforming growth factor-beta2 expression in endothelial cells. Circulation. 2005; 111:2805-2811.
    30. Mineo C, Yuhanna IS, Quon MJ, Shaul PW. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem.2003;278:9142-9149.
    31. Kimura T, Sato K, Malchinkhuu E, et al. High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler Thromb Vasc Biol.2003;23:1283-1288.
    32. Li Y, Sagar MB, Wassler M, Shelat H, Geng YJ. Apolipoprotein-J prevention of fetal cardiac myoblast apoptosis induced by ethanol. Biochem Biophys Res Commun.2007;357:157-161.
    33. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1 is a chemoattractant for human CD34+ hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+ progenitors to peripheral blood. J Exp Med. 1997; 185:111-120.
    34. Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells.2003;21:363-371.
    35. Orlic D, Kajstura J, Chimenti S, Bodine DM, Leri A, Anversa P.Transplanted adult bone marrow cells repair myocardial infarcts in mice.Ann N Y Acad Sci.2001 Jun;938:221-9; discussion 229-30.
    36. Ji JF, He BP, Dheen ST, Tay SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells.2004;22:415-427.
    37. Odemis V, Boosmann K, Dieterlen MT, Engele J. The chemokine SDF1 controls multiple steps of myogenesis through atypical PKC{zeta}. J Cell Sci. 2007;120:4050-4059.
    38. Petit I, Goichberg P, Spiegel A, Peled A, Brodie C, Seger R, Nagler A, Alon R, Lapidot T. Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest.2005; 115:168-176.
    39. Lee RH, Hsu SC, Munoz J, Jung JS, Lee NR, Pochampally R, Prockop DJ. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood.2006;107:2153-2161.
    40. Toma I, Nagy A, Janosi C, Rusvai M, Juhasz-Nagy A, Kekesi V.Effects of intrapericardially administered endothelin-1 on pericardial natriuretic peptide concentrations of the in situ dog heart.J Cardiovasc Pharmacol.2004 Nov;44 Suppl 1:S231-3.
    41.Orschell-Traycoff CM, Hiatt K, Dagher RN, Rice S, Yoder MC, Srour EF. Homing and engraftment potential of Sca-1(+)lin(-) cells fractionated on the basis of adhesion molecule expression and position in cell cycle. Blood. 2000;96:1380-1387.
    42. Damas JK, Waehre T, et al. Stromal cell-derived factor-1alpha in unstable angina: potential antiinflammatory and matrix-stabilizing effects.Circulation.2002 Jul 2;106(1):36-42.
    43. Ayach BB, et al. Stem cell factor receptor induces progenitor and natural killer cell-mediated cardiac survival and repair after myocardial infarction.Proc Natl Acad Sci U S A.2006 Feb 14;103(7):2304-9.
    44. Kucia M, et al. The migration of bone marrow-derived non-hematopoietic tissue-committed stem cells is regulated in an SDF-1-, HGF-, and LIF-dependent manner.Arch Immunol Ther Exp (Warsz).2006 Mar-Apr;54(2):121-35.
    45. Szilvassy SJ, Meyerrose TE, Grimes B. Effects of cell cycle activation on the short-term engraftment properties of ex vivo expanded murine hematopoietic cells. Blood.2000;95:2829-2837.
    46. Petropoulou C, Trougakos IP, Kolettas E, et al. Clusterin/apolipoprotein J is a novel biomarker of cellular senescence that does not affect the proliferative capacity of human diploid fibroblasts. FEBS Lett.2001;509:287-297.
    47. Porecha NK, English K, Hangoc G, et al. Enhanced functional response to CXCL12/SDF-1 through retro viral overexpression of CXCR4 on M07e cells: implications for hematopoietic stem cell transplantation. Stem Cells Dev. 2006;15:325-333.
    48. cells in myocardial infaretion[J]. Eur J Cardiothorae Surg,2003,24:393-398.
    49. Tomao, Pituenger M,et al. Human mesenchymal stem cells diferentiate to a eardiomyoeyte phenotype in the adult mufine heart[J]. Circulation,2002,105: 93-98
    50. Meyer G P,et al. Intracoronary bone marrow cell transfer after myocardial infarction:eighteen months foJ10w—up data from the randomized. controlled BOOST (Bone marrow transfer to enhance ST-elevation infarct regeneration) trial[J]. Circulation,2006,113(10):1287-1294.
