自适应滤波器的稳态性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自适应滤波器的性能分析通常检测其瞬时行为和稳态行为,前者提供了自适应滤波器的稳定性和收敛速率信息,后者提供了滤波器达到稳态后的均方误差信息。一般,稳态性能通常可以通过瞬时性能的极限得到,但是这也遇到了比较大的困难,主要表现在三个方面:(1)针对误差信号具有非线性的自适应滤波器,瞬时性能分析比较困难;(2)瞬时性能分析要求一些比较严格的简化假设;(3)针对不同自适应算法,瞬时分析一般需要各自进行分析。为此,针对稳态性能分析,很有必要发展一种独立于瞬时分析的统一理论以适应大量不同的自适应算法。
     本文以自适应滤波器迭代过程中的能量守恒关系为出发点,利用复数形式和实数形式的泰勒级数展开,深入研究了具有非线性估计误差信号的自适应滤波器的稳态均方误差和跟踪性能。主要从几个方面着手:(1)基于分离原理,推导了估计误差信号具有非线性的自适应滤波算法的稳态性能通用解析表达式,包括:稳态均方误差表达式、稳态跟踪均方误差表达式、最优步长表达式和最小稳态均方误差表达式,并给出了这些通用稳态表达式成立时迭代步长应该满足的条件。然后举例说明了这些通用解析表达式适用于常用的LMS算法、LMF算法和LMMN算法等,仿真实验验证了理论结果。(2)当输入信号为高斯白噪声时,不依赖分离原理条件,给出了具有非线性估计误差信号的自适应滤波算法的稳态性能通用解析表达式,并给出了这些通用解析表达式成立时迭代步长应该满足的条件。相同条件下,同基于分离原理得到的稳态性能结果相比较,两者相差非常微小,并且在迭代步长充分小条件下,这些解析表达式同基于分离原理得到的解析表达式是完成一样的。(3)研究了在高斯噪声和均匀分布噪声环境下LMP算法(不同参数p)和LMMN算法的稳态性能通用解析表达式,仿真表明理论结果同仿真结果相吻合。(4)比较了LMP算法和LMS算法在高斯白噪声模型和均匀分布噪声模型下的跟踪性能。说明在高斯噪声环境下,LMS算法的跟踪性能优于LMP算法(参数p大于2);而在均匀分布噪声环境下,LMP算法的跟踪性能优于LMS算法。
     常用的调制信号如QPSK、8PSK、4QAM、8QAM、16QAM、64QAM、256QAM等的发射信号星座图具有对称特性。论文充分利用这些对称特性,在没有利用循环假设条件下,推导了Bussgang盲均衡算法的稳态超量均方误差的表达式,并证明其与A.Goupil和J.Palicot在文献[127]中得到的理论结果是一致性的。
     并行软判决恒模算法(CCMA+SDD)同常用的恒模算法(CMA)相比,其在QAM信道中的均衡能力得到了很大提高,具有收敛速度快,收敛后的均方误差小等特点。但是,由于CCMA+SDD算法具有双并行FIR滤波器结构,而且其估计误差信号具有非线性,因此此算法的性能分析一直被解决。本文针对CCMA+SDD算法的并行双迭代结构,提出一种等效的具有单FIR结构的软判决恒模算法:然后应用前面得到的Bussgang盲均衡算法的稳态性能通用解析表达式,给出了CCMA+SDD算法在实值数据和复值数据下的的稳态解析表达式,仿真实验验证了理论结果。
The performance of an adaptive filter is generally measured in terms of its transient behavior and its steady-state behavior. The former provides information about the stability and the convergence rate of an adaptive filter, whereas the latter provides information about the mean square error (MSE) of the filter once it reaches steady state. In general, the steady state performance can be obtained as the limiting case of a transient analysis, but it encounters some difficulties. Firstly, transient analyses tend to be laborious, especially for adaptive filters with nonlinear estimation error signals. Secondly, transient analyses tend to require some simplifying assumptions, which at times can be restrictive. Finally, it is common in the literature to perform transient analyses of different adaptive filters separately by studying each nonlinear update form individually. These points motivate the development of a unified approach in the thesis to the steady-state performance for a large class of adaptive filters that bypass several of the difficulties encountered in obtaining steady-state results as the limiting case of a transient analysis.
