稻田生态种养模式氮素转化规律的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氮(N)是作物生长必需的营养元素,然而过量的N肥施用不仅带来肥效的降低,而且导致一系列不良的环境反应,研究稻田N素的转化及动态规律,对提高N的有效利用及其降低N的环境危害具有重要意义。本研究通过野外采样、室内分析测定、室内培养试验和田间小区实验,利用静态箱技术、自制测渗计技术和密闭式酸吸收法等手段,对稻鸭和稻鱼共作生态系统稻田N的矿物固定与固定态铵的释放;稻田土壤可溶性有机N的生态学效应;田面水N库与土壤N库相互转化;作物生长与N素转化的联系及其系统N素损失进行了较为系统的研究。主要研究结果如下:
     1、相对于常规稻作,由于鸭和鱼的存在,稻鸭、稻鱼共作降低了土壤pH,显著提高了0.02-1mm的砂粒和细砂粒含量,显著降低了<0.002mm粘粒的含量,使得稻田土壤水稳性团聚体数量增加,土壤团聚化程度加强,因此改善了土壤质地。稻鸭、稻鱼共作提高了土壤全N、全P含量,增幅分别为4%~7%和4%~13%,显著地增加了土壤NH_4~+、速效P含量,而对土壤NO_3~-影响不大。
     2、土壤固定态铵受鸭、鱼活动,施肥和水稻生长多种因素影响。施肥促进土壤对铵的固定,土壤固定态铵含量随着土壤交换性NH_4~+和pH增加而增加;相对于常规稻作,鸭和鱼的存在显著地提高了土壤固定态铵含量,其增幅为4%~5%;土壤固定态铵含量与>0.2mm.的砂粒含量和<0.002mm的粘粒含量成极显著或显著相关;水稻吸N量与土壤固定态铵呈显著负相关,与土壤固定态铵的释放量呈显著正相关,水稻吸收促进土壤固定态铵的释放。因此,相对于常规稻作,稻鸭、稻鱼共作提高了土壤N含量和水稻吸N量,降低了土壤固定态铵的释放,为创造了一个对作物潜在有效的N库。
     3、在水稻全生育期,土壤微生物量N表现为先升后降,并于成熟期有所回升;土壤脲酶、脱氢酶和蛋白酶活性表现为先升后降,过氧化氢酶活性变化不大。相对于常规稻作,由于鸭子和鱼的活动及其生活粪便作用,稻鸭、稻鱼共作显著提高了土壤微生物量N含量、土壤脲酶活性、脱氢酶活性和蛋白酶活性,其增幅分别为7%~8%、8%~13%、13%~17%和10%~14%。
     相关分析表明,土壤微生物量N与土壤速效N、土壤全N、全P和水稻吸N量之间不相关,土壤脲酶和脱氢酶活性与土壤速效N负相关,土壤酶活性与土壤全N、全P不相关,土壤脲酶、脱氢酶和蛋白酶活性与水稻吸N量呈显著相关,土壤微生物量N与土壤酶活性不相关。
     4、稻田土壤SON是水稻吸收、微生物吸收和N淋失的交互作用的综合反映。在水稻全生育期,土壤SON与土壤无机N呈显著正相关,与水稻吸N量呈显著负相关;而由于水稻对N的吸收和N的下渗淋失,土壤SON与土壤微生物量不相关。相对于常规稻作,由于鸭和鱼的存在,稻鸭、稻鱼共作生态系统土壤SON含量显著降低了7%-12%。DON是稻田渗漏水的主要N形态。相对于常规稻作,稻鸭、稻鱼共作减少了土壤SON的潜在淋失。
     5、NH_4~+是田面水无机N素的主要形态;同时,相对于处理常规稻作,稻鸭稻鱼共作显著降低田面水pH,显著提高NH_4~+浓度,而TN浓度有所增加,而对NO_3~-无明显影响;稻鸭共作显著提高了DO浓度,而稻鱼共作显著降低了DO浓度。田面水中NH_4~+/TH在施肥后第3天达到最大,随后降低,而所有处理NH_4~+/TN的均值相当,表明稻鸭、稻鱼共作不会增加TN中NH_4~+的比重,因此不会提高氨N为形态的相对流失潜力。
     渗漏水中NO_3~-是无机N淋失的主要形态;相对于处理常规,稻鸭、稻鱼共作渗漏水NO_3~-和TN浓度降低,而渗漏水NH_4~+无明显变化。稻鸭、稻鱼共作肥料N潜在淋失率分别为2.72%、2.58%,低于处理常规稻作(2.99%),表明稻鸭、稻鱼共作可以减少施入N肥潜在的下渗淋失,同时稻鱼共作减少N肥淋失的效果好于稻鸭共作。
     6、由于鸭子和鱼的存在,相对于常规稻作,稻鸭、稻鱼显著提高稻田田面水总P浓度、溶解P浓度和土壤速效P含量及水稻植株对P的吸收,而土壤全P有所增加。在水稻全生育期,稻鸭、稻鱼共作系统田面水总P浓度、溶解P浓度、土壤全P和速效P含量在施肥后达到最大值,此后随水稻的生长逐渐降低,表明施P肥后一周是控制稻田P流失的关键时期;同时,对P的环境效应分析表明,在稻鸭、稻鱼共作期间,要注意避免农田排水和防止因降雨引起的田面水外溢。此外,由于鸭子和鱼的活动提高了土壤有效养分含量,降低化肥的施用量,进而降低了化肥损失所造成的环境危害。
     7、各处理N_2O排放具有类似的变化模式;N_2O排放峰值出现在施肥后2星期和稻田落干期。与常规稻作相比,由于鸭鱼的存在,稻鸭共作生态系统N_2O释放量显著增加为8%-13%,稻鱼共作生态系统N_2O释放量则显著减少了4%-5%。在稻田淹水期,N_2O排放与温度变化不相关,与土壤有效N和pH相关;稻田排干后,N_2O排放与温度变化、土壤有效N和pH不相关,表明在稻田淹水期,N_2O排放受土壤氧化-还原层的硝化-反硝化作用影响,而在稻田落干期,N_2O排放受土壤温度、水分含量和pH共同影响。稻鸭共作提高了系统N_2O的增温效应,而稻鱼共作降低了系统N_2O的增温效应。
     8、尿素的施用促进NH_3的挥发,尿素施用后一周NH_3挥发量占总挥发量的79%-87%,说明了施肥后一周是控制NH_3挥发的关键时期。对影响NH_3挥发的因子分析表明,NH_3通量与土壤pH、田面水pH、田面水NH_4~+浓度呈显著或极显著相关,与温度和土壤脲酶活性不相关。相对于常规稻作,由于鸭子和鱼的存在降低了田面水pH,稻鸭、稻鱼共作降低了稻田NH_3挥发。因此,稻田养鸭养鱼能够降低N肥的损失率,进而提高N肥的利用率。
     9、施肥和水稻吸N是影响N平衡最主要的因素,NH_3挥发、降雨和灌溉水也是影响N平衡的重要因素,而N_2O释放、N淋失和鸭和鱼N的输出对平N衡的贡献不大。与常规稻作不同,稻鸭和稻鱼共作N平衡为正,表明了鸭和鱼的存在加速了土壤有机养分的周转,显著地提高了水稻N的输出。
Sampling on fields, laboratory incubation and determination and field experiments were conducted to study dynamics and availability of soil fixed ammonium, ecological effects of soil soluble organic N, interactions among different formations of N in floodwater and soil, N losses in the ecosystems and correlations between N transformation and crop growth by a static chambers technique, a closed acid trap method, and a field lysimeter and so on. The main results are summarized as follows.
     1. Compared with conventional rice paddies (CK), due to the presence of ducks and fish, integrated rice-duck ecosystem (RD) and rice-fish ecosystem decreased soil pH, and significantly increased the contents of 0.02-1 mm clays and significantly decreased the contents of <0.002mm clays, which enhanced the amounts of water-stable aggregates in soil, and thus improved the texture of soil.
     Compared with CK, RD and RF significantly increased the contents of total N and total P, exchangeable NH_4~+, and available P, and had no effects on the content of NO_3~-.
     2. Fertilization and rice growth are of influencing factors to control fixation of soil ammonium. Application of N fertilizer promoted fixation of soil ammonium while rice growth boosted the release of fixed ammonium. During rice growth, most of recently fixed ammonium was released while native fixed ammonium was not released.
