Corrole单体及其吩噻嗪二元体的合成、光谱性质和光断裂DNA性质研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,能够和核酸结合并且导致核酸断裂的大环化合物由于在DNA结构探针及开发有效的人工核酸酶方面具有潜在的应用性,因此引起了人们的广泛关注。Corrole是一类具有18-p电子的大环化合物,其化学结构类似于卟啉,只是少了一个间位的亚甲基。作为一种新型的光敏剂,Corrole和卟啉相比具有独特的优点,如:在可见光区具有更强的吸收、更大的斯托克斯位移以及在新陈代谢中更容易分解。已有大量文献报导,卟啉类光敏剂能够选择性的聚集在肿瘤细胞并且在光照的条件下引起细胞的损伤,并且卟啉诱导的DNA光断裂在过去几年里已经被广泛关注。但是,关于Corrole及其衍生物光损伤DNA的研究还非常少,大量新颖的合成和功能研究等待人们去开拓。作者在查阅了大量文献的基础上,设计合成了一系列Corrole单体和Corrole-吩噻嗪二元体化合物,并且系统的研究了它们的光谱性质、与DNA的结合模式及光催化断裂DNA性能。主要工作包括以下几个方面:
     一.合成了一系列Corrole的周边苯环上分别连有F、Cl、Br、I原子及未被卤素取代的单羟基Corrole。稳态和飞秒时间分辨荧光光谱数据显示,这些卤代Corrole的光谱性质表现出明显的重原子效应。荧光量子产率和荧光寿命随着卤素重原子相对原子质量的升高而降低。此现象应该是由增加的系间跃迁常数(Kisc)引起的,其中,Corrole周边苯环的氢被碘原子取代后,化合物表现出最低的荧光量子产率(0.040)和最高的系间跃迁常数(388.28′10-3 ns-1)。另外,这一系列化合物在光催化下,能够把超螺旋pBR 322 DNA(Form I)切割成缺刻型DNA(Form II),且光断裂DNA的效果随着Corrole周边取代的卤素相对原子质量的增加而提高。这几种Corrole敏化生成单线态氧的量子产率的规律和化合物切割DNA的活性一致。说明这几种卤代Corrole光催化DNA的活性也遵循重原子效应。这部分工作对于探索新型、高效的PDT光敏剂具有重要意义。
     二.设计合成了一系列单羟基Corrole和Corrole-吩噻嗪二元体。其中,Corrole-吩噻嗪二元体在室温下,选用DBU做催化剂能够得到60-95%的收率。Corrole-吩噻嗪二元体具有更高的荧光量子产率和更长的荧光寿命。此现象应该归因于吩噻嗪的的加入,因为吩噻嗪被认为是一种能够有效降低有机半导体材料离子化电势(ionicpotential)的结构基团,而且吩噻嗪分子具有扭曲的蝴蝶型构象,所以吩噻嗪分子能够阻止π-π堆积和链间激基复合物的形成,因而能改善光电功能材料的性质。另外,Corrole-吩噻嗪二元体和Corrole单体相比具有更加有效的光切割DNA活性、更高的敏化单线态氧量子产率和更强的DNA结合模式。
     三.合成了三种Corrole-吩噻嗪Ga(III)配合物。检测了它们的稳态吸收和发射光谱以及时间分辨荧光光谱。通过荧光量子产率和单指数荧光衰减曲线计算了其辐射跃迁常数和无辐射跃迁常数。三种Ga(III)Corrole配合物具有很强的Soret带和Q带吸收,更高的荧光量子产率,分别为0.502, 0.443和0.494。另外,这三种Ga(III)Corrole配合物的辐射跃迁常数和自由Corrole相比也大幅提高,分别为20.9′107 s-1, 16.78′107 s-1和21.11′107 s-1,但荧光寿命反而降低。琼脂糖凝胶电泳实验发现,这三种Ga(III)Corrole配合物在光照下也能把超螺旋DNA断裂为缺刻型DNA。
     四.合成了单羟基Corrole Cu(III)和Corrole-吩噻嗪Cu(III)配合物。性质研究发现,这两种Cu(III)Corrole配合物能够保护DNA免受双氧水的损伤,且Corrole-吩噻嗪Cu(III)的保护效果更强。此现象的发现对于设计新型的理想的超氧化岐化酶(SOD)具有重要意义。
Macrocyclic compounds which could bind and cleave nucleic acids are of current interest for their importance as reagents to retrieve structural and genetic information of DNA and to develop efficient chemical nucleases. Corrole is an 18-p electron macrocycle having a direct pyrrole-pyrrole linkage. Its ring structure is in close resemblance to porphyrin. As a PDT photosensitizer, Corrole has the advantages of having more intense absorption of visible light, larger Stokes shift and less robust during metabolism as compared to porphyrin. It is well known that porphyrin photosensitizer might be localized in tumor cell, and caused tumor cell damage under irradiation. The porphyrin mediated DNA photo-cleavage has well been documented in the past years. However, less attention has been paid to the DNA photocleavage by Corrole derivatives so far. A large number of novel synthesis and function of Corroles waiting for people to open up. On the basis of careful investigation of the most recent references, we have designed and synthesized a series of Corrole and Corrole-phenothiazine dyads, and have studied their spectral properties、DNA binding and DNA photocleavage activities.
     Firstly, a series of mono-hydroxyl Corroles bearing fluorin, chlorine, bromine and iodine atoms on its 10-phenyl group was synthesized. Steady state and time-resolved fluorescence spectra measurement show that the halogen atoms on the meso- phenyl group exhibit significant heavy atom effect on their photophysical property. The fluorescence quantum yield and the lifetime of these Corroles decrease with the increasing of atomic weight of halogen atom. These may be understood by the increasing Kisc caused by the heavy atom effect of halogen atoms. From the heavy atom effect of view, Corrole bearing iodine atom present the lowest fluorescence quantum yield (0.040) and the highest intersystem crossing rate constant (388.28′10-3 ns-1). DNA photocleavage properties of these halogenated mono-hydroxyl Corroles were also investigated. It was found that these Corroles were able to cleave supercoiled pBR 322 DNA (Form I) into nicked-circular DNA (Form II). The DNA photocleavage activity increase with the increasing of atomic weight of halogen atom. The photosensitized singlet oxygen (Ф_△) quantum yield by these Corroles also follows that same order, showing the photocleavage activity is related to the heavy atom effect of halogen atoms on Corroles. This work will be helpful in giving insight into the PDT activity of halogenated Corroles.