     In the thesis, based on the real form and complex form Taylor series expansions and the energy conservation relation during two successive iteration update, the steady-state MSE and tracking performance analyses for the adaptive filters with nonlinear estimation error signals are studied. Firstly, based on separation principle, some unified closed analytical expressions for the steady-state MSE, the tracking MSE, the optimal step-size and the minimum MSE, respectively, are derived for adaptive filters with nonlinear estimation error signals, and the restrictive conditions for these expressions are also given. The steady-state performance analyses for some common algorithms, such as least mean square (LMS) algorithm, least mean forth (LMF) algorithm and least mean mixed norm (LMMN) algorithm are special cases for these general expressions. In addition, the extensive computational simulations for adaptive filters validate these theoretical resutls. Secondly, rather using separation principle, the steady-state performance analyses can be obtained while the regressors are white white Gaussian noise, and the restrictive conditions for these expressions are also given. Comparing with the results obtained by separation principle, it can be found that only small distinction exists. In addition, in view of small step-size enough, their expressions are same. Thirdly, the steady-state performance analyses for least mean p-order (LMP) algorithm with different parameter p and LMMN algorithm are presented in both Gaussian noise environments and uniformly distributed noise environments. The experimental and theoretical results are matched reasonable well. Finally, comparison of the tracking performance between the LMP algorithm and LMS algorithm are implemented both in Gaussian noise environments and in uniformly distributed noise environments. Simulations show the superiority of the LMS algorithm over LMP with parameter p>2 for tracking nonstationary systems in Gaussian noise environments, and the superiority of the LMP algorithm over LMS in uniformly distributed noise environments.
     Most of modulation signals, such as QPSK, 8PSK, 4QAM, 8QAM, 16QAM, 64QAM, 256QAM, and so on, all have symmetrical constellations. In the thesis, based on the constellation symmetric characteristics of the modulated signals, some expressions for the steady-state EMSE of the Bussgang algorithms (BA) are derived without appealing to the circularity assumption, and are proved that they are same as the results derived by A. Goupil and J. Palicot in [127].
     The concurrent constant modulus algorithm and decision-directed scheme (CCMA+SDD) blind equalization achieves a considerable improvement in equalization performance over the constant modulus algorithm (CMA) for high-order quadrature amplitude modulation (QAM) channels, such as faster convergence and lower steady-state MSE. However, the actual steady-state performance has largely been left undone because of its concurrent adaptive filter structure and the complexity to analyze the time evolution of the weight update estimation error that arises from the nonlinear estimation error. In the thesis, an equivalent blind equalizer described by a hybrid cost function of CMA and SDD scheme is proposed. Then, based on the previous steady-state EMSE expressions for BA, some closed analytical expressions for EMSE for CCMA+SDD algorithm are given, for real-valued cases and for complex-valued cases, respectively. Extensive computational simulations for CCMA+SDD algorithm validate these theoretical results.
引文
[1]S.H aykin.Adaptive Filter Theory.4th edn.电子工业出版社,2002.
    [2]A.H.Sayed,Fundamentals of adaptive filtering,New York:Wiley,2003.
    [3]何振亚.自适应信号处理.北京:科学出版社,2002.
    [4]沈福民.自适应信号处理.西安:西安电子科技大学出版社,2001.
    [5]N.Wie ner.The Theory of Prediction.McGraw-Hill,New York,1956.
    [6]谷源涛.LMS算法收敛性能研究及应用.清华大学博士论文,2003.
    [7]P.S.R.Dinlz.Adaptive Filtering:Algorithms and Practical Implemental.2nd edn.电子工业出版社,2004.(刘郁林等译)
    [8]B.Widrow.Adaptive filters I:Fundamentals,Rep.SEL-66-126(TR 6764-6),Stanford Electronics Laboratories,Stanford,CA,1966.
    [9]B.Widrow and M.E.Hoff,Jr.,"Adaptive switching circuits," IRE WESCON Conv.Rec.,Pt.4,pp.96-104,1960.
    [10]B.Widrow and S.D.Streams,Adaptive Signal Processing.Englewood Cliffs,NJ:Prentice Hall 1985.