     Compared with CK, RD and RF significantly increased the content of fixed ammonium. Exchangeable NH_4~+, pH and texture in soil affected the content of soil fixed ammonium. Close correlation existed between soil NH_4~+, pH and fixed ammonium content at the significant level of p<0.01; Soil temperature (at 5cm depth) was not associated with fixed ammonium content; Soil fixed ammonium content was positively related to >0.2mm clay content and negatively related to <0.002mm clay content at the significant level of p<0.05 or p<0.01, and not associated with 0.02-0.2mm and 0.002-0.02mm clay content. The study also showed that N uptake of rice was significantly negatively related to the content of soil fixed ammonium and positivelyrelated to the release amount of soil fixed ammonium.
     Compared with CK, RD and RF increased the content of soil N and N uptake of rice, and decreased the release of soil fixed ammonium, and thus created a more significant N sink for added fertilizer.
     3. The experimental results showed that during rice growth, soil microbial biomass nitrogen (MBN) content increased firstly after transplantation, and subsequently decreased and slightly increased at rice autumn. Moreover, the soil enzymes activities ascended at the early stage and then declined slightly except that catalase activity slightly changed. Linear regression analysis showed that no close correlations existed between soil MBN and soil enzymes activities, soil nutrients (soil available N (NH_4~+ + NO_3~-), total N and total P) and N uptake of rice, and between soil enzymes activities and soil total N and total P. Moreover, Soil urease and dehydrogenase activities were closely related to soil available N, and N uptake of rice was closely related to soil urease, dehydrogenase and protease activities.
     Compared with CK, RD and RF significantly enhanced soil MBN content and urease, dehydrogenase and protease activity but not affected catalase activity.
     4. Soil soluble organic nitrogen (SON) constituted a predominant reservoir of soluble N in paddy fields. Correlation analysis indicated that during rice growth SON was significantly positively related to SIN (p<0.01), and significantly negatively related to N uptake of rice. Due to N-uptake by rice and N leaching, soil SON was not closely related to MBN. The results also showed that due to the presence of ducks and fish, compared with CK, RD and RF significantly decreased the content of soil SON.
     In the forepart periods of rice growth, contents of different formations of N all were highest. Dissolved organic N (DON) was the main formation of N in percolation water in paddy fields; moreover, statistical analysis indicated that compared with CK, RF significantly decreased the leakage of SON while RF slightly decreased the leakage of SON.
     In conclusion, soil SON was regulated by the interactions of N uptake of rice plants, microbial uptake and leaching in paddy fields during rice growth.
     5. NH_4~+ was the predominant form of nitrogen in floodwater while NO_3~- was the predominant form of nitrogen in percolation water; moreover, fertilization could increase content of all form N in floodwater and percolation water. Compared with CK, RD and RF significantly increased the content of NH_4~+, slightly enhanced the content of TN in floodwater, and significantly decreased pH in floodwater and didn't affect the content of NO_3~- in floodwater. Moreover, RD significantly increased the concentration of DO in floodwater while RF significantly decreased the concentration of DO in floodwater. Furthermore, RD and RF decreased the concentrations of NO_3~- and TN in percolation water and didn't change the concentration of NH_4~+ in percolation water. In the 3rd day after fertilization, the ratio of NH_4~+/TN was the most, and thereafter decreased. In addition, mean NH_4~+/TN ratios of different treatments were almost equivalent.
     The results also indicated that the potential maximal radios of N fertilizer leaching in RD and RF were 2.72% and 2.58%, respectively, lower than 2.99% in CK, which demonstrated that RD and RF could reduce leakage of N fertilizer and the effect of reducing.Leakage of N fertilizer was better in RF than in RD.