     Secondly, a series of mono-hydroxyl Corroles and Corrole-phenothiazine dyads was successfully synthesized. The Corrole-phenothiazine dyads could be efficiently prepared at room temperature in the presence of DBU with yields of 60-95%. The Corrole-phenothiazine dyads exhibit higher fluorescence quantum yield and longer singlet exited lifetime than their parent mono-hydroxyl Corroles. The enhanced fluorescence quantum yield and lifetime may be caused by the introduction of phenothiazine unit, which is known as an excellent building block for impeding aggregation and intermolecular excimer formation. As compared to Corrole monomer, these Corrole-phenothiazine dyads exhibit significant enhanced DNA photocleavage activity、higher singlet oxygen quantum yields and DNA binding activities.
     Thirdly, three Corrole-phenothiazine Gallium (III) complexes have been synthesized. The steady-state absorption and emission spectra and the time-resolved fuorescence decay profiles have been measured in toluene and the radiative and nonradiative rate constants have been obtained from the fluorescence quantum yields and monoexponential fluorescence lifetimes. The absorption spectra reveal that the Corrole unit of the Gallium (III) dyad exhibit stronger Soret band and Q band. The fuorescence quantum yields of these Gallium (III) Corrole complexes are 0.502, 0.443 and 0.494, and the radiative rate constans are 20.9′107 s-1, 16.78′107 s-1 and 21.11′107 s-1, which are obviously higher than their free base Corroles, wheras the lifetime were somewhat shorter. Agarose gel electrophoresis shows that these Gallium (III) Corroles could also cleave supercoiled DNA (Form I) to nicked-circular DNA (Form III ) under irradiation.
     Finally, mono-hydroxyl Corrole copper (III) and Corrole-phenothiazine copper (III) complexes have been synthesized. These two copper (III) Corrole complexes could proteCT DNA against the damage of H2O2, and the Corrole-phenothiazine copper (III) complex exhibit improved activities. This kind of information is crucial for the design of an optimal catalyst for the dismutation of superoxide。
引文
[1]Johnson A.W., Kay I.T.. Corroles. partI. Synthesis [J]. J. Chem. Soc., 1965: 1620-1629
    [2]Grigg R., Hamilton R. J., Josefowicz M. L., et al. Spectroscopic study of the protonation of porphines and Corroles [J]. J. Chem. Soc. Perkin Trans., 1973, 2: 407-413
    [3]Akihiro O., Ryuhei N., Hitoshi O., et al. Anchored Oxo-Bridged Bimetallic Complexes, (SiO)3-Ti-O-Fe(Corrole), on Silica Mesopores as Multi-Electron-Transfer Photosystems [J]. J. Phy. Chem. C, 2008, 112, 49: 19777-19783
    [4]Grodkowski J., Neta P., Fujita E.. Reduction of Cobalt and Iron Corroles and Catalyzed Reduction of CO2 [J]. J. Phys. Chem. A., 2002, 106, 18: 4772-4778
    [5]Gross Z., Simkhovich L., Galili N.. First catalysis by Corrole metal complexes: epoxidation,hydroxylation,and cyclopropanation [J]. Chem. Commun., 1999, 999(7): 599-600
    [6]Schwalbe M.. Mono and dinuclear Corrole-complexes as synthetic enzyme models and their application in oxidation reactions[R]. Salt Lake City, UT, United States: Abstracts of Papers, 237th ACS National Meeting, 2009
    [7]Mahammed A., Gray H. B., Callahan A. E., et al. Aerobic Oxidations Catalyzed by Chromium Corroles [J]. J. Am. Chem. Soc., 2003, 125: 1162 -1163
    [8]Zdilla M. J., Abu O., Mahdi M.. Manganese (III) Corrole-Oxidant Adduct as the Active Intermediate in Catalytic Hydrogen Atom Transfer [J]. Inorg. Chem., 2008, 47(22): 10718-10722
    [9]Zhang Qi-Guang(张启光), Jiang Pai-Rong(江柏荣), Liu Hai-Yang(刘海洋), et al. Synthesis and photodynamic activities of 5odified Corrole derivatives on nasopharyngeal carcinoma cells[A]. Proc.SPIE (国际光学工程学会进展)[C], 2006, 6139: 613915-1-613915-11
    [10]Mahammed A., Gray H. B., Gross Z. Amphiphilic Corroles bind tightly to human serum albumin [J]. Bioconjugate Chem., 2004, 15(4): 738-746
    [11]Flamigni L, Gryko D. T.. Photoactive Corrole-based arrays [J]. Chem. Soc. Rev., 2009, 38: 1635-1646
    [12]Rebane A., Drobizhev M., Makarov N. S., et al. Two-photon absorption properties ofmeso-substituted A3-Corroles [J]. Chem. Phys Lett., 2008, 462(4-6): 246-250
    [13]He C. L., Ren F. L., Zhang X. B., et al. A fluorescent chemical sensor for Hg (II) based on a Corrole derivative in a PVC matrix [J]. Talanta, 2006, 70: 364-369
    [14]Tasior M., Gryko D. T., Pielacinska D. J., et al. Trans-A2B-Corroles Bearing a Coumarin Moiety - From Synthesis to Photophysics [J]. Chem.-An Asian J., 2010, 5(1): 130-140
    [15]Ou Z. P., Shen J., Shao J. G., et al. Protonated Free-Base Corroles: Acidity, Electrochemistry, and Spectroelectrochemistry of [(Cor)H4]+, [(Cor)H5]2+, and [(Cor)H6]3+ [J]. Inorg. Chem., 2007, 46: 2775-2786