    [11]S.C.Douglas and T.H.-Y.Meng,"Stochastic gradient adaptation under general error criteria,"IEEE Trans.Signal Processing.vol.42,pp.1335-1351,Jun.,1994.
    [12]D.L.Duttweiler,"Adaptive filter performance with nonlinearities in the correlation multiplier,"IEEE Trans.Acoust.,Speech,Signal Processing,vol.ASSP-30,pp.578-586,Aug.1982.
    [13]J.Gibson and S.Gray,"MVSE adaptive filtering subject to a constraint on MSE," IEEE Trans.Circuits Syst.,vol.35,pp.603-608,May 1988.
    [14]W.Sethares,"Adaptive algorithms with nonlinear data and error functions," IEEE Trans.Signal Processing,vol.40,pp.2199-2206,Sept.1992.
    [15]N.J.Bershad,"On error saturation nonlinearities in LMS adaptation," IEEE Trans.Acoust.,Speech,Signal Processing,vol.36,pp.440-452,Apr.1988
    [16]N.J.Bershad and M.Bonnet,"Saturation effects in LMS adaptive echo cancellation for binary data," IEEE Trans.Acoust.,Speech,Signal Processing,vol.38,pp.1687-1696,Oct.1990.
    [17]E.Eweda,"Comparison of RLS,LMS,and sign algorithms for tracking randomly time-varying channels," IEEE Trans.Signal Processing,vol.42,pp.2937-2944,Nov.1994
    [18]T.Claasen andW.Mecklenbr(a|¨)uker,"Comparison of the convergence of two algorithms for adaptive FIR digital filters," IEEE Trans.Circuits Syst.,vol.CAS-28,pp.510-518,June 1981.
    [19]W.A.Gardner,"Learning characteristic of stochastic-descent algorithms:A general study,analysis,and critique," Signal Process.,vol.6,no.2,pp.113-133,Apr.1984.
    [20]A.Feuer and E.Weinstein,"Convergence analysis of LMS filters with uncorrelated Gaussian data," IEEE Trans.Acoust.,Speech,Signal Processing,vol.ASSP-33,Jan.1985
    [21]M.Rupp,"The behavior of LMS and NLMS algorithms in the presence of spherically invariant processes," IEEE Trans.Signal Processing,vol.41,pp.1149-1160,Mar.1993
    [22]J.H.Husφy and M.S.E.Abadi,"Unified approach to adaptive filters and their performance,"IET Signal Processing,vol.2,pp.97-109,Jun.,2008.
    [23]K.Jones,R.K.Cavin,and W.M.Reed,"Analysis of error-gradient adaptive linear estimators for a class of stationary dependent processes," IEEE Trans.Information Theory,vol.28,pp.318-329,1982.
    [24]O.Tanrikulu and J.A.Chambers,"Convergence and steady-state properties of the least-mean mixed-norm(LMMN) adaptive algorithm," IEE Proceedings-Vision,Image Signal Processing,vol.143,pp137-142,1996.
    [25]E.Walah and B.Widrow,"The least-mean fourth(LMF) adaptive algorithm and its family,"IEEE Trans.Information Theory,vol.30,pp.275-283,1984.
    [26]V.J.Mathews and S.Cho,"Improved convergence analysis of stochastic gradient adaptive filters using the sign algorithm," IEEE Trans.Acoust.,Speech,Signal Processing,vol.35,pp.450-454,1987.
    [27]J.A.Chambers,O.Tanrikulu and A.G.Constantinides,"Least mean mixed-norm adaptive filtering," Electron.Lett.,vol.30,pp.1574-1575,1994.
    [28]N.J.Bershad,"Analysis of the normalized LMS algorithm with Gaussian inputs," IEEE Trans.Acoust.,Speech,Signal Processing,vol.ASSP-34,pp.793-806,1986.
    [29]N.J.Bershad,"Behavior of the ε-normalized LMS with Gaussian inputs," IEEE Trans.Acoust.,Speech,Signal Processing,vol.ASSP-35,pp.636-644,1986.
    [30]N.J.Bershad,D,Linebarger,and S.McLaughlin,"A stochastic analysis of the affine projection algorithm for Gaussian autogressive inputs," Proc.ICASSP,Salt Lake City,UT,pp.3837-3840,2001.