     6. The results indicated that the P concentrations of soil and floodwater reached peaks immediately after P fertilizer applied, and then decreased in 1 week after fertilization. Compared with CK, RD and RF could significantly enhance total P concentrations of floodwater, dissolved P concentrations of floodwater, available P concentrations of soil and P uptake of rice plants, and slightly increase total P concentrations of soil. Moreover, close relationships existed between dissolved P concentrations of floodwater, available P concentrations of soil and P uptake of rice plants. Analysis on environmental impacts of floodwater P showed that it was a pivotal time in 1 week after fertilization to control P losses by leaching from paddy fields. Moreover, during ducks and fishes reared, drainage of water from paddy fields and leaching due to runoff should be controlled. Since RD and RF could enhance contents of soil available nutrient, leading to decrease the consumptions of fertilizer, which reduced detrimental impact on the environment.
     7. The results showed that with the same amount of urea applied as basal fertilization, N2O emission fluxes from these treatments followed a similar seasonal variation trend. Our experimental data showed that in 2 weeks after urea application and after drainage peaks of N_2O emission flux occurred. Compared with CK, N_2O emissions in RD significantly enhanced, which were 1.08-1.13 times of that in CK, and N_2O emissions in RF siginificantly decreased, which were 94%~95% of that in CK. Correlation analysis indicated that during the flooding seasons, N_2O emission flux was not correlated with temperature, but significantly related to soil inorganic nitrogen (SIN) (p<0.01) and soil pH (p<0.01). After drainage, N_2O emission flux was not correlated with temperature, SIN and soil pH. These observations showed that during the flooding season N_2O emission might be influenced by nitrification and denitrification due to the presence of oxidized and reduced soil layers. On the other hand, after drainage, N_2O emission might be affected by the interreactions of soil pH, water content and temperature during Nitrification.
     We evaluated the integrated global warming potentials (GWPs) of integrated rice-duck cultivation system based on N_2O emission, which showed RD could enhance the GWP based on N_2O while RF could reduce the GWP based on N_2O Compared with CK.
     8. NH_3 volatilization was measured by a closed acid trap method in the ecosystems. The results indicated that urea application could promote volatilization of NH_3. It is the key time to control volatilization of NH_3 in the first week of urea application. Correlation analysis showed that volatilization flux of NH_3 was closely related to pH in soil and floodwater and NH_4~+ in floodwater, and not related to temperature and soil urease activities.
     Compared with CK, due to a drop of pH in floodwater by the presence of ducks and fish, RD and RF reduced volatilization of NH_3. Analyses on N losses from paddy fields indicated that most of nitrogen was lost by NH_3 volatilization in paddy fields; moreover, RD and RF could decrease fertilizer N loss rates, and thus promote fertilizer N use efficiency.
     9. The water balance analysis indicated that the amount between water input and output was imbalance due to seepage. Moreover, the N balance analysis showed that fertilization and N-uptake by rice were the main factors of N balance while N outputs via NH_3 volatilization and N input via precipitation and irrigation were also significant. In contrast to CK, due to the presence of ducks and fish, the apparent N balances were positive in RD and RF, suggesting that the presence of ducks and fish accelerated the turnover of soil organically bound nutrients and thus significantly increased N output from rice uptake.The results also showed that the presence of ducks and fish did not reduce the total yields of rice grain.
引文
1.鲍士旦.土壤农化分析.北京:中国农业出版社,2000:42-56,265-266.
    