    [16]Simkhovich L., Luobeznova I., Goldberg I., et al. Mono- and Binuclear Ruthenium Corroles: Synthesis, Spectroscopy, Electrochemistry, and Structural Characterization [J]. Chem. Eur. J, 2003, 9: 201-208
    [17]Roos B. O., Veryazov V., Conradie J., et al. Not Innocent: Verdict from Ab Initio Multiconfigurational Second-Order Perturbation Theory on the Electronic Structure of Chloroiron Corrole [J]. J. Phys. Chem. B, 2008, 112: 14099-14102
    [18]Mandoj F., Nardis, S., Pomarico, G., et al. Demetalation of Corrole complexes: an old dream turning into reality [J]. J. Porphyrins Phthalocyanines, 2008, 12: 19-21
    [19]Palmer J. H., Day M. W., Wilson, A. D., et al. Iridium Corroles [J]. J. Am. Chem. Soc., 2008, 130: 7786-7787
    [20]Kong X. X., Kulkarni A. P., Jenekhe S. A.. Phenothiazine-Based Conjugated Polymers: Synthesis, Electrochemistry, and Light-Emitting Properties[J]. Macromolecules, 2003, 36: 8992-8999
    [21]Kramer C. S., Zeitler K., Müller T. J. J.. Synthesis of Functionalized Ethynylphenothiazine Fluorophores [J]. Org. Lett., 2000, 2: 3723-3726
    [22]Rebecca Y. L., Eve F. F., Liangde L., et al. Synthesis, Cyclic Voltammetric Studies, and Electrogenerated Chemiluminescence of a New DonorsAcceptor Molecule:3, 7-[Bis[4-phenyl-2-quinolyl]]-10-methylphenothiazine[J]. J. Am. Chem. Soc., 2001, 123: 9112-9118
    [23]Ka J. W., Cho W. S., Lee C. H., Expedient synthesis of Corroles by oxidant-mediated, direct a-aprime coupling of tetrapyrromethanes [J]. Tetrahedron Lett., 2000, 41: 8121-8125
    [24]Gross Z., Galili N., Simkhovich L., et al. Solvent-Free Condensation of Pyrrole and Pentafluorobenzaldehyde: A Novel Synthetic Pathway to Corrole and Oligopyrromethenes [J]. Org. Lett., 1999, 1: 599-602
    [25]Paolesse R., Nardis S., Sagone F., et al. Synthesis and Functionalization of meso-Aryl-Substituted Corroles [J]. J. Org. Chem., 2001, 66: 550-556
    [26]Beata K., Gryko D. T.. Efficient Synthesis of meso-Substituted Corroles in a H2O-MeOH Mixture [J]. J. Org. Chem., 2006, 71: 3707-3717
    [27]Lee C. H., Lindsey J. S.. One-flask synthesis of meso-substituted dipyrromethanes and their application in the synthesis of trans-substituted porphyrin building blocks [J]. Tetrahedron, 1994, 50: 11427-11440
    [28]Littler B. J., Ciringh Y., Lindsey J. S.. Investigation of Conditions Giving Minimal Scrambling in the Synthesis of trans-Porphyrins from Dipyrromethanes and Aldehydes [J]. J. Org. Chem., 1999, 64: 2864-2872
    [29]Gryko D. T. A.. Simple, rational synthesis of meso-substituted A2B-Corroles [J]. Chem. Commun., 2000, 2243-2244
    [30]Gryko D. T., Jadach K.. A simple and versatile one-pot synthesis of meso-substituted trans-A2B-Corroles [J]. J. Org. Chem. 2001, 66: 4267-4275
    [31]Brinas R. P., Brückner C.. Sterically encumbered triarylCorroles from aryldipyrromethanes and aromatic aldehydes [J]. Synlett., 2001, 442-444
    [32]Asokan C. V., Smeets S., Dehaen W.. Microwave-assisted synthesis of Corroles [J]. Tetrahedron Lett., 2001, 42: 4483-4485
    [33]Zhan H. Y., Liu H. Y., Jiang H. F., et al. Preparation of meso-substituted trans-A2B-Corroles in ionic liquids [J].Tetrahedron Lett., 2009, 50(19): 2196-2199
    [34]Guilard R., Gryko D. T., Canard G., et al. Synthesis of Corroles Bearing up to Three Different Meso Substituents [J]. Org. Lett., 2002, 4(25): 4491-4494
    [35]Guilard R., Jerome F., Barbe J. M., et al. Alkyl and aryl substituted Corroles-synthesis and characterization of linked“face-to-face”bisCorroles.X-ray structure of (BCA)Co2(py)3, where BCA represents a bisCorrole with an anthracenyl bridge [J]. Inorg. Chem., 2001, 40(19): 4856-4865
    [36]Paolesse R., Sagone F., Macagnano A., et al. Photophysical behavior of Corrole and itssymmetrical and unsymmetrical dyads [J]. J. Porphyrins Phthalocyanines, 1999, 3: 364-370
    [37]Lian P., Liu H. Y., Liu L. Y.. Synthesis of binaphthyl bridged chiral bis-Corrole [J]. Chin. Chem. Lett., 2009, 20(1): 21-24
    [38]Tasior M., Gryko D. T., Cembor M., et al. Photoinduced energy and electron transfer in 1, 8-naphthalimide–Corrole Dyads [J]. New J. Chem., 2007, 31: 247-259
    [39]Barata J. F. B., Silva A. M. G., Faustino M. A. F., et al. Novel Diels-Alder and thermal [4+4] cycloadditions of Corroles [J]. Synlett., 2004, 7: 1291-1293
    [40]Luís S. H.P. V., Joana F.B. B., Maria G. P. M. S., et al. Novel quinine-fused Corroles [J]. Tetrahedron Lett., 2007, 1192-1195
    [41]Xia M., Liu J., Gao Y., et al. Synthesis and Photophysical and Electrochemical Study of Tyrosine Covalently Linked to High-Valent Copper (III) and Manganese (IV) Complexes [J]. Helvetica Chim. Acta., 2007, 90: 553-561
    [42]Jeyaraman S., Harapriya R., Viswanathan P., et al. meso–meso-Linked Corrole Dimers with Modified Cores: Synthesis, Characterization, and Properties [J]. Chem. Eur. J., 2007, 13: 105-114