    51. Maihlos C, Howard MK and Latchman, DS. Heat shock protects neuronal cells from programmed cell death by apoptosis. (1993) Neuroscience 55,612-627
    52. Samali, A. and Cotter, T. G. Heat shock proteins increase resistance to apoptosis. (1996) Exp. Cell. Res.223,163-170
    53. Jenne, D. E. and Tschopp, J. Molecular structure and functional characterization of a human complement cytolysis inhibitor found in blood and seminal plasma: identity to sulfated glycoprotein 2, a constituent of rat testis fluid. (1989) Proc. Natl. Acad. Sci. U.S.A.86,7123-7127
    54. Saunders, J. R., Aminian, A., McRae, J. L., et al. Clusterin depletion enhances immune glomerular injury in the isolated perfused kidney. (1994) Kidney Int.45, 817-27
    55. Aronow, B. J., Diane Lund, S., Brown, T. L., et al. Apolipoprotein J expression at fluid-tissue interfaces:potential role in barrier cytoprotection (1993) Proc. Natl. Acad. Sci. U.S.A.90,725-729
    56. Pillarisetri K,Gupta S K. Cloning and relative expression analysis of rat stromal cell derived factor-1(SDF-1)1:SDF-1 alpha mRNA is selectively induced in rat model of myocardial infarction[J]. Inflammation,2001,25(5):293-300.
    57. Damas J,et al. Myocardial expression of CC-and CXC chemokines and their receptors in human endstage heart failure[J]. Cardiovasc Res,2000,47:778-787.
    58. Tamaki T et al. Functional recovery of damaged skeletal muscle through synchronized vasculogenesis, myogenesis, and neurogenesis by muscle-derived stem cells.Circulation.2005 Nov 1;112(18):2857-66.
    59. Yamamoto N,et al.Smadl and smad5 act downstream of intracellular signalings of BMP-2 that inhibits myogenic differentiation and induces osteoblast differentiation in C2C12 myoblasts.Biochem Biophys Res Commun.1997 Sep 18;238(2):574-80.
    60. Askaria, et al. Efect of stromalcell-derived factor on stem cell homing and tissue regcneration in ischaemic eardiomyopathy[J]. Lancet,2003,362(9385):697-703
    61. Abbott J D,Huang Y, Liu D,et al. Stromal cell derived factor 1 alpha plays a critical role in stem cell recru itment to the heart after myocardial jnfarction but is not sufficient to induce homing in the absence of injury[J]. Circulation,2004,1 10(21):3300-3305.
    62. Ma N,Stamm C,et al. Human cord blood cells induce angiogenesis following myocardial infarction in NOD/scid-mice[J]. Cardiovasc Res,2005,66(1):45-54.
    63. AyachB,et al. Cxcr4 receptor improves cardiac remodeling and revascularization post——MI[J]. Circulation,2005,112(17):U85 U85.
    64. Pituch Noworolska A, Majka M, et al. Circulating CXCR4-posidve stem/progenitor cells competefor SDF-1-positive niches in bone marrow. muscle and neuraltisues:an alernative hypothesis to stem cel plasticity[J]. Folia Histochem Cytobiol,2003,41(1):13-21.
    65. Zou YR, Kotmmnn AH, KurodaM, et al. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development[J]. Nature,1998, 393(6685):595-599.
    66. Vasyutina E, Stebler J, Brand Saberi B, et al. CXCR4 and Gab cooperate to control the development of migratins muscle progenitor cells[J]. Genes Development,2005,19(6):2187-2198.
    67. Korblin,et al. Adult stem cells for tissue repair-a new therapeutic concept [J]. N EnJ Med,2003,349(6):570-582
    68. Lapidot T. The essential roles of the chemokine SDF-1 and its receptor CXCR4 in human stem eel homing and repopulation of transplanted immune-deficient NOD/SCID and null mice [J]. Leukemia,2002,16(10):1992-2003.
    1. Parakh A, Dubey AP, Kumar A, et al. Efficacy of first-line, WHO recommended generic HAART regimens in Indian children. Kathmandu Univ Med J (KUMJ) 2009;7:220-225.
    2. Sudano I, Spieker LE, Noll G, et al. Cardiovascular disease in HIV infection. Am Heart J 2006; 151:1147-1155.
    3. Belohlavek J, Kuchynka P, Machala L, et al. Successfully resuscitated sudden cardiac death in a young homosexual male with HIV myocarditis. Curr HIV Res 2009;7:434-436.
    4. Kramer AS, Lazzarotto AR, Sprinz E, et al. Metabolic abnormalities, antiretroviral therapy and cardiovascular disease in elderly patients with HIV. Arq Bras Cardiol 2009;93:561-568.
    5. Rossi R, Nuzzo A, Guaraldi G, et al. Metabolic disorders induced by highly active antiretroviral therapy and their relationship with vascular remodeling of the brachial artery in a population of HIV-infected patients. Metabolism 2009; 58:927-933.