    2. 蔡贵信.中国土壤氮素.南京:江苏科技出版社,1992,171-194.
    
    3. 蔡贵信.氨挥发.见:朱兆良,文启孝主编.中国土壤氮素.南京:江苏科学技术出 版社,1990,171-196.
    
    4. 蔡贵信,朱兆良.稻田中化肥N的气态损失.土壤学报,1995,32(增刊):128-135.
    
    5.曹志强,梁知洁,赵艺欣,董玉慧.北方稻田养鱼的共生效应研究.应用生态学 报,2001,12(3):405-408.
    
    6. 曹凑贵,汪金平,邓环.稻鸭共生对稻田水生动物群落群落的影响.生态学 报,2005,25(10):2644-2649.
    
    7. 曹志洪,林先贵,杨林章,胡正义,董元华,尹睿.论“稻田圈”在保护城乡生态环境中的 功能Ⅱ稻田土壤氮素养分的累积、迁移及其生态环境意义.土壤学 报,2006,43(2):256-260.
    
    8.陈安磊,王凯荣,谢小立.施肥制度与养分循环对稻田土壤微生物生物量碳氮磷的 影响.农业环境科学学报,2005,24(6):1094-1099.
    
    9.单艳红,杨林章,颜廷梅,王建国.水田土壤溶液磷氮的动态变化及潜在的环境影响. 生态学报,2005,25(1):115-121.
    
    10.戴志明,彭凤梅,万田正治,中西良孝,张曦,朱仁俊,赵素梅,彭凤梅,周晓智.云南稻~ 鸭共生模式效益的研究及综合评价(2).中国农学通报,2002,18(3):34-36.
    
    11.戴志明,杨华松,张曦,周晓智,韩自鸿,余杨,钱国平,张树清,万田正治,中西良孝,魏 红江.云南稻-鸭共生模式效益的研究与综合评价(三).中国农学通 报,2004,20(4):265-267,273.
    
    12.邓晓,廖晓兰,黄璜.稻-鸭复合生态系统产甲烷细菌数.生态学 报,2004,24(8):1696-1700.
    
    13.樊小林,张一平,李玲.土娄土固定铵动力学的研究.西北农业大学学 报,1994,15(1):57-62.
    
    14.甘德欣,黄璜,蒋廷杰.免耕稻-鸭复合系统水稻生长特性的研究.赵振祥主编.第四 届亚洲稻鸭共作研讨会论文集.镇江:镇江市科技局,2004.136-139.
    
    15.甘德欣,黄璜,黄梅.稻鸭共栖高产高效的原因与配套技术.湖南农业科 学,2003,(5):31-32,36.
    
    16.甘德欣,黄璜,蒋廷杰.免耕稻鸭复合系统生态学特性研究—土壤生物学特性.湖南 农业大学学报,2005,31(1):35-38.
    
    17.高洪生.北方寒地稻田养鱼对农田生态环境的影响初报.中国农学通 报,2006,22(7):470-472.
    
    18.高明,周保同,魏朝富,谢德体,张磊.不同耕作方式对稻田土壤动物、微生物及酶活??性的影响研究.应用生态学报,2004,15(7):1177-1181.
    
    19.高效江,胡雪峰,王少平,贺宝根,沈铭能.淹水稻田中氮素损失及其对水环境影响的 试验研究,2001,20(4):196-198,205.
    
    20.关松荫.土壤酶及其研究法.北京:农业出版社,1986:14-15,294-333.
    
    21.国家环保总局.2001年中国环境状况公报.http://www.zhb.gov.cn/ 649368273124589568/index.shtml,2002.
    
    22.国家环保总局.水和废水分析方法.北京:中国环境科学出版社,1989,274-275.
    
    23.黄璜,黄梅,童泽霞,陈文军,龙江松,王华,杨志辉,陈仕贵,廖晓兰,金晓马,陈灿.湿地 农田生态系统农药“零星”输入的生态效益分析.湖南农业科学,2003,(3):45-46.
    
    24.黄璜,杨志辉,王华,胡泽友,陈仕贵,陈灿.湿地稻-鸭复合系统的CH_4排放规律.生态 学报,2003,23(5):929-934.
    
    25.黄明蔚,刘敏,陆敏,侯立军,欧冬妮,林啸.稻麦轮作农田系统中氮素渗漏流失的研 究.环境科学学报,2007,27(4):629-636.
    
    26.黄顺红,张杨珠,吴明宇,彭杰,周卫军.湖南省主要稻田土壤的固定态铵含量与最大 固铵容量.土壤,2005,37(5):500-505.
    
    27.黄顺红,张杨珠,杨曾平,徐玲,颜雄.几种稻田土壤对铵的矿物固定的动力学与热力 学研究.土壤通报,2006b,37(2):283-286.
    
    28.黄顺红,张杨珠,邹应斌.水稻生育期间土壤固定态铵的动态变化与释放.湖南农 业大学学报,2006a,32(1):20-24.
    
    29.李成芳,曹凑贵,展茗.稻鸭共作对稻田氮素变化及土壤微生物影响的分析.生态学 报,2008,28(5):1-8.
    
    30.李春霞,陈阜,王俊忠,李友军.不同耕作措施对土壤酶活性的影响.土壤通 报,2007,38(3):601-603.
    
    31.李华,陈英旭,梁新强,田光明,俞巧钢.土壤脲酶活性对稻田田面水氮素转化的影响. 水土保持学报,2006,20(1):55-58.
    
    32.李华,陈英旭,梁新强,倪吾钟,田光明.浮萍对稻田田面水中氮素转化与可溶性氮的 影响.2006,20(5):92-94,129.
    
    33.李菊梅,徐明岗,秦道珠,李冬初,宝川靖和,八木一行.有机肥无机肥配施对稻田氨 挥发和水稻产量的影响.植物营养与肥料学报,2005,11(1):51-56.
    
    34.李克勤,黄璜,任泽明.湖南稻鸭生态种养与频振式诱蛾灯技术示范成效与技术.中 国稻米,2003,(5):35-37.
    