    [43]Gryko D. T., Piechowska J., Jaworski J. S., et al. Synthesis and properties of directly linked Corrole–ferrocene systems [J]. New J. Chem., 2007, 31: 1613-1619
    [44]D'Souza F., Chitta R., Ohkubo K., et al. Corrole-Fullerene Dyads: Formation of Long-Lived Charge-Separated States in Nonpolar Solvents [J]. J. Am. Chem. Soc., 2008, 130(43): 14263-14272
    [45]詹海莺,江焕峰,刘海洋. Corrole及其金属配合物的合成及其性质研究[D].广州:华南理工大学,2009,6
    [46]Paolesse R., Licoccia S., Fanciullo M., et al. Towards the periodic table of metallo-corrolates: synthesis and characterization of main group metal complexes of octamethylCorrole [J]. Inorg. Chim. Acta., 1993, 203(1): 107-114
    [47]Gross Z., Simkhovich L., Galili N.. First catalysis by Corrole metal complexes: epoxidation, hydroxylation,and cyclopropanation [J]. Chem. Commun., 1999, 999(7): 599-600
    [48]Meunier B.. Metalloporphyrins Catalyzed Oxidations [M]. Dordrecht, 1994, 1-48
    [49]Okun Z., Kupershmidt L., Gross Z., et al. Manganese Corroles prevent intracellular nitration and subsequent death of insulin-producing cells [J]. Chem. Biol., 2009, 4(11): 910-914
    [50]Gross Z., Golubkov G., Simkhovich L.. Epoxidation catalysis by a manganese Corrole and isolation of an oxomanganese (Ⅴ) Corrole [J]. Angew. Chem. Int. Ed., 2000, 39(22): 4045-4047
    [51]Liu H. Y., Zhou H., Liu L. Y., et al. The effect of axial ligand on the reactivity of oxomanganese (V) Corrole [J]. Chem. Lett., 2007, 36(2): 274-275
    [52]Liu H. Y., Yam F., Chang C. K., et al. A Bulky Bis-Pocket Manganese (V)-Oxo Corrole Complex: Observation of Oxygen Atom Transfer between Triply Bonded MnV≡O and Alkene [J]. J. Am. Chem. Soc, 2009, 131: 12890-12891
    [53]Mahammed A., Gross Z.. Iron and Manganese Corroles Are Potent Catalysts for the Decomposition of Peroxynitrite [J]. Angew. Chem. Int. Ed., 2006, 45: 6544-6547
    [54]Kadish K. M., Fremond L., Shen J., et al. Catalytic Activity of Biscobalt Porphyrin-Corrole Dyads Toward the Reduction of Dioxygen [J]. Inorg. Chem., 2009, 48(6): 2571-2582
    [55]Mahammed A., Gray H. B., Callahan A. E., et al. Aerobic Oxidations Catalyzed by Chromium Corroles [J]. J. Am. Chem. Soc., 2003, 125: 1162 -1163
    [56]Simkhovich L., Mahammed A., Goldberg A., et al. Synthesis and characterization of Germanium, Tin, Phosphorus, Iron, and Rhodium complexes of tris(pentafluoro-phenyl) Corrole, and the utilization of the iron and rhodium Corroles as cyclopropanation catalysts [J]. Chem. Eur. J., 2001, 7: 1041-1055
    [57]Kim C., Abernathy J., Jones J. E., et al. Synthesis and applications of chiral Corroles [R]. Salt Lake City, UT, United States: Abstracts of Papers, 237th ACS National Meeting, 2009.
    [58]Zdilla M. J., Abu O., Mahdi M.. Manganese (III) Corrole-Oxidant Adduct as the Active Intermediate in Catalytic Hydrogen Atom Transfer [J]. Inorg. Chem., 2008, 47(22): 10718-10722
    [59]Barbe J. M., Canard G., Brandès S., et al. MetalloCorroles as sensing components for gas sensors: remarkable affinity and selectivity of cobalt (III) Corroles for CO vs. O2 and N2 [J]. Dalton Trans., 2004, 1208-1214
    [60]刘海洋,刘兰英,张雷,等.锰( III) Corrole配合物催化DNA氧化断裂[J].高等学校化学学报, 2007,9: 1628-1630
    [61]Fu B. Q., Huang J., Ren L., et al. Cationic Corrole derivatives: a new family of G-quadruplex inducing and stabilizing ligands [J]. Chem. Commun., 2007, 3264-3266
    [62]Agadjanian H., Ma J., Rentsendorj A., et al. Tumor detection and elimination by a targeted Gallium Corrole [J]. PNAS, 2009, 15(106): 6105-6110
    [63]张蓉颖,庞代文,蔡汝. DNA与其靶向分子相互作用研究进展[J].高等学校化学学报, 1999, 20(8): 1210-1217
    [64]杨频,高飞,马贵斌.化学核酸酶及其作用机理[ J].化学进展, 1997, 9(3): 273-282
    [65]计亮年,黄锦汪,莫庭焕.生物无机化学导论(第二版)[M].广州:中山大学出版社,2001
    [66]曹凯鸣,李碧羽,彭泽国.核酸化学导论[M].上海:复旦大学出版社,1991
    [67]白春礼,方日华,唐有祺.三链核酸的结构与生物化学[M].北京:科学出版社,1996
    [68]汤子琼.知识经济简论[M].成都:2003,3:四川大学出版社,2002
    [69]Erben C., Will S., Kadish K. M., et al. MetalloCorroles: Molecular structure, spectroscopy and electronic states [J]. Porphyrin Handbook, 2000, 2: 233-300
    [70]Sol V., Chaleix V., Champavier Y., et al. Glycosyl bis-porphyrin conjugates: Synthesis and potential application in PDT [J]. Bioorg. Med. Chem., 2006, 14(23): 7745-7760
    [71]Desroches M. C., Bautista-Sanchez A., Lamotte C., et al. Pharmacokinetics of a tri-glucoconjugated 5,10,15-(meta)-trihydroxyphenyl-20-phenyl porphyrin photosensitizer for PDT. A single dose study in the rat [J]. Photochem. Photobiol. B-Biology, 2006, 85(1): 56-64
    [72]石伟民,刘卫敏,陶京朝.用于光动力治疗的四苯基卟啉衍生物研究进展[J].化学研究,2005,2(16):101-105
    [73]Hueger B. E., Lawter J. R., Waringrekar V. H., et al. Patent [P]. US: 5059619, 1991
    [74]MacDonald I. J., Dougherty T. J.. Basic principles of photodynamic therapy [J]. J. Porphyrins Phthalocyanines, 2001, 5(2): 105-129
    [75]Wang Y., He Q. Y., Sun R. W. Y., et al. Gold porphyrin 1a induced apoptosis by mitochondrial death pathways related to reactive oxygen species [J]. Cancer Res, 2005, 65(24): 11553-11564