    6. Hawkins T:Understanding and managing the adverse effects of antiretroviral therapy. Antiviral Res 85:201-209.
    7. Deonarain J, Ramdial PK, Singh B:Bilateral lipomastia in men:a side effect of highly active antiretroviral therapy. Int J Surg Pathol 2008;16:171-175.
    8. Behrens GM, Meyer-Olson D, Stoll M, et al. Clinical impact of HIV-related lipodystrophy and metabolic abnormalities on cardiovascular disease. AIDS 2003;17 Suppl 1:S149-154.
    9. Fontas E, van Leth F, Sabin CA, et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy:are different antiretroviral drugs associated with different lipid profiles? J Infect Dis 2004;189:1056-1074.
    10. Domingos H, Cunha RV, Paniago AM, et al. Metabolic effects associated to the highly active antiretroviral therapy (HAART) in AIDS patients. Braz J Infect Dis 2009;13:130-136.
    11. Nonr MA, Grasela D, Parker RA et al. The effect of Atazanavir vs Lopinavir/ritonavir on insulin-stimulated glucose disposal rate in healthy subjects. Eleventh Conference On Retroviruses and Opportunistic Infections. San Francisco, CA 2004;
    12. Cunha Mdo C, Siqueira Filho AG, Santos SR, et al. AIDS in childhood:cardiac involvement with and without triple combination antiretroviral therapy. Arq Bras Cardiol 2008;90:11-17.
    13. Antinori A, Giancola ML, Alba L, et al. Cardiomyopathy and encephalopathy in AIDS.Ann N Y Acad Sci 2001;946:121-129.
    14. Carr A, Grund B, Neuhaus J, et al.:Asymptomatic myocardial ischaemia in HIV-infected adults. AIDS 2008;22:257-267.
    15. Sani MU, Okeahialam BN:QTc interval prolongation in patients with HIV and AIDS.J Natl Med Assoc 2005;97:1657-1661.
    16. Hrovatin E, Zardo F, Brieda M, et al.:[Long QT and torsade de pointes in a patient with acquired human immunodeficiency virus infection in multitherapy with drugs affecting cytochrome P450]. Ital Heart J Suppl 2004;5:735-740.
    17. Normen L, Yip B, Montaner J, et al.:Use of metabolic drugs and fish oil in HIV-positive patients with metabolic complications and associations with dyslipidaemia and treatment targets. HIV Med 2007;8:346-356.
    18. Rosenberg ME, Girton R, Finkel D, et al.:Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. Mol Cell Biol 2002;22:1893-1902.
    19. de Vries-van der Weij J, de Haan W, Hu L, et al.:Bexarotene induces dyslipidemia by increased very low-density lipoprotein production and cholesteryl ester transfer protein-mediated reduction of high-density lipoprotein. Endocrinology 2009;150:2368-2375.
    20. van Greevenbroek MM, Robertus-Teunissen MG, Erkelens DW, de Bruin TW: Participation of the microsomal triglyceride transfer protein in lipoprotein assembly in Caco-2 cells:interaction with saturated and unsaturated dietary fatty acids. J Lipid Res 1998;39:173-185.
    21. Anderson, T.N. Kakuda and K.A. Lichtenstein, The cellular pharmacology of nucleoside-and nucleotide-analogue reverse-transcriptase inhibitors and its relationship to clinical toxicities, Clin. Infect. Dis.38 (2004), pp.743-753.
    22. Barile, D. Valenti, E. Quagliariello and S. Passarella, Mitochondria as cell targets of AZT (Zidovudine), Gen. Pharmacol.31 (1998), pp.531-538.
    23. Barret, M. Tardieu, P. Rustin, C. Lacroix and B. Chabrol et al., For the French perinatal cohort study group. Persistent mitochondrial dysfunction in HIV-1-exposed but uninfected infants:clinical screening in a large prospective cohort, AIDS 17 (2003), pp.1769-1785.
    24. T. Beissbarth, Interpreting experimental results using gene ontologies, Methods Enzymol.411 (2006), pp.340-352.
    25. S. Blanche, M. Tardieu, P. Rustin, et al., Persistent mitochondrial dysfunction and perinatal exposure to antiretroviral nucleoside analogues, Lancet 354 (1999), pp.1084-1089.
    26. K. Brinkman, H.J. ter Hofstede, D.M. Burger, et al. Adverse effects of reverse transcriptase inhibitors:mitochondrial toxicity as common pathway, AIDS 12 (1998), pp.1735-1744.
    27. H. Chen and D.C. Chan, Emerging functions of mammalian mitochondrial fusion and fission, Hum. Mol. Genet.14 (2005), pp. R283-R289.