    35.李荣刚,夏源陵,吴安之,钱一声.太湖地区水稻节水灌溉与氮素淋失.河海大学学报,2001,29(2):21-25.
    
    36.李生秀,张兴昌,张兴悟.土壤中非代换铵的行为Ⅰ.两种测定土壤非代换铵方法优 劣的差别.西北农业大学学报,1991,19(1):7-12.
    
    37.李世朋,汪景宽.温室气体排放与土壤理化性质的关系研究进展.沈阳农业大学学??报,2003,34(2):155-159.
    
    38.李世清,李生秀.淹水培养条件下氨态氮肥对土壤氮素的激发效应.植物营养与肥 料学报,2001,7(4):361-367.
    
    39.李勇先,田光明.不同水分管理模式下水稻土氮素形态转化与N_2O释放的关系.生 态环境,2003,12(2):157-159.
    
    40.李忠佩,吴晓晨,陈碧云.不同利用方式下土壤有机碳转化及微生物群落功能多样 性变化.中国农业科学,2007,40(8):1712-1721.
    
    41.廖继佩,李法云,张杨珠,李法云,廖继佩.湖南稻田土壤固定态铵含量的季节变化及 生物有效性.应用生态学报,2003,14(10):1665-1668.
    
    42.廖敏,谢晓梅,吴良欢.水稻覆膜旱作对稻田土壤微生物生态质量的影响.中国水稻 科学,2002,16(3):243-246.
    
    43.刘广深,徐冬梅,许中坚,王红宇,刘维屏.用通径分析法研究土壤水解酶活性与土壤 性质的关系.土壤学报,2003,40(5):756-762.
    
    44.刘惠,赵平,林永标,饶兴权.华南丘陵地区农林复合生态系统晚稻田甲烷和氧化亚 N排放.热带亚热带植物学报,2006a,14(4):269-274.
    
    45.刘惠,赵平,孙谷畴,林永标,饶兴权,王跃思.华南丘陵区冬闲稻田二氧化碳、甲烷和 氧化亚氮的排放特征.应用生态学报,2007,18(1):57-62.
    
    46.刘惠,赵平,林永标,饶兴权,王跃思.华南丘陵区农林复合生态系统早稻田CH_4和 N_2O排放通量的时间变异.生态环境,2006b,15(1):58-61.
    
    47.刘培斌,程伦国,陈瑞国,刘德福,言鸽.排水条件下稻田中氮素运移转化规律的试验 研究.农田水利与小水电,1994,4:15-20,47.
    
    48.刘建新.不同农田土壤酶活性与土壤养分相关关系研究.土壤通 报,2004,35(4):523-525.
    
    49.刘蔚秋,王永繁,徐润林.生物防治稻田与普通稻田水体中浮游植物的生态特征研 究.运用生态学报,2001,12(1):59-62.
    
    50.刘小燕,黄璜,杨治平,余建波,戴振炎,王德军,谭泗桥.稻鸭鱼共栖生态系统CH_4排 放规律研究.生态环境.2006,15(2):265-269.
    
    51.刘小燕,肖调义,黄璜,等.稻-鸭-鱼共栖生态系统中水稻纹枯病的发生规律与分析. 华中农业大学学报,2006,25(2):138-141.
    
    52.刘小燕,杨治平,黄璜,等.湿地稻-鸭复合系统中田间杂草的变化规律.湖南农业大 学学报,2004,30(3):292-294.
    
    53.刘小燕,杨治平,黄璜,胡立冬,刘大志,谭泗桥,苏伟.湿地稻-鸭复合系统中水稻纹枯 病的变化规律.生态学报,2004,24(11):2579-2583.
    
    54.刘育红,吕军.稻田土壤氮素矿化的几种方法比较.土壤通报,2005a,36(5):675-678.
    
    55.刘育红,吕军.淋洗对稻田土壤氮素矿化的影响.青海大学学报.2005b,23(6):32-35.
    
    56.吕耀.氮素损失在农业生态系统中的非点源污染.农业环境保护,1998,17(1):??35-39.
    
    57.陆敏,刘敏,茅国芳,黄明蔚,屈瑶.大田条件下稻田土壤氮素淋失研究.华东师范大 学学报,2006,4:71-77.
    
    58.鲁如坤,刘鸿翔,闻大中.我国典型地区农业生态系统养分循环和平衡研究.土壤通 报,1996,27(4):45-51.
    
    59.罗良国,闻大中,沈善敏.北方稻田生态系统养分渗漏规律研究.中国农业科 学,2000,33(2):2-9.
    
    60.纪雄辉,郑圣先,鲁艳红,廖育林.施用尿素和控释氮肥的双季稻田表层水氮素动态 及其径流.中国农业科学,2006,39(12):2521-2530.
    
    61.纪雄辉,郑圣先,鲁艳红,廖育林.控释氮肥对洞庭湖区双季稻田表层水氮素动态及 其径流损失的影响.应用生态学报,2007,18(7):1432-1440.
    
    62.金洁,杨京平,施洪鑫,陈俊,郑洪福.水稻田面水中氮磷素的动态特征研究.农业环 境科学学报,2005,24(2):357-361.
    
    63.金千瑜,禹盛苗,欧阳由男.中国稻-鸭农作系统发展概况与稻鸭共育技术研究.赵振 祥主编.第四届亚洲稻鸭共作研讨会论文集.镇江:镇江市科技局,2004,1-6.
    