    [76]Paolesse R., Marini A., Nardis S., et al. Novel routes to substituted 5, 10, 15-triarylCorroles [J]. J. Porphyrins Phthalocyanines 2003, 7(1): 25-36
    [77]Ventura B., Degli-Esposti A., Koszarna B., et al. Photophysical characterization of free-base Corroles, promising chromophores for light energy conversion and singlet oxygen generation[J], New J. Chem., 2005, 29(12): 1559-1566
    [78]Villanueva A., Durantini E. N., Stockert J. C., et al. Photokilling of cultured tumor cells by the porphyrin derivative CF3 [J]. Anticancer Drug Des., 2001, 16(6): 279-290
    [79]Fiel R. J., Howard J. C., Mark E. H.. Interaction of DNA with a porphyrin ligand: evidence for intercalation [J]. Nucleic Acids Res., 1979, 6(9): 3093-3118
    [80]Gershman Z., Goldberg I., Gross Z.. DNA Binding and Catalytic Properties of Positively Charged Corroles [J]. Angew. Chem. Int. Ed., 2007, 46: 4320-4324
    [81]Fu B. Q., Huang J., Zhou X., et al. Cationic Corrole derivatives: a new family of G-quadruplex inducing and stabilizing ligands [J]. Chem. Commun., 2007, 3264-3266
    [82]Molnar, J., Sakagami, H., Motohashi N.. Diverse biological activities displayed by phenothiazines, benzo[a]phenothiazines and benz[c]acridins (review) [J]. Anticancer research, 1993, 13(4): 1019-25
    [83]Motohashi, N., Gollapudi, S. R., Emrani, J., et al. Antitumor properties of phenothiazines [J]. Cancer investigation, 1991, 9(3): 305-19
    [84]Cao Y., Li Y. J., He X. W.. Studies on Neutra l Red a s Interacting Mode Spectroscopic Probe of DNA [J]. Chem. J. Chin. Univers., 1999, 5(20): 709-712
    [85]Beddard G. S., Kelly J. M., Putten W. J. M.. Picosecond study of the luminescence and transient absorption of methylene blue-polynucleotide complexes [J]. Chem. Commun., 1990, 19: 1346-1347
    [86]Motohashi N.. Phenothiazines and calmodulin (review) [J]. Anticancer Research 1991, 11(3): 1125-1164
    [87]Mehta G., Sambaiah T., Maiya B. G., et al. ' Porphyrin - phenothiazine ' hybrid molecules: marked dependence of light induced nuclease activity on the linker moiety [J]. Organ. Bioorgan. Chem., 1995, 295-297
    [88]Wolfe A., Shimer G. H., MeehanT.. Polycyclic aromatic hydrocarbons physically intercalate into duplex regions of denatured DNA [J]. Biochem., 1987, 26: 6392-6396
    [89]Harshom R. M., Barton J. K.. Novel dipyridophenazine complexes of ruthenium (II): exploring luminescent reporters of DNA [J]. J. Am. Chem. Soc., 1992, 114(15): 5919-5925
    [90]Barton J. K., Dannenberg J. J.. Enantiomeric selectivity in binding tris(phenanthroline)zinc(II) to DNA [J]. J. Am. Chem. Soc., 1982, 104: 4967-4969
    [91]Lippard S. J., Bond P. J., Wu K. C.. Stereochemical requirememts for intercalation of platinum complexes into double-stranded dnas[J]. Science, 1976, 194: 726-728
    [92]Ye B.H., Ji L.N., Xe F., Synthesis, characterization and crystal structure of ruthenium(II) polypyridyl complexes[J], Transition Metal Chem., 1999, 24(1): 8-12
    [93]Schneider J. K..Nucleic Acids Res., Interactions of water-soluble metalloporphyrins with nucleic acids studied by resonance Raman spectroscopy[J]. 1988, 16:10323-10338
    [94]Butje K., Schneider J. H., Kim J. J..Interactions of water-soluble porphyrins with hexadeoxyribonucleotides: resonance raman, UV-Visible and 1H NMR studies [J]. Inorg. B iochem., 1989, 37(2): 119-134
    [95]Chikira M., Iiyama T., Sakamoto K..Orientation of iron bleomycin and porphyrin complexes on DNA fibers[J]. Inorg. Chem., 2000, 39(8): 1779-1786
    [96]Wang L., Le X.Y., Ji L.N..Stacking between pyrido (3,2-f)(1,7)phenanthroline and nucleic bases[J]. Polymers for Advanced Technologies 1996, 7(8): 723-725
    [97]Li H., Mei W.J., Xu Z., Electrochemistry of a novel monoruthenated porphyrin and its interaction with DNA[J]. Electroanalytical Chem., 2007, 600(2): 243-250
    [98]Onfelt B., Lincoln P., Norden B..Femtosecond linear dichroism of DNA-intercalating chromophores: solvation and charge separation dynamics of [Ru(phen)2dppz]2+ systems[J]. Prod. Nat. Acad. Sci. Unit. State Am., 2000, 97:5708-5713
    [99]Lincoln P., Norden B..DNA BindingGeometries of Ruthenium (II) Complexes with 1,10- Phenanthroline and 2,2‘-Bipyridine Ligands Studied with Linear Dichroism Spectroscopy. Borderline Cases of Intercalation [J]. Phys. Chem. B, 1998, 102: 9583-9594
    [100]Kessel D., Vicente M. G. H., Reiners J.. Initiation of apoptosis and autophagy by photodynamic therapy [J]. Laser Surg., 2006, 38: 482-488
    [101]Elbjeirami O., Burress C. N., Gabbaie F. P., et al. Simultaneous external and internal heavy-atom effects in binary adducts of 1-halonaphthalenes with trinuclear perfluoro-ortho-phenylene mercury(II): a structural and photophysical study [J]. J. Phy.Chem. C, 2007, 111(26): 9522-9529