    28. C.L. Cherry and S.L. Wesselingh, Nucleoside analogues and HIV:the combined cost to mitochondria, J. Antimicrob. Chemother.51 (2003), pp.1091-1093
    29. T. Dagan, C. Sable, J. Bray, et al. Mitochondrial dysfunction and antiretroviral nucleoside analog toxicities:what is the evidence?, Mitochondrion 1 (2002), pp. 397-412.
    30. W. Lewis and M.C. Dalakas, Mitochondrial toxicity of anti-viral drugs, Nat. Med. 1 (1995), pp.417-422.
    31. C. Di Gennaro, A. Biggi, A.L. Barilli, et al. Endothelial dysfunction and cardiovascular risk profile in long-term withdrawing alcoholics, J. Hypertens.25 (2007), pp.367-373.
    32. S.V. Bhave and P.L. Hoffman, Ethanol promotes apoptosis in cerebellar granule cells by inhibiting the trophic effect of NMD A, J. Neurochem.68 (1997), pp. 578-586.
    33. Y. Li, M.A. King and E.M. Meyer, α7 nicotinic receptor-mediated protection against ethanol-induced oxidative stress and cytotoxicity in PC 12 cells, Brain Res. 861 (2000), pp.165-167.
    34. D.H. Hyun, N.D. Hunt, S.S. Emerson, et al,Up-regulation of plasma membrane-associated redox activities in neuronal cells lacking functional mitochondria, J. Neurochem. (2007).
    35. S. Melov, Mitochondrial oxidative stress. Physiologic consequences and potential for a role in aging, Ann. NY Acad. Sci.908 (2000), pp.219-225.
    36. H. Tsutsui, T. Ide and S. Kinugawa, Mitochondrial oxidative stress, DNA damage, and heart failure, Antioxid. Redox. Signal.8 (2006), pp.1737-1744.
    37. M.F. Beal, Mitochondrial dysfunction in neurodegenerative diseases, Biochim. Biophys. Acta 1366 (1998), pp.211-223.
    38. J.J. Lemasters, A.L. Nieminen, T. Qian, L.C. Trost and B. Herman, The mitochondrial permeability transition in toxic, hypoxic and reperfusion injury, Mol. Cell Biochem.174 (1997), pp.159-165.
    39. Satoh, Y. Enokido, H. Aoshima, Y. Uchiyama and H. Hatanaka, Changes in mitochondrial membrane potential during oxidative stress-induced apoptosis in PC 12 cells, J. Neurosci. Res.50 (1997), pp.413-420.
    40. Y. Li, Y. Higashi, H. Itabe, Y.H. Song, J. Du and P. Delafontaine, Insulin-like growth factor-1 receptor activation inhibits oxidized LDL-induced cytochrome-c release and apoptosis via the phosphatidylinositol 3 kinase/Akt signaling pathway, Arterioscler. Thromb. Vasc. Biol.23 (2003), pp.2178-2184.
    41. J.C. Reed, Cytochrome-c:can't live with it-can't live without it, Cell 91 (1997), pp.559-562.
    42. M. Deshmukh and E.M. Johnson Jr., Evidence of a novel event during neuronal death:development of competence-to-die in response to cytoplasmic cytochrome-c, Neuron 21 (1998), pp.695-705.
    43. Leskov K et al.Synthesisi functional snalyses of nuclear clusterin,a cell death protein.Biol Chem,2003,278:11 590
    44. Zhang H,Kim JK, et al.Clusterin inhibits apoptosis by interacting with activated Bax.Nat Cell Biol,2005,7:909
    45. S. Krajewski, M. Krajewska, L.M. Ellerby, K. Welsh, Z. Xie, Q.L. Deveraux, G.S. Salvesen, D.E. Bredesen, R.E. Rosenthal, G. Fiskum and J.C. Reed, Release of caspase-9 from mitochondria during neuronal apoptosis and cerebral ischemia, Proc. Natl. Acad. Sci. USA 96 (1999), pp.5752-5757.
    46. L. McLaughlin, G. Zhu, M. Mistry, C. Ley-Ebert, W.D. Stuart, C.J. Florio, P.A. Groen, S.A. Witt, T.R. Kimball, D.P. Witte, J.A. Harmony and B.J. Aronow, Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis, J. Clin. Invest.106 (2000), pp.1105-1113.
    47. M.E. Rosenberg, R. Girton, D. Finkel, D. Chmielewski, A. Barrie 3rd, D.P. Witte, G. Zhu, J.J. Bissler, J.A. Harmony and B.J. Aronow, Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging, Mol. Cell. Biol.22 (2002), pp. 1893-1902.
    48. P. Dumont, F. Chainiaux, F. Eliaers, C. Petropoulou, J. Remacle, C. Koch-Brandt, E.S. Gonos and O. Toussaint, Overexpression of apolipoprotein J in human fibroblasts protects against cytotoxicity and premature senescence induced by ethanol and tert-butylhydroperoxide, Cell Stress Chaperones 7 (2002), pp.23-35.