    64.吉野隆雄.稻田养鸭的实用技术.东京:农业渔村文化协会,1992,10-16,121-124.
    
    65.马国强,庄雅津,周铭成.稻鸭共作无公害水稻生产技术初探.农业装备技 术,2002,(2):20-21
    
    66.倪达书,汪建国.稻鱼共生理论的研究.水产科技情报,1981,6:1-3.
    
    67.倪达书,汪建国.论稻鱼共生生态系统的应用价值.水产科技情报,1983,6:1-4.
    
    68.倪达书,汪建国.稻鱼共生生态系统中物质循环及经济效益.水产科技情 报,1985,6:1-4.
    
    69.闫德智,王德建,林静慧.太湖地区氮肥用量对土壤供氮、水稻吸氮和地下水的影响. 土壤学报,2005,42(3):440-446.
    
    70.彭少兵,黄见良,钟旭华,杨建昌,王光火,邹应斌,张福锁,朱庆森,Roland B,Christian W.提高中国稻田N肥利用率的研究策略.中国农业科学,2002,35(9):1095-1103.
    
    71.彭凤梅,戴志明,万田正治.云南稻鸭共生模式效益的研究及综合评价(1).中国农学 通报,2002,18(3):34-36.
    
    72.彭凤梅,戴志明,万田正治,中西良孝,朱仁俊,赵素梅,周晓智,张曦,.云南稻-鸭共生 模式效益的研究与综合评价(2).中国农学通报,2002,18(4):35-36.
    
    73.邱卫国,唐浩,王超.水稻田面水氮素动态、径流流失特性及控制技术研究.农业环 境科学学报,2004,23(4):740-744.
    
    74.钦绳武,范晓晖,汪金舫.五种主要作物的施肥技术.徐静安.施用技术与农化服务. 北京:化学工业出版社,2001.7
    
    5.冉茂林.我国稻田养鸭的发展及研究现状.中国畜牧杂志,1993,29(5):58-60.
    
    76.沈其荣,王岩,史瑞和.土壤微生物量和土壤固定态铵的变化及水稻对残留氮的利??用.土壤学报,2000,37(3):330-338.
    
    77.宋勇生,范晓晖.稻田氨挥发研究进展.生态环境,2003,12(2):240-244.
    
    78.宋勇生,范晓晖.太湖地区稻田氮素平衡及其环境效应的研究.井冈山学院学 报,2006,27(2):38-40.
    
    79.宋勇生,范晓晖,林德喜,杨林章,周健民.太湖地区稻田氨挥发及影响因素的研究. 土壤学报,2004,41(2):265-269.
    
    80.苏成国,尹斌,朱兆良.稻田N肥的氨挥发损失与稻季大气氮的湿沉降.应用生态学 报,2003,14(11):1884-1888.
    
    81.孙艳,吴守仁,吕家垅.娄土固定态铵容量及蓄氮供氮能力研究.干旱地区农业研 究,2000,18(3):8-14.
    
    82.田光明,曹金留,蔡祖聪.镇江丘陵地区稻田氨挥发损失研究.南京大学学 报,1997(专辑):268-270.
    
    83.同延安,吕殿青,张航.灌区土壤中氮素平衡与硝态氮淋失.陕西农业科 学,1994(5):12-13.
    
    84.童泽霞.稻田养鸭与稻田生物种群的关系初探.中国稻米,2002,(1):33-34.
    
    85.童泽霞,黄璜,李平,梁海泉,余舞姣,陈文军,杨建斌.水稻优质高效增产栽培模式— 高档优质稻搭配稻田养鸭试验.作物研究,2003,17(4):192-193.
    
    86.王朝辉.硝态氮累积对蔬菜水分、有机氮肥的影响.中国环境科学,2000,20 (6):481-485.
    
    87.万大娟,张杨珠,唐国勇,黄运湘,冯跃华,贾晓珊.湖南旱地土壤对铵离子的矿物固 定与固定态铵释放的动力学研究.土壤通报,2005,36(4):513-517.
    
    88.王德建,林静慧,夏立忠.太湖地区稻麦轮作农田氮素淋洗特点.中国生态农业学 报,2005,42(3):440-446.
    
    89.王华,黄璜,杨志辉,王华.湿地稻-鸭复合生态系统综合效益研究.农村生念环 境,2003,3:23-26,44.
    
    90.王华,黄璜.湿地稻田养鱼、鸭复合生态系统生态经济效益分析.中国农学通 报,2002,18(1):71-75.
    
    91.汪华,杨京平,金洁,孙军华.不同氮素用量对高肥力稻田水稻—土壤—水体氮素变 化及环境影响分析.水土保持学报,2006,20(1):50-54.
    
    92.王家玉,王胜佳,陈义,郑纪慈,李超英,计小江.稻田土壤中氮素淋失的研究.土壤学 报,1996,33(1):28-36.
    
    93.汪金平,曹凑贵,金晖,王昌付,刘丰颢.稻鸭共生对稻田水生生物群落的影响.中国 农业科学,2006,39(10):2001-2008.
    
    94.王强,杨京平,陈俊,施洪鑫,许春峰.非完全淹水条件下稻田表面水体中三氮的动态 变化特征研究.应用生态学报,2004,15(7):1182-1186.
    
    95.王强,杨京平,沈建国,郑洪福,余永远.稻田田面水中三氮浓度的动态变化特征研究.??水土保持学报,2003,17(3):51-54.
    