    [31]B.Windrow,J.M.Mccool,M.G.Larimore,and C.R.Hohnson,"Stationary and nonstationary learning characteristics of the LMS adaptive filter,"Proc.IEEE,vol.46,pp.1151-1161,1976.
    [32]N.J.Bershad,"On the optimum data nonlinearity in LMS adaption," IEEE Trans.Acoust.,Speech,Signal Processing,vol.ASSP-34,pp.69-76,1986.
    [33]B.Benveniste and G.Ruget,"A measure of the tracking capability of recursive stochastic algorithm with constant gains," IEEE Trans.Automat.Contr.vol.27,pp.639-649,1982.
    [34]S.H.Cho and V.J.Mathews,"Tracking analysis of the sign algorithm in nonstationary environment," IEEE Trans.Acoust.,Speech,Signal Processing,vol.38,pp.2046-2057,Dec.1990.
    [35]N.R.Yousef and A.H.Sayed,"Tracking analysis of the LMF and LMMN adaptive algorithxns," Proc.Asilomar Conference an Signals,systems,and Computers,vol.1,Pacific Grove,CA,pp.786-790,1999.
    [36]T.Y.Al-Naffouri and A.H.Sayed,"Transient analysis of adaptive filters with error nonlinearities," IEEE Trans.Signal Processing,vol.51,pp.653-663,Mar.,2003.
    [37]T.Y.Al-Naffouri and A.H.Sayed,"Transient analysis of Data-normalized adaptive filters,"IEEE Trans.Signal Processing,vol.51,pp.639-652,Mar.,2003.
    [38]N.R.Yousef and A.H.Sayed,"Steady-state and tracking analyzes of the sign algorithm without the explicit use of the independence assumption," IEEE Signal Processing Lett.,vol.7,pp.307-309,Nov.2000.
    [39]N.R.Yousef and A.H.Sayed,"A generalized tracking analysis of adaptive filtering algorithms in cyclicly and randomly varying environments," in Proc.ICASSP,vol.I,Istanbul,Turkey,June 2000,pp.440-443.
    [40]N.R.Yousef and A.H.Sayed,"A feedback analysis of the tracking performance of blind adaptive equalization algorithms," in Proc.Conf.Decision Contr.,vol.1,Phoenix,AZ,Dec.1999,pp.174-179.
    [41]N.R.Yousef and A.H.Sayed,"A unified approach to the steady-state and tracking analyses of adaptive filters",IEEE Trans.Signal Processing,vol.49,pp.314-324,Feb.,2001.
    [42]N.R.Yousef and A.H.Sayed,"Fixed-point steady-state analysis of adaptive filters," Int.J.Contr.Signal Processing,vol.17,pp.237-258,2003.
    [43]T.Y.Al-naffouri and A.H.Sayed,"Adaptive filters with error nonlinearities:Mean-square analysis and optimum design," EURASIP Journal on Applied Signal Processing,special issue on Nonlinear Signal Processing and Applications,pp.192-205,2001.
    [44]Y.Zhang and N.Li,J.A.Chambers and A.H.Sayed,"Steady-state performance analysis of a variable tap-length LMS algorithm," IEEE Trans.Signal Processing,vol.56,pp.839-845,Feb.,2008.
    [45]H.C.Shin and A.H.Sayed,"Mean-Square Performance of a Family of Affine Projection Algorithms," IEEE Trans.Signal Processing,vol.52,pp.90-102,Jun.,2004.
    [46]O.Dabeer,and E.Masry,"Analysis of mean-square error and transient speed of the LMS adaptive algorithm," IEEE Trans.Information Theory,vol.48,pp.1873-1894,July,2002.
    [47]N.J.Bershad,J.C.M.Bermudez and J.Y.Tourneret,"An affine combination of two LMS adaptive filters-transient mean-square analysis," IEEE Trans.Signal Processing,vol.56,pp.1853-1864,May,2008.
    [48]Y.Gong and C.F.N.Cowan,"An LMS style variable tap-length algorithm for structure adaptation," IEEE,Trans.Signal Processing,vol.53,pp.2400-2407,Jul.,2005.
    [49]S.Cho and V.Mathews,"Tracking analysis of sign algofithm in nonstationary environments,"IEEE Trans.Acoust.,Speech,Signal Processing,vol.38,pp.2046-2057,Dec.1990.