    49. S.E. Jones and C. Jomary, Clusterin, Int. J. Biochem. Cell Biol.34 (2002), pp. 427-431.
    50. M.R. Wilson and S.B. Easterbrook-Smith, Clusterin is a secreted mammalian chaperone, Trends Biochem. Sci.25 (2000), pp.95-98
    51. J.R. Nofer, B. Levkau, I. Wolinska, R. Junker, M. Fobker, A. von Eckardstein, U. Seedorf and G. Assmann, Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids, J. Biol. Chem. 276 (2001), pp.34480-34485.
    52. Negre-Salvayre, N. Dousset, G. Ferretti, T. Bacchetti, G. Curatola and R. Salvayre, Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells, Free Radic. Biol. Med.41 (2006), pp.1031-1040.
    53. X.A. Li, L. Guo, J.L. Dressman, R. Asmis and E.J. Smart, A novel ligand-independent apoptotic pathway induced by scavenger receptor class B, type I and suppressed by endothelial nitric-oxide synthase and high density lipoprotein, J. Biol. Chem.280 (2005), pp.19087-19096.
    54. Y. Shidoji, N. Nakamura, H. Moriwaki and Y. Muto, Rapid loss in the mitochondrial membrane potential during geranylgeranoic acid-induced apoptosis, Biochem. Biophys. Res. Commun.230 (1997), pp.58-63.
    55. R. Garrido, M.P. Mattson, B. Hennig and M. Toborek, Nicotine protects against arachidonic-acid-induced caspase activation, cytochrome-c release and apoptosis of cultured spinal cord neurons, J. Neurochem.76 (2001), pp.1395-1403.
    1. Vogel G. Cell biology. Stem cells:new excitement, persistent questions. Science. 2000;290:1672-1674.
    2. Wagers AJ, Weissman IL. Plasticity of adult stem cells. Cell.2004;116:639-648.
    3. Nagasawa T, Hirota S, Tachibana K, Takakura N, Nishikawa S, Kitamura Y, Yoshida N, Kikutani H, Kishimoto T. Defects of B-cell lymphopoiesis and bone-marrow myelopoiesis in mice lacking the CXC chemokine PBSF/SDF-1. Nature. 1996;382:635-638.
    4. Zou YR, Kottmann AH, Kuroda M, Taniuchi I, Littman DR. Function of the chemokine receptor CXCR4 in haematopoiesis and in cerebellar development. Nature. 1998;393:595-599.
    5. Peled A, Petit I, Kollet O, Magid M, Ponomaryov T, Byk T, Nagler A, Ben-Hur H, Many A, Shultz L, Lider O, Alon R, Zipori D, Lapidot T. Dependence of human stem cell engraftment and repopulation of NOD/SCID mice on CXCR4. Science. 1999;283:845-848.
    6. Hung SC, Pochampally RR, Hsu SC, Sanchez C, Chen SC, Spees J, Prockop DJ. Short-term exposure of multipotent stromal cells to low oxygen increases their expression of CX3CR1 and CXCR4 and their engraftment in vivo. PLoS ONE.2007;2:e416.
    7. Barbero S, Bonavia R, Bajetto A, Porcile C, Pirani P, Ravetti JL, Zona GL, Spaziante R, Florio T, Schettini G. Stromal cell-derived factor 1alpha stimulates human glioblastoma cell growth through the activation of both extracellular signal-regulated kinases 1/2 and Akt. Cancer Res.2003;63:1969-1974.
    8. Peng SB, Peek V, Zhai Y, Paul DC, Lou Q, Xia X, Eessalu T, Kohn W, Tang S. Akt activation, but not extracellular signal-regulated kinase activation, is required for SDF-lalpha/CXCR4-mediated migration of epitheloid carcinoma cells. Mol Cancer Res. 2005;3:227-236.
    9. Wang JF, Park IW, Groopman JE. Stromal cell-derived factor-1 alpha stimulates tyrosine phosphorylation of multiple focal adhesion proteins and induces migration of hematopoietic progenitor cells:roles of phosphoinositide-3 kinase and protein kinase C. Blood.2000;95:2505-2513.
    10. de Silva HV, Stuart WD, Duvic CR, Wetterau JR, Ray MJ, Ferguson DG, Albers HW, Smith WR, Harmony JA. A 70-kDa apolipoprotein designated ApoJ is a marker for subclasses of human plasma high density lipoproteins. J Biol Chem. 1990;265:13240-13247.