    [102]Gorman A., Killoran J., O Shea C., et al. In Vitro Demonstration of the Heavy-Atom Effect for Photodynamic Therapy [J]. J. Am. Chem. Soc., 2004, 126: 10619-10631
    [103]Liu H.Y., Guo P.Y., Kong P. W. et al. Heavy-atom Effect of Corrole Photosensitizer for Photodynamic Therapy [J]. Chem. J. Chinese Universities, 2006, 27: 1363-1365
    [104]Koziar J. C., Cowan D. O.. Photochemical heavy-atom effects [J]. Acc. Chem. Res., 1978, 11: 334-341
    [105]Azenha E. G., Serra A. C.. Heavy-atom effects on metalloporphyrins and polyhalogenated porphyrins [J]. Chem. Phys., 2002, 280: 177-190
    [106]赵福利,郑锡光,汪河洲,等.四种别藻蓝蛋白三聚体的时间分辨荧光光谱研究[J]中国激光,1998,25(4): 318-322
    [107]Marmur J.. A procedure for the isolation of deoxyribonucleic acid from micro.ovrddot.organisms [J]. J. Mol. Biol., 1961, 3: 208-218
    [108]Reichmann M. E., Rice S. A., Thomas C. A., et al. A further examination of the molecular weight and size of deoxypentose nucleic acid [J]. J. Am. Chem. Soc., 1954, 76: 3047-3053
    [109]Satyanaryana S., Daborusak J. C., Chaires J. B.. DELTA.- nor .LAMBDA.-tris(phenanthroline)ruthenium(II) binds to DNA by classical intercalation[J]. Biochem., 1992, 31: 9319-9324
    [110]Satyanaryana S., Daborusak J. C., Chaires J. B.. Tris(phenanthroline)ruthenium(II) enantiomer interactions with DNA: Mode and specificity of binding [J]. Biochem., 1993, 32: 2573-2584
    [111]Ghosh A., Steene E.. High-valent transition metal centers and noninnocent ligands in metalloporphyrins and related molecules: a broad overview based on quantum chemical alculations [J]. J. Bio. Inorg. Chem., 2001, 6(7): 739-752
    [112]Paolesse R., Marini A., Nardis S.. Novel routes to substituted 5,10,15-triarylCorroles [J]. J. Porphyrins Phthalocyanines, 2003, 7(1): 25-36
    [113]Ventura B., Degli E., Gryko D.T.. Photophysical characterization of free-base Corroles, promising chromophores for light energy conversion and singlet oxygen generation [J]. New. J. Chem., 2005, 29(12): 1559-1566
    [114]杨洗,潘祖亭,马勇.用罗丹明B作标准物测定二氯荧光素的荧光量子产率[J].分析科学学报, 2003, 19(6): 588-589
    [115]Seybold P. G., Gouterman M.. Porphyrins. XIII. Fluorescence spectra and quantum yields [J]. J. Mol. Spectrosc., 1969, 31(1): 1-13
    [116]Pineiro M., Carvalho A. L., Pereir M. M., et al. Photoacoustic measurements of porphyrin triplet-state quantum yields and singlet-oxygen efficiencies [J]. Chem. Eur. J., 1998, 4: 2299-2307
    [117]Verdeyen J. T.. Laser Electronics(3rd ed)[M]. 1995, 179-186
    [118]Dědic R., Svoboda A., P?en?ík J., et al. Phosphorescence of singlet oxygen and meso-tetra(4-sulfonatophenyl)porphin: time and spectral resolved study [J]. J. Mol. Structure, 2003, 651-653: 301-304
    [119]Hirakawa K., Kawanishi S., Hirano T., et al. Guanine-specific DNA oxidation photosensitized by the tetraphenylporphyrin phosphorus(V) complex via singlet oxygen generation and electron transfer [J]. J. Photochem. Photobiol. B, 2007, 87(3): 209-217
    [120]Wilkinson F., Helman W. P., Ross A. B.. Quantum yields for the photosensitized formation of the lowest electronically excited singlet state of molecular oxygen in solution [J]. J. Phy. Chem. Reference Data, 1993, 22(1): 113-262
    [121]高博文,赵景秀高仲合,等。关于PDT光敏剂敏化效应光谱及其量子产率的研究[J].光学与光电技术, 2004,6(2):34-37
    [122]Henderson B. W., Dougherty T. J.. Bacteriochlorophyll-a as photosensitizer for photodynamic treatment of transplantable murine tumors [J]. J. Photochem. Photobiol. B, 1991, 10(4): 303-313
    [123]MacDonald I. J., Morgan J., Bellnier D. A.. Subcellular Localization Patterns and Their Relationship to Photodynamic Activity of Pyropheophorbide-a Derivatives. Photochem. Photobiol., 1999, 70 (5): 789-797
    [124]Dougherty T. J., Gomer C. J., Henderson B.W., et al. Photodynamic therapy [J]. J. National Cancer Institute, 1998, 90(12): 889-905
    [125]Bonnett R., Martinez G. Photobleaching of sensitisers used in photodynamic therapy [J]. Tetrahedron, 2001, 57: 9513-9547
    [126]Kim Y. S., Song R., Kim D. H., et al. Synthesis, biodistribution and antitumor activity of hematoporphyrin–platinum (II) conjugates [J]. Bioorg. Med. Chem., 2003, 11:1753-1760
    [127]Ghosh A., Wondimagegn T. Parusel A. B. J.. Electronic Structure of Gallium, Copper, and Nickel Complexes of Corrole. High-Valent Transition Metal Centers versus Noninnocent Ligands [J]. J. Am. Chem. Soc., 2000, 122(21): 5100-5104
    [128]Pasternack R. F., Gibbs E. J., Villafranca J. J.. Interactions of porphyrins with nucleic acids [J]. Biochem., 1983, 22: 2406-2414
    [129]Uno T., Hamasaki K., Tanigawa M., et al. Binding of meso-Tetrakis (N-methylpyridinium-4-yl) porphyrin to Double Helical RNA and DNA·RNA Hybrids [J]. Inorg. Chem., 1997, 36: 1676-1683
    [130]Zhao P., Xu L. C., Huang J. W., et al. DNA binding and photocleavage properties of a novel cationic porphyrin-anthraquinone hybrid [J]. Biophy. Chem., 2008, 134: 72-83