    [50]E.Eweda,"Optimum step size of the sign algorithm for nonstationary adaptive filtering," IEEE Trans.Acoust.,Speech,Signal Processing,vol.38,pp.1897-1901,Nov.1990.
    [51]E.Eweda,"Analysis and design of a signed regressor LMS algorithm for stationary and nonstationary adaptive filtering with correlated Gaussian data," IEEE Trans.Circuits Syst.,vol.37,pp.1367-1374,Nov.1990.
    [52]E.Eweda,"Tracking analysis of the sign algorithm without the Gaussian constraint," IEEE Trans.Circuits and Syst-Ⅱ:Analog and digital Signal Processing,vol.45,pp.115-122,Jan.1998.
    [53]E.Eweda and O.Maechi,"Tracking error bounds of adaptive nonstationary filtering,"Automatica,pp.296-302,1985.
    [54]S.H.Cho and V.J.Mathews,"Tracking analysis of the sign algorithm in nonstationary environments," IEEE Trans.Acoust.,Speech,Signal Processing,vol.38,pp.2046-2057,Dec.1990.
    [55]S.L.Netto,P.S.R.Diniz and P.Agathoklis,"Adaptive IIR filtering algorithms for system identification:a general framework," IEEE Tran.Education,vol.38,pp.54-66,Feb.,1995.
    [56]Y.Xiao,L.Ma,K.Khorasani,and A.Ikuta,"Statistical performance of the memoryless nonlinear gradient algorithm for the constrained adaptive IIR notch filter," IEEE Tran.Circuits and System-Ⅰ:Regular Paper,vol.52,pp.1691-1702,AUG.,2005.
    [57]Y.Xiao,Y.Takeshita,and K.Shida,"Steady-state analysis of a plain gradient algorithm for a second-order adaptive IIR notch filter with constrained poles and zeros," IEEE Trans.Circuits Syst.Ⅱ,Analog Digit.Signal Process.,vol.48,no.7,pp.733-740,Jul.2001.
    [58]Y.Xiao,Y.Takeshita,and K.Shida,"Tracking properties of a gradient-based second-order adaptive IIR notch filter with constrained poles and zeros," IEEE Trans.Signal Process.,vol.50,no.4,pp.878-888,Apr.2002.
    [59]Y.Xiao,R.K.Ward,and A.Ikuta,"Performance analysis of the sign algorithm for a constrained adaptive IIR notch filter," IEEE Trans.Signal Process.,vol.51,no.7,pp.1846-1858,Jul.2003.
    [60]M.Shadaydeh and M.Kawamata,"Performance analysis of adaptive IIR notch filters based on least mean p-power error criterion," in Proc.IEEE Int.Symp.Circuits,Syst.,vol.4,May 2003,pp.377-380.
    [61]Y.Xiao and N.Tani,"Statistical properties of a memoryless nonlinear gradient algorithm for an adaptive constrained IIP,notch filter," in Proc.IEEE Int.Symp.Circuits and Systems,vol.2,May 2001,pp.809-812.
    [62]M.Rupp,"A family of adaptive filter algorithms with decorrelating properties," IEEE Trans.Signal Processing,vol.46,pp.771-775,Mar.1998.
    [63]S.G.Sankaran and A.A.(Louis) Beex,"Normalized LMS algorithm with onhogonal correction factors," in Proc.31st Annu.Asilomar Conf.Signals,Syst.,Comput.,Pacific Grove,CA,Nov.1997,pp.1670-1673.
    [64]D.R.Morgan and S.G.Kratzer,"On a class of computationally efficient,rapidly converging,generalized NLMS algorithms," IEEE Signal Processing Lett.,vol.3,pp.245-247,Aug.1996.
    [65]N.J.Bershad,D.Linebarger,and S.McLaughlin,"A stochastic analysis of the affine projection algorithm for gaussian autoregressive inputs," in Proc.ICASSP,Salt Lake City,UT,2001,pp.3837-3840.
    [66]S.C.Pei,and C.C.Tseng,"Least mean p-power error criterion for adaptive FIR filter," IEEE Journal on Selected Areas in Communications,vol.12,pp.1540-1547,Dec.1994.