    11. Wilson MR, Easterbrook-Smith SB. Clusterin is a secreted mammalian chaperone. Trends Biochem Sci.2000;25:95-98.
    12. Rosenberg ME, Girton R, Finkel D, Chmielewski D, Barrie A,3rd, Witte DP, Zhu G, Bissler JJ, Harmony JA, Aronow BJ. Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. Mol Cell Biol.2002;22:1893-1902.
    13. Negre-Salvayre A, Dousset N, Ferretti G, Bacchetti T, Curatola G, Salvayre R. Antioxidant and cytoprotective properties of high-density lipoproteins in vascular cells. Free Radic Biol Med.2006;41:1031-1040.
    14. Ishikawa Y, Akasaka Y, Ishii T, Komiyama K, Masuda S, Asuwa N, Choi-Miura NH, Tomita M. Distribution and synthesis of apolipoprotein J in the atherosclerotic aorta. Arterioscler Thromb Vasc Biol.1998;18:665-672.
    15. Miyata M, Biro S, Kaieda H, Eto H, Orihara K, Kihara T, Obata H, Matsushita N, Matsuyama T, Tei C. Apolipoprotein J/clusterin is induced in vascular smooth muscle cells after vascular injury. Circulation.2001;104:1407-1412.
    16. Trougakos IP, Poulakou M, Stathatos M, Chalikia A, Melidonis A, Gonos ES. Serum levels of the senescence biomarker clusterin/apolipoprotein J increase significantly in diabetes type Ⅱ and during development of coronary heart disease or at myocardial infarction. Exp Gerontol.2002;37:1175-1187.
    17. McLaughlin L, Zhu G, Mistry M, Ley-Ebert C, Stuart WD, Florio CJ, Groen PA, Witt SA, Kimball TR, Witte DP, Harmony JA, Aronow BJ. Apolipoprotein J/clusterin limits the severity of murine autoimmune myocarditis. J Clin Invest.2000;106:1105-1113.
    18. Swertfeger DK, Witte DP, Stuart WD, Rockman HA, Harmony JA. Apolipoprotein J/clusterin induction in myocarditis:A localized response gene to myocardial injury. Am J Pathol.1996;148:1971-1983.
    19. Dumont P, Chainiaux F, Eliaers F, Petropoulou C, Remacle J, Koch-Brandt C, Gonos ES, Toussaint O. Overexpression of apolipoprotein J in human fibroblasts protects against cytotoxicity and premature senescence induced by ethanol and tert-butylhydroperoxide. Cell Stress Chaperones.2002;7:23-35.
    20. Nofer JR, Levkau B, Wolinska I, Junker R, Fobker M, von Eckardstein A, Seedorf U, Assmann G. Suppression of endothelial cell apoptosis by high density lipoproteins (HDL) and HDL-associated lysosphingolipids. J Biol Chem.2001;276:34480-34485.
    21. Krijnen PA, Cillessen SA, Manoe R, Muller A, Visser CA, Meijer CJ, Musters RJ, Hack CE, Aarden LA, Niessen HW. Clusterin:a protective mediator for ischemic cardiomyocytes? Am J Physiol Heart Circ Physiol.2005;289:H2193-2202.
    22. Sivamurthy N, Stone DH, Logerfo FW, Quist WC. Apolipoprotein J inhibits the migration, adhesion, and proliferation of vascular smooth muscle cells. J Vasc Surg. 2001;34:716-723.
    23. Sivamurthy N, Stone DH, LoGerfo FW, Quist WC. Apolipoprotein J inhibits the migration and adhesion of endothelial cells. Surgery.2001;130:204-209.
    24. Castelli WP, Garrison RJ, Wilson PW, Abbott RD, Kalousdian S, Kannel WB. Incidence of coronary heart disease and lipoprotein cholesterol levels. The Framingham Study. Jama.1986;256:2835-2838.
    25. Franceschini G. Epidemiologic evidence for high-density lipoprotein cholesterol as a risk factor for coronary artery disease. Am JCardiol.2001;88:9N-13N.
    26. Tso C, Martinic G, Fan WH, Rogers C, Rye KA, Barter PJ. High-density lipoproteins enhance progenitor-mediated endothelium repair in mice. Arterioscler Thromb Vasc Biol. 2006;26:1144-1149.
    27. Viswambharan H, Ming XF, Zhu S, Hubsch A, Lerch P, Vergeres G, Rusconi S, Yang Z. Reconstituted high-density lipoprotein inhibits thrombin-induced endothelial tissue factor expression through inhibition of RhoA and stimulation of phosphatidylinositol 3-kinase but not Akt/endothelial nitric oxide synthase. Circ Res.2004;94:918-925.
    28. DeKroon R, Robinette JB, Hjelmeland AB, Wiggins E, Blackwell M, Mihovilovic M, Fujii M, York J, Hart J, Kontos C, Rich J, Strittmatter WJ. APOE4-VLDL inhibits the HDL-activated phosphatidylinositol 3-kinase/Akt Pathway via the phosphoinositol phosphatase SHIP2. Circ Res.2006;99:829-836.