    [131]Mukundan N. E., Pethd G., Dixon D. W., et al. DNA-tentacle porphyrin interactions: AT over GC selectivity exhibited by an outside binding self-stacking porphyrin [J]. Inorg. Chem., 1995, 34: 3677-3687
    [132]Wheelhouse R. T., Sun D., Han H., et al. Cationic Porphyrins as Telomerase Inhibitors: the Interaction of Tetra-(N-methyl-4-pyridyl) porphine with Quadruplex DNA[J]. J. Am. Chem. Soc., 1998, 120: 3261-3262
    [133]Shen J., Ojaimi E. I., Chkounda M., et al. Solvent, Anion, and Structural Effects on the Redox Potentials and UV-Visible Spectral Properties of Mononuclear Manganese Corroles [J]. Inorg. Chem., 2008, 47(17): 7717-7727
    [134]Ding T., Aleman E. A., Modarelli D. A., et al. Photophysical Properties of a Series of Free-Base Corroles [J]. J. Phy. Chem. A, 2005, 109(33): 7411-7417
    [135]Chen B., Wu S., Li A. X., et al. Synthesis of some multi-substituted cationic porphyrins and studies on their interaction with DNA [J]. Tetrahedron, 2006, 62(23): 5487-5497
    [136]Kubat P., Lang K., Kral V., et al. Preprogramming of porphyrin-nucleic acid assemblies via variation of the alkyl/aryl substituents of phosphonium tetratolylporphyrins [J]. J. Phy. Chem. B, 2002, 106(26): 6784-6792
    [137]Tjahjono D. H., Mima S., Akutsu T., et al. Interaction of metallopyrazoliumylporphyrins with calf thymus DNA [J]. J. Inorg. Biol., 2001, 85(2-3): 219-228
    [138]Fasman G. D.. Circular Dichroism and Conformational Analysis of Biomolecules [M]. Plenum Press, New York, 1996, pp 433-465
    [139]Karidi K., Garoufis A., Hadjiliadis N., et al. Solid-phase synthesis, characterization and DNA binding properties of the first chloro(polypyridyl)ruthenium conjugated peptide complex [J]. Dalton Trans., 2005, 728-734
    [140]Zhao Y., Zhu J. H., He W. J., et al. Oxidative DNA cleavage promoted by multinuclear copper complexes: Activity dependence on the complex structure [J]. Chem. Eur. J., 2006, 12: 6621-6229.
    [141]郭喜明,师同顺。卟啉二元体的合成及其性质研究[D].吉林:吉林大学,2006,5.
    [142]邱贤平,卢然。基于吩噻嗪的齐聚物和树枝状分子的合成、表征及光物理性质研究[D].吉林:吉林大学,2009,06
    [143]Tuite, E.; Norden, B.. Sequence-Specific Interactions of Methylene Blue with Polynucleotides and DNA: A Spectroscopic Study[J]. J. Am. Chem. Soc., 1994, 116(17): 7548-7556
    [144]Qiu X. P., Lu R., Zhang X. F., et al. Synthesis of phenothiazine-functionalized porphyrins with high fluorescent quantum yields[J]. Tetrahedron Lett. 2008, 49: 7446-7449
    [145]姜月顺,李铁津.光化学[M].北京:化学出版社,2005
    [146]Grigg R., Johnson A. W., Shelton G.. Structures and thermal rearrangements of alkylated palladium and copper Corroles [J]. J. Chem. Soc., C, 1971: 2287-2294
    [147]Cai S., Licoccia S., Walker F. A.. Chloroiron meso-triphenylcorrolates: electronic ground state and spin delocalization [J]. Inorg. Chem., 2001, 40: 5795-5798
    [148]Simkhovich L., Mahammed A., Goldberg I., et al. Synthesis and characterization of Germanium,Tin, Phosphorus,Iron,and Rhodium complexes of tris(pentafluoro-phenyl) Corrole, and the utilization of the iron and rhodium Corroles as cyclopropanation catalysts [J]. Chem. Eur. J., 2001, 7: 1041-1055
    [149]Aviv I., Gross Z. Iron Corroles and porphyrins as very efficient and highly selective catalysts for the reactions ofα-diazo esters with amines [J]. Synlett, 2006, 6: 951-953
    [150]Steene E., Wondimagegn T., Ghosh A.. High-valent transition metal centers versus noninnocent ligands in metalloCorroles: insights from electrochemistry and implications for high-valent heme protein intermediates [J]. J. Phys. Chem. B., 2001, 105: 11406-11413
    [151]Simkhovich L., Gross Z.. Iron (IV) Corroles are potent catalysts for aziridination of olefins by Chloramine-T [J]. Tetrahedron Lett., 2001, 42: 8089-8092
    [152]Pan Z. Z., Harischandra D. N. Newcomb, M.. Formation of stable and metastable porphyrin- and Corrole-iron (IV) complexes and isomerizations to iron (III) macrocycle radical cations [J]. J. Inorg. Biochem., 2009, 103(2): 174-181
    [153]Mahammed A., Giladi I., Goldberg I., et al. Synthesis and Structural Characterization of a Novel Covalently-Bound Corrole Dimer [J]. Chem. Eur. J., 2001, 7: 4259-4265
    [154]Bendix J., Gray H. B., Golubkov G., et al. Iron(IV) Corroles are potent catalysts for aziridination of olefins by Chloramine-T [J]. Chem. Commun., 2000, 1957-1958
    [155]Golubkov G., Bendix J., Gray H. B.. High-Valent Manganese Corroles and the First Perhalogenated MetalloCorrole Catalyst [J]. Angew. Chem. Int. Ed., 2001, 40: 2132-2134
    [156]Meier-Callahan A. E., Gray H. B., Gross Z.. Stabilization of High-Valent Metals by Corroles: Oxo[tris(pentafluorophenyl)corrolato]chromium(V) [J]. Inorg. Chem., 2000, 39: 3605-3607