    [67]C.S.Bums and J.A.Barreto,"Least p-power error design of FIR filters," IEEE Int.Symp.Circuits,Syst.(San Diego,CA),pp.545-548,May 1992.
    [68]E.Denoel and J.P.Solvay,"Linear prediction of speech with a least absolute error criterion,"IEEE Trans.Acoust.,Speech,Signal Processing,vol.33,pp.1397-1403,Dec.1985.
    [69]D.H.Brandwood,"A complex gradient operator and its application in adaptive array theory,"Proc.Inst.Elect.Eng.F,H,vol.130,pp.11-16,Feb.,1983.
    [70]G.Yan and H.Fan,"A Newton-like algorithm for complex variables with applications in blind equalization," IEEE Trans.Signal Processing,vol.48,pp.553-556,Feb.,2000.
    [71]R.Price,"A useful theorem for nonlinear devices having Gaussian inputs," IRE Trans.Information Theory,vol.4,pp.69-72,1958.
    [72]A.Papoulis,Probability,Random Variables,and Stochastic Processes,3rd edn.,McGraw Hill,New York.
    [73]I.S.Reed,"On a moment theorem for complex Gaussian process," IRE Trans.Information Theory,pp.194-195,April,1962.
    [74]王宏禹等.自适应噪声抵消与时间延迟估计.大连:大连理工大学出版社,1999.
    [75]罗军辉等.Matlab 7.0在数字信号处理中的应用.北京:机械工业出版社,2005.
    [76]R W.Lucky,"Automatic equalization for digital communication system," Bell Syst.Tech.,vol.45,pp.547-588,1966.
    [77]J.G.Prokias:Digital Communication,4rd edn.McGraw-Hill Companies,Ine(2001).
    [78]张贤达,保铮.通信信号处理,北京:国防工业出版社,2000.
    [79]张贤达.现代信号处理(第二版),北京:清华大学出版社,2002.
    [80]冯熳,廖桂生.恒模算法:进展和展望,信号处理.2003,19(5),pp:441-447.
    [81]Y.Sate,"A method of self-recovering equalization for multiple amplitude modulation schemes," IEEE Trans.on communication,vol.23,pp.679-682,1975.
    [82]D.Godard,"Self-recovering equalization and carrier tracking in two-dimensional data communication systems," IEEE Trans.on Communication,vol.28,pp.1867-1875,1980.
    [83]A.Benveniste and M.Goursat,"Blind equalizers," IEEE Trans.on communication,vol.32,pp.871-878,1984.
    [84]G.Picchi and G.Prati,"Blind equalization and carder recovering using a 'stop-and-go decision directed algorithm," IEEE Trans.on Communication,vol.35,pp.877-887,1987.
    [85]A.Benweniste,M.Cxoursat,G.Ruget.,"Robust identification of a nonminirnun phase system:Blind adjustement of a linear equalizer in data communieation," IEEE Trans.On AC.,vol.AC-25(2),pp.385-399,1980.
    [86]C.,R.,Johnson,P.Schniter,T.J.Endres,J.D.Behm,D.R.Brown and R.A.Casas,"Blind equalization using the constant modulus criterion:a review," Proc.IEEE,vol.86,pp.1927-1950,1998.
    [87]L.R.Litwin,M.D.Zoltowski,T.J.Endres and S.N.Hulyalkar,Blended CMA,"Smooth,adaptive transfer from CMA to DD-LMS,:in Proc.IEEE Wireless Communication,Networking Conf.,Montreal,QC,Canada,pp.797-800,1999.
    [88]K.Hilal and P.Duhamel,"A blind equalizer allowing soft transition between the constant modulus and the DD algorithm for PSK modulated signals," in Proc.ICC'93,Geneva,Switzerland,pp.1144-1148,1993.
    [89]J.Karaoguz and S.H.Ardalan,"A soft decision-directed blind equalization algorithm applied to equalization of mobile communication channels," in Proc.ICC'92,Chicago,USA,3,343.4.1-343.4.5,1992.
    [90]C.C.Fernando,D.Castro,C.F.Maria and D.S.Arantes,"Concurrent blind deconvolution for channel equalization," in Proc.ICC'2001,Helsinki,Finland,11-15,51,pp.366-371,2003.