    29. Norata GD, Callegari E, Marchesi M, Chiesa G, Eriksson P, Catapano AL. High-density lipoproteins induce transforming growth factor-beta2 expression in endothelial cells. Circulation.2005; 111:2805-2811.
    30. Mineo C, Yuhanna IS, Quon MJ, Shaul PW. High density lipoprotein-induced endothelial nitric-oxide synthase activation is mediated by Akt and MAP kinases. J Biol Chem. 2003;278:9142-9149.
    31. Kimura T, Sato K, Malchinkhuu E, Tomura H, Tamama K, Kuwabara A, Murakami M, Okajima F. High-density lipoprotein stimulates endothelial cell migration and survival through sphingosine 1-phosphate and its receptors. Arterioscler Thromb Vasc Biol. 2003;23:1283-1288.
    32. Li Y, Sagar MB, Wassler M, Shelat H, Geng YJ. Apolipoprotein-J prevention of fetal cardiac myoblast apoptosis induced by ethanol. Biochem Biophys Res Commun. 2007;357:157-161.
    33. Aiuti A, Webb IJ, Bleul C, Springer T, Gutierrez-Ramos JC. The chemokine SDF-1 is a chemoattractant for human CD34+hematopoietic progenitor cells and provides a new mechanism to explain the mobilization of CD34+progenitors to peripheral blood. J Exp Med.1997;185:111-120.
    34. Ratajczak MZ, Majka M, Kucia M, Drukala J, Pietrzkowski Z, Peiper S, Janowska-Wieczorek A. Expression of functional CXCR4 by muscle satellite cells and secretion of SDF-1 by muscle-derived fibroblasts is associated with the presence of both muscle progenitors in bone marrow and hematopoietic stem/progenitor cells in muscles. Stem Cells.2003;21:363-371.
    35. Ji JF, He BP, Dheen ST, Tay SS. Interactions of chemokines and chemokine receptors mediate the migration of mesenchymal stem cells to the impaired site in the brain after hypoglossal nerve injury. Stem Cells.2004;22:415-427.
    36. Odemis V, Boosmann K, Dieterlen MT, Engele J. The chemokine SDF1 controls multiple steps of myogenesis through atypical PKC{zeta}. J Cell Sci.2007;120:4050-4059.
    37. Petit I, Goichberg P, Spiegel A, Peled A, Brodie C, Seger R, Nagler A, Alon R, Lapidot T. Atypical PKC-zeta regulates SDF-1-mediated migration and development of human CD34+ progenitor cells. J Clin Invest.2005;115:168-176.
    38. Lee RH, Hsu SC, Munoz J, Jung JS, Lee NR, Pochampally R, Prockop DJ. A subset of human rapidly self-renewing marrow stromal cells preferentially engraft in mice. Blood. 2006;107:2153-2161.
    39. Orschell-Traycoff CM, Hiatt K, Dagher RN, Rice S, Yoder MC, Srour EF. Homing and engraftment potential of Sca-1(+)lin(-) cells fractionated on the basis of adhesion molecule expression and position in cell cycle. Blood.2000;96:1380-1387.
    40. Szilvassy SJ, Meyerrose TE, Grimes B. Effects of cell cycle activation on the short-term engraftment properties of ex vivo expanded murine hematopoietic cells. Blood. 2000;95:2829-2837.
    41. Petropoulou C, Trougakos IP, Kolettas E, Toussaint O, Gonos ES. Clusterin/apolipoprotein J is a novel biomarker of cellular senescence that does not affect the proliferative capacity of human diploid fibroblasts. FEBS Lett.2001;509:287-297.
    42. Porecha NK, English K, Hangoc G, Broxmeyer HE, Christopherson KW,2nd. Enhanced functional response to CXCL12/SDF-1 through retroviral overexpression of CXCR4 on M07e cells:implications for hematopoietic stem cell transplantation. Stem Cells Dev. 2006;15:325-333.
    1. Parakh A, Dubey AP, Kumar A, Maheshwari A, Saxena R. Efficacy of first-line, WHO recommended generic HAART regimens in Indian children. Kathmandu Univ Med J (KUMJ) 2009; 7:220-5
    2. Sudano I, Spieker LE, Noll G, Corti R, Weber R, Luscher TF. Cardiovascular disease in HIV infection. Am Heart J 2006; 151:1147-55
    3. Belohlavek J, Kuchynka P, Machala L, Dytrych V, Vitkova I, Schramlova J, et al. Successfully resuscitated sudden cardiac death in a young homosexual male with HIV myocarditis. Curr HIV Res 2009;7:434-6
    4. J Fear. Observations on the fusion of chick embryo myoblasts in culture. J Anat 1977; 124:437-444.
    5. Bozkurt B. Cardiovascular toxicity with highly active antiretroviral therapy:review of clinical studies. Cardiovasc Toxicol.2004; 4(3):243-60.