    96.王强盛,黄丕生,甄若宏,荆留明,唐和宝,张春阳.稻鸭共作对稻田营养生态及稻米 品质的影响.应用生态学报,2004,15(4):639-645.
    
    97.王淑平,周广胜,孙长占,姜亦梅,姜岩,刘孝义.土壤微生物量氮的动态及其生物有 效性研究.植物营养与肥料学报,2003,9(1):87-90.
    
    98.王小治,朱建国,宝川靖和,封克.施用尿素稻田表层水氮素的动态变化及模式表征. 农业环境科学学报,2004a,23(5):852-856.
    
    99.王小治,高人,朱建国,蔡祖聪,宝川靖和.稻季施用不同尿素品种的氮素径流和淋溶 损失.中国环境科学,2004b,24(5):600-604.
    
    100.王缨.稻田种养模式生态效益研究.生态学报,2000,20(2):311-316.
    
    101.向平安,黄璜,黄梅,甘德欣,周燕,付志强.稻-鸭生态种养技术减排甲烷的研究及经 济评价.中国农业科学,2006,5(10):758-766.
    
    102.谢迎新,赵旭,熊正琴,邢光熹.污水灌溉对稻田土壤氮、磷淋失动态变化的影响.水 土保持学报,2007,21(4):43-46,71.
    
    103.许光辉,郑洪元.土壤微生物分析方法手册.北京:农业出版社,1986,2555-2558.
    
    104.徐琪(主编).中国稻田生态系统.北京:中国农业出版社,1998,75-76.
    
    105.徐阳春,沈其荣,冉炜.长期免耕与施用有机肥对土壤微生物生物量碳、氮、磷的影 响.土壤学报,2002,39(1):89-95.
    
    106.杨华松,戴志明,万田正治,中西良孝,张曦,朱仁俊,赵素梅,彭凤梅,周晓智.云南稻- 鸭共生模式效益的研究与综合评价(二).中国农学通报,2002,18(5):23-24.
    
    107.杨军,陈玉芬,胡飞,伍时照,王国昌.广州地区早稻田施肥对N_2O排放影响的初步研 究.华南农业大学学报,1996,17(4)52-57.
    
    108.杨志辉,黄璜,王华.稻-鸭复合生态系统稻田土壤质量研究.土壤通 报,2004,35(2):117-121.
    
    109.杨治平,刘小燕,黄磺,胡立冬,苏伟,刘大志.稻田养鸭对稻飞虱的控制作用.湖南农 业大学学报,2004,30(2):103-106.
    
    110.佘冬立,王凯荣,谢小立,尹春梅.施N模式与稻草还田对土壤供氮量和水稻产量的 影响.生态与农村环境学报,2006,22(2):16-20,44.
    
    111.程建平,曹凑贵,蔡明历,汪金平,原保忠,王建漳,郑传举.不同灌溉方式对水稻生物 学特性与水分利用效率的影响.应用生态学报,2006,17(10):1859-1865.
    
    112.禹盛苗,欧阳由男,张秋英,彭钢,许德海,金千瑜.稻鸭共育复合系统对水稻生长与 产量的影响.应用生态学报,2005,16:1252-1256.
    
    113.袁玲,杨邦俊.长期施肥对土壤酶活性和氮磷养分的影响.植物营养与肥料学 报,1997,3(4):300-306.
    
    114.曾路生,廖敏,黄昌勇,罗运阔,薛冬.水稻不同生育期的土壤微生物量和酶活性的变 化.中国水稻科学,2005,19(5):441-446.
    
    115.张道勇.氮肥的利用率及其损失问题.土壤通报,1981,(4):47-49.
    
    116.章家恩,陆敬雄,张光辉,骆世明.鸭稻共作生态农业模式的功能与效益分析.生态科 学,2002,21(1):6-10.
    
    117.章家恩.作物群体结构的生态环境效应及其优化探讨.生态科学,2000,19(1):30-35.
    
    118.张庆利,张民,田维彬.包膜控释和常用氮肥氮素淋失特征及其对土水质量的影响. 土壤与环境,2001,10(2):98-103.
    
    119.张维理,武淑霞,冀宏杰,Kolbe H.中国农业面源污染形势估计及控制对策Ⅰ 21世 纪初期中国农业面源污染的形势估计.中国农业科学,2004,37(7):1008-1017.
    
    120.张维理,田哲旭,张宁,李晓齐.我国北方农用N肥造成地下水硝酸盐污染的调查.植 物营养与肥料学报,1995,1(2):80-87.
    
    121.张杨珠,廖继佩,李法云,黄运湘,胡瑞芝,袁正平.湖南主要类型稻田土壤固定态铵 含量及其影响因素.应用生态学报,2002,13(6):693-697.
    
    122.张逸飞,钟文辉,李忠佩,蔡祖聪.长期不同施肥处理对红壤水稻土酶活性及微生物 群落功能多样性的影响.生态与农村环境学报,2006,22(4):39-44.
    
    123.张榆芳,张蔚椿,沈荣开.排水农田氮素运移、转化及流失规律的研究.水动力学研 究与进展,1996,11(3):251-260.
    
    124.张玉铭,胡春胜,董文旭,陈德立,张佳宝.农田土壤N_2O生成与排放影响因素及N_2O 总量估算的研究.中国生态农业学报,2004,12(3):119-123.
    