    [91]S.Chen,"Low complexity concurrent constant modulus algorithm and soft decision directed scheme for blind equalization," IEE Proc.Vis Image Signal Processing,vol.150,pp.312-320,2003.
    [92]S.Chen,T.B.Cook and L.C.Anderson,"Blind FIR equalisation for high-order QAM signaling," in Proc.6th Int.Conf.on Signal Processing,Beijing,China,26-30,pp.1299-1302,2002.
    [93]S.Chen,T.B.Cook and L.C.Anderson,"A comparative study of two blind FIR equalizers,"Digital Signal Processing,A Review Journal,vol.14,pp.18-36,2004.
    [94]H.Lin,G.A.Moeness,R.J.Charles and C.M.Robert,"A hybrid adaptive blind equalization algorithm for QAM signals in wireless communications," IEEE Trans.on Signal Processing,vol.52,pp.2058-2069,2004.
    [95]O.Dabeer and E.Masry,"Convergence analysis of the constant modulus algorithm," IEEE Tran.on Information Theory,vol.49,pp.1447-1464,2003.
    [96]M.Zakai,"General error criteria," IEEE Trans.Inform.Theory,vol.10,pp.94-95,1964.
    [97]A.H.Sayed and M.Rupp,"A time-domain feedback analysis of adaptive algorithms via the small gain theorem," in Proc.SPIE,vol.2563,pp.458-469,July 1995.
    [98]M.Rupp and A.H.Sayed,"A time-domain feedback analysis of filtered error adaptive gradient algorithms," IEEE Trans.Signal Processing,vol.44,pp.1428-1439,June 1996.
    [99]A.H.Sayed and M.Rupp,DSP Handbook.Boca Raton,FL:CRC,1998,ch.20.
    [100]J.Mai and A.H.Sayed,"A feedback approach to the steady-state performance of fractionally-spaced blind adaptive equalizers," IEEE Trans.Signal Processing,vol.48,pp.80-91,Jan.,2000.
    [101]M.Rupp and A.H.Sayed,"On the convergence of blind adaptive equalizers for constant-modulus signals," IEEE Trans.Commun.,vol.48,pp.795-803,May.,2000.
    [102]E.Biglieri,D.Divsalar,J.Peter,McLane and M.S.Simon,Introduction to Trellis-Coded Modulation with Applications,Macmillan,1991.
    [103]Y.Cheolwoo and H.Daesik,"Nonlinear blind equalization schemes using complex-valued multilayer feed forward neural networks," IEEE Trans.on Signal Processing,vol.46,pp.1442-1455,1998.
    [104]Y.Li,Z.Ding,"Global convergence of fractionally spaced Godard(CMA) adaptive equalizers," IEEE Transactions on Signal Processing,vol.44,pp.818-826,1996.
    [105]J.R.Trichler,C.R.Johnson,"Blind fractionally spaced equalization of digital cable TV,"In Proc.8~(th) IEEE Workshop Statistical Signal Proc.,Corfu,Greece,pp.122-130,1996.
    [106]A.J.Paulraj,C.B.Papadias,"Space-time processing for wireless communications," IEEE Signal Processing Mag.,vol.14,pp.49-83,1997.
    [107]D.Boss,K.D.Kammeyer,and T.Petermann,"Is blind channel estimation feasible in mobile communication systems? A study based on GSM," IEEE J.Select.Areas Commun.,vol.16,pp.1480-1492,1998.
    [108]Z.Ding,G.Li,"Single channel blind equalization for GSM cellular systems," IEEE J.Select.Areas Commun.,vol.16,pp.1493-1505,1998.
    [109]J.R.Trichler and B.G.Agree,"A new approach to multipath correction of constant modulus signals," IEEE Trans.Acoustics,Speech,and Signal Processing,vol.31,pp.457-471,1983.
    [110]J.R.Trichler and C.R.Johnson,"Blind fractionally apaced equalization of digital cable TV," In Proc.8~(th) IEEE Workshop Statistical Signal Proc.,Corfu,Greece,pp.122-130,1996.
    [111]Simon Haykin.Ssupervised Adaptive Filtering Volume 1,Blind Source Separation.New York,Wiley,2000.