    6. Sabin CA, Worm SW, Weber R, et al. Use of nucleoside reverse transcriptase inhibitors and risk of myocardial infarction in HIV-infected patients enrolled in the D:A:D study:a multi-cohort collaboration. Lancet.2008; 371:1417-1426.
    7. Rossi R, Nuzzo A, Guaraldi G, Squillace N, Orlando G, Esposito R, et al. Metabolic disorders induced by highly active antiretroviral therapy and their relationship with vascular remodeling of the brachial artery in a population of HIV-infected patients. Metabolism 2009; 58:927-33
    8. Hawkins T. Understanding and managing the adverse effects of antiretroviral therapy. Antiviral Res 2010; 85(1):201-9
    9. Deonarain J, Ramdial PK, Singh B. Bilateral lipomastia in men:a side effect of highly active antiretroviral therapy. Int J Surg Pathol 2008; 16:171-5
    10. Behrens GM, Meyer-Olson D, Stoll M, Schmidt RE. Clinical impact of HIV-related lipodystrophy and metabolic abnormalities on cardiovascular disease. AIDS 2003; 17 Suppl 1:149-54
    11. Fontas E, van Leth F, Sabin CA, et al. Lipid profiles in HIV-infected patients receiving combination antiretroviral therapy:are different antiretroviral drugs associated with different lipid profiles? J Infect Dis 2004; 189:1056-74
    12. Cunha Mdo C, Siqueira Filho AG, Santos SR, Abreu TF, Oliveira RH, Baptista DM, et al. AIDS in childhood:cardiac involvement with and without triple combination antiretroviral therapy. Arq Bras Cardiol 2008; 90:11-7
    13. Wroblewski F, LaDue JS. Lactic dehydrogenase activity in blood. Proc Soc Exp Biol Med 1955;90:210-213.
    14. Montaner JS, Cote HC, Harris M, Hogg RS, Yip B, Harrigan PR, et al. Nucleoside-related mitochondrial toxicity among HIV-infected patients receiving antiretroviral therapy:insights from the evaluation of venous lactic acid and peripheral blood mitochondrial DNA. Clin Infect Dis.2004; 38 Suppl 2:S73-9.
    15. Montaner JS, Cote HC, Harris M, Hogg RS, Yip B, Chan JW, et al. Mitochondrial toxicity in the era of HAART:evaluating venous lactate and peripheral blood mitochondrial DNA in HIV-infected patients taking antiretroviral therapy. J Acquir Immune Defic Syndr.2003 Sep; 34 Suppl 1:S85-90.
    16. Rosenberg ME, Girton R, Finkel D, Chmielewski D, Barrie A 3rd, Witte DP, et al. Apolipoprotein J/clusterin prevents a progressive glomerulopathy of aging. Mol Cell Biol 2002;22:1893-902
    17. Oda T, Wals P, Osterburg HH, Johnson SA, Pasinetti GM, Morgan TE, et al. Clusterin (apoJ) alters the aggregation of amyloid beta-peptide (A beta 1-42) and forms slowly sedimenting A beta complexes that cause oxidative stress. Exp Neurol. 1995;136(1):22-31.
    18. Michel D, Chatelain G, North S, Brun G. et al. Stress-induced transcription of the clusterin/apoJ gene. Biochem J.1997; 328:45-50.21.
    19. Li Y, Sagar MB, Wassler M, et al. Apolipoprotein-J prevention of fetal cardiac myoblast apoptosis induced by ethanol. Biochem Biophys Res Commun.2007 25;357(1):157-61
    20. de Vries-van der Weij J, de Haan W, Hu L, Kuif M, Oei HL, van der Hoorn JW, et al. Bexarotene induces dyslipidemia by increased very low-density lipoprotein production and cholesteryl ester transfer protein-mediated reduction of high-density lipoprotein. Endocrinology 2009; 150:2368-75
    21. van Greevenbroek MM, Robertus-Teunissen MG, Erkelens DW, de Bruin TW. Participation of the microsomal triglyceride transfer protein in lipoprotein assembly in Caco-2 cells:interaction with saturated and unsaturated dietary fatty acids. J Lipid Res 1998;39:173-8
    22. Li Y, Qu J, Shelat H, Gao S, Wassler M, Geng YJ. Clusterin induces CXCR4 expression and migration of cardiac progenitor cells. Exp Cell Res.2010 Aug 30.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700