    [157]Meier-Callahan A. E., DiBilio A. J., Simkhovich L., et al. High-valent transition metal centers versus noninnocent ligands in metalloCorroles: insights from electrochemistry and implications for high-valent heme protein intermediates [J]. Inorg. Chem., 2001, 40: 6788-6793
    [158]Gross Z., Biol J.. Oxidations Catalyzed by MetalloCorroles [J]. Inorg. Chem., 2001, 6: 733-738
    [159]Jerome F., Billier B., Barbe J. M., et al. Synthesis, physicochemical and electrochemical properties of metal–metal bonded ruthenium Corrole homodimers [J]. Angew. Chem. Int. Ed. 2000, 39: 4051-4053
    [160]Simkhovich L., Mahammed A., Goldberg I., et al. Synthesis and characterization of Germanium, Tin, Phosphorus, Iron and Rhodium complexes of tris(pentafluoro-phenyl) Corrole, and the utilization of the iron and rhodium Corroles as cyclopropanation catalysts [J]. Chem. Eur. J., 2001, 7: 1041-1055
    [161]Simkhovich L., Galili N., Saltsman I., et al. Coordination Chemistry of the Novel 5, 10, 15-Tris(pentafluorophenyl)Corrole: Synthesis, Spectroscopy, and Structural Characterization of Its Cobalt(III), Rhodium(III), and Iron(IV) Complexes [J]. Inorg.Chem., 2000, 39: 2704-2705
    [162]Kadish K. M., Erben C., Ou Z., et al. Corroles with Group 15 Metal Ions. Synthesis and Characterization of OctaethylCorroles Containing As, Sb, and Bi Ions in +3, +4, and +5 Oxidation States [J]. Inorg. Chem., 2000, 39: 3312-3319
    [163]Stefanelli M., Mastroianni M., Nardis S., et al. Functionalization of Corroles: The Nitration Reaction [J]. Inorg. Chem., 2007, 46: 10791-10799
    [164]Amelia M. A., Jeanet C., Peter D. W. B., et al. Corrole as a Binucleating Ligand: Preparation, Molecular Structure and Density Functional Theory Study of Diboron Corroles [J]. J. Am. Chem. Soc., 2008, 130: 2888-2889
    [165]Simkhovich L., Goldberg I., Gross Z.. First syntheses and X-ray structures of a meso-alkyl-substituted Corrole and its Ga(III) complex[J]. Inorg. Biochem., 2000, 80(3-4): 235-238
    [166]Bendix J., Dmochowski I. J., Gray H. B.. Structural, electrochemical, and photophysical properties of Gallium (III) 5,10,15-tris(pentafluorophenyl)Corrole[J]. Angew. Chem. Int. Ed., 2000, 39(22): 4048-4051
    [167]Liu X., Mahammed A., Tripathy U., et al. Photophysics of Soret-excited tetrapyrroles in solution. III. Porphyrin analogues: Aluminum and Gallium Corroles [J]. Chem. Phy. Lett., 2008, 459(1-6): 113-118
    [168]Saltsman I., Mahammed A., Goldberg I., et al. Selective Substitution of Corroles: Nitration, Hydroformylation, and Chlorosulfonation [J]. J. Am. Chem. Soc., 2002, 124(25): 7411-7420
    [169]Sorasaenee K., Taqavi P., Henling L. M., et al. Amphiphilic aluminum(III) and Gallium(III) Corroles [J]. J. Porphyrins Phthalocyanines, 2007, 11(3-4): 189-197
    [170]Ghosh A., Wondimagegn T., Parusel A. B. J.. Electronic Structure of Gallium, Copper, and Nickel Complexes of Corrole. High-Valent Transition Metal Centers versus Noninnocent Ligands [J]. J. Am. Chem. Soc., 2000, 122(21): 5100-5104
    [171]Kowalska D, Liu X, Tripathy U, et al. Ground- and Excited-State Dynamics of Aluminum and Gallium Corroles [J]. Inorg. Chem., 2009, 48(6): 2670-2676
    [172]Phaniband M. A., Dhumwad S. D., Pattan S. R.. Synthesis, characterization, antimicrobial, and DNA cleavage studies of metal complexes of coumarin Schiff bases [J]. Med. Chem. Res., 2010, 64(3): 318-328
    [173]Sun Y. J., Joyce L. E., Dickson N. M., et al. Efficient DNA photocleavage by [Ru(bpy)2(dppn)]2+ with visible light [J]. Chem. Commun., 2010, 46(14): 2426-2428
    [174]Wong Y. L., Mak C. Y., Kwan H. S., et al. Mononuclear iron (III) complexes supported by tripodal N3O ligands: Synthesis, structure and reactivity towards DNA cleavage [J]. Inorg. Chimica Acta, 2010, 363(6): 1246-1253
    [175]McCrate A., Carlone M., Nielsen M., et al. Anaerobic photocleavage of supercoiled DNA by a ruthenium(II) substituted fluorinated porphyrin [J]. Inorg. Chem. Commun., 2010, 13(4): 537-539
    [176]Patra A. K., Bhowmick T., Roy S.. Copper (II) Complexes of L-Arginine as Netropsin Mimics Showing DNA Cleavage Activity in Red Light [J]. Inorg. Chem., 2009, 48(7): 2932-2943
    [177]Li K., Zhou L. H., Zhang J., et al.‘‘Self-activating’’chemical nuclease: Ferrocenyl cyclen Cu (II) complexes act as efficient DNA cleavage reagents in the absence of reductant [J]. Eur. J. Med. Chem., 2009, 44: 1768-1772
    [178]González-álvarez M., Arias M. S., Fernández M. J., et al. Copper-mediated DNA photocleavage by a tetrapyridoacridine (tpac) ligand [J]. Bioorg. Med. Chem. Lett., 2008, 18: 3286-3290
    [179]Will S., Lex J., Vogel E., et al. Nickel and Copper Corroles: Well-Known Complexes in a New Light [J]. Angew. Chem. Int. Ed., 1997, 36: 357-361
    [180]Eckshtain M., Zilbermann I., Gross Z., et al. Superoxide dismutase activity of Corrole metal complexes [J]. Dalton Trans., 2009, 7879-7882

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700