    [112]Simon Haykin.Unsupervised Adaptive Filtering Volume Ⅱ,Blind Deconvolution.New York,Wiley,2000.
    [113]凌琳,陆佩忠.含软方向判决的修正CMA盲均衡新算法.通信学报.2005,26(12),pp,:5-80.
    [114]M.G.Larimore and J.R.Treichler,"Convergence behavior of the constant modulus algorithm," ICASSP,BOSTON,pp.13-16,1983.
    [115]H.Hanks and H.H.Zeng,etc.,"Relationships between the constant modulus and wiener receivers," IEEE Trans.on Information theory,vol 44,pp.1523-1538,1998.
    [116]邹谋炎.反卷积和信号复原.北京:国防工业出版社,2001.
    [117]P.Schniter and C.R.Johnson,"Sufficient conditions for the local convergence of constant modulus algorithm," IEEE Trans.on signal processing,vol.48,pp.2785-2792,2000.
    [118]Z.Ding,"Convergence of Godard blind equalizers in data communication systems," IEEE Trans.On Communication,voI.SP-39,pp.1313-1318,Sept.,1991
    [119]Z.Ding,"Local Convergence of the Sato blind equalizer and generalization under practical constrains," IEEE Trans.Inform.Theory,vol.39,pp.129-144,1993.
    [120]A.Benweniste,et al.,"Analysis of stochastic approximation scheme with discontinuous and dependent forcing terms with applications to data communication algorithms," IEEE Trans.On AC.vol.AC-25,pp.1042-1058.Dec.,1980.
    [121]O.Shalvi,et al.,"New criteria for blind deconvolution of nonminimum phase systems channels," IEEE Trans.Inform.Theory,vol.36,pp.312-321,Mar.,1990.
    [122]J.J.Shynk,R.P.Gooch,G.Krisnamurthy and C.K.Chan,"A comparative performance study of several blind equalization algorithms," Proc.SPIE Conf Adv.Signal Process.,vol.1565,pp.102-117,1991.
    [123]H.H.Zeng and L.Tong,"The MSE performance of constant modulus receivers," Proc.ICASSP,Munich,Germany,pp.3577-3580,1997.
    [124]I.Fijalkow,C.E.Manlove and C.R.Johnson,"Adaptive fractionally spaced blind CMA equalization:Excess MSE," IEEE Trans.Signal Process.,vol.46,pp.227-231,1998.
    [125]S.Fiori,"Analysis of modified 'Bussgang' algorithm(MBA) for channel equalization,"IEEE Trans.on Circuits and Systems-Part Ⅰ,vol.51,pp.1552-1560,August,2004.
    [126]S.Fiori,"A contribution to(Neuromorphic) blind deconvolution by flexible approximated Bayesian estimation," Signal Processing,vol.81,pp.2131-2153,Sept.,2001.
    [127]A.Goupil and J.Palicot,"A geometrical derivation of the excess mean square error for Bussgang algorithms in a noise environment",ELSEVIER Signal Processing,vol.84,pp.311-315,2004.
    [128]徐余标,葛建华,王新梅.一种新的盲均衡算法.通信学报.1995,16(3),pp:78-81.
    [129]徐金标,王育民.Stop and Go判决引导算法中p的选择及动量算法.电子科学学刊.1998,20(3),pp:321-329.
    [130]庄东建等.适用于多电平数字通信系统的盲均衡算法.电子学报.1992,20(7),pp:28-35.
    [131]欧阳喜,葛临东.一种新的基于数据可靠性判决引导的CMA盲均衡算法.通信学报.2001,22(5),pp:125-128.
    [132]王峰,赵俊渭,李桂娟.一种常数模与判决导引相结合的盲均衡算法研究.通信学报.2002,23(6),pp:108-109.
    [133]孙守宇,郑君里,张琪.盲信道均衡中的一种修正恒模算法.清华大学学报(自然科学版).2003,43(7),pp:923-926.
    [134]S.Y.Sun,J.L.Zheng,and Q.Zhang,"A neural network approach to Viterbi algorithm based on MFA," ICCCAS & WeSino ExPo '02,Chengdu,China,pp.69-72,2002.
    [135]孙守宇.盲信号处理算法研究及其在短波数字通信中的应用,清华大学博士论文,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700