    125.张志剑,董亮,朱荫湄.水稻田面水氮素的动态变化特征、模式表征及排水流失研究. 环境科学学报,2001,21(4):475-480.
    
    126.张志剑,王珂,朱荫湄,王光火,施丹潮.水稻田表水磷素的动态特征及其潜在环境效 应的研究.中国水稻科学,2000,14(1):55-57.
    
    127.张志剑,朱荫湄,王珂,王光火,董亮,郑洪福.水稻田土-水系统中磷素行为及其环境 影响研究.应用生态学报,2001,12(2):229-232.
    
    128.赵明宇,韩晓日,郭鹏程.不同施肥条件下土壤固定态铵含量的动态变化.土壤通 报,1996,27(2):79-81.
    
    129.郑循华,王明星,王跃思,沈壬兴,张文,龚晏邦.温度对农田N_2O产生与排放的影响. 环境科学,1997,18(5):1-6.
    
    130.郑循华,王明星,王跃思,沈壬兴,龚晏邦,张文,骆冬梅,金继生,李老土.华东稻麦轮作 生态系统的N_2O排放研究.运用生态学报,1997,8(5):495-499.
    
    131.郑永华,邓国彬,卢光敏.稻鱼鸭复合生态经济效益的初步研究.应用生态 学,1997,8(4):431-434.
    
    132.中国科院南京土壤研究所主编.土壤理化分析.上海科学技术出版社, 1978,67-532.
    
    133.朱新开,盛海君,夏小燕,王亚飞.稻麦轮作田氮素径流流失特征初步研究.生态与农 村环境学报,2006,22(1):38-41,66.
    
    134.朱兆良.稻田土壤中氮素的转化与N肥的合理施用.化学通报,1994,(9):15-17.
    
    135.朱兆良.中国土壤氮素.南京:江苏出版社,1992,213-249.
    
    136.周卫军,曾希柏,张杨珠,周清,郭海彦,颜雄,陈建国.施肥措施对不同母质发育的稻 田生态系统土壤微生物量碳、氮的影响.应用生态学报,2007,18(5):1043-1048.
    
    137.Abou Seada MNI, Ottow JCG. Effect of increasing oxygen concentration on totaldenitrification and nitrous oxide release from soil by different bacteria. Biol FertSoils, 1985, 1:31-38.
    
    138.Antia NJ, Harrison PJ, Oliveira L. The role of dissolved organic nitrogen inphytoplankton nutrition, cell biology and ecology. Phycologia, 1991, 30:1-89.
    
    139.Appel T, Mengel K. Importance of organic nitrogen fractions in sandy soils, obtainedby electro-ultrafiltration or CaCl_2 extraction for nitrogen mineralization and nitrogenuptake of rape. Biol Fertil Soils, 1990,10:97-101.
    
    140.Archer J R, Goulding.kWT, Jarvis S C, Knott CM, Lord I, Ogilvy SE, Orson J.Nitrate and farming systems. Aspects Appl Biol, 1992, 30:14-50.
    
    141.Aslam T, Choudhary MA, Saggar S. Tillage impact on soil microbial biomass C, Nand P, earthworms and agronomy after two years of cropping following permanentpasture in New Zealand. Soil Till Res, 1999, 51:103-111.
    
    142.Avalakki UK, Strong W M, Staffigna P G. Measurement of gaseous emission fromdenitrification of applied nitrogen-15II Effect of cover duration. Aust J Soil Res,1995, 33:89-99.
    
    143.Barshad I. Cation exchange in micaceous minerals: Replace-ability of ammoniumand potassium from vermiculite, biotite, and montmorillonnite. Soil Sci, 1954,68:399-400.
    
    144.Barnard R, Leadley PW, Hungate BA. Global change, nitrification, anddenitrification: A review. Global Biogeochem Cycl, 2005,19, GB1007.
    
    145.Barthelmie RJ, Pryor SC. Implications of ammonia emissions for the aerosolformation a visibility impairment - a case study from the Lower Fraser Valley.British Columbia. Atmos Eviron, 1998, 32: 345-352.
    
    146.Baxter JW, Pickett STA, Carreiro MM, Dighton J. Ectomycorrhizal diversity andcommunity structure in oak forest stands exposed to contrasting anthropogenicimpacts. Can J Botany, 1999, 77:771-782.
    
    147.Bergstrom DW, Monreal CM. Increased soil enzyme activities under two row crops.Soil Sci Soc Am J, 1998a, 62:1295-1301.
    
    148.BergstromDW, Monreal CM, Millette JA, King DJ. Spatial dependence of soilenzyme activities along a slope. Soil Sci Soc Am J, 1998b, 62:1302-1308.
    
    149.Bergstrom DW, Monreal CM, TomLin AD, Miller JJ. Interpretation of soil enzyme activities in a comparison of tillage practices along a topographic and textural gradient. Can J Soil Sci, 2000, 80:71-79.
    150.Bhatia A, Pathak H, Jain. N, Singh PK, Singh AK. Global warming potential of manure amended soils under rice-wheat system in the Indo-Gangetic plains. Atmos Environ, 2005, 39:6976-6984.
    151.Bijay-Singh, Yadbinder-Singh, Khind CS, Meelu OP. Leaching losses of urea-N applied to permeable soils under lowland rice. Fertil Res, 1991, 28:179-184.
    152.Booth MS, Stark JM, Rastetter E. Controls on nitrogen cycling in terrestrial ecosystems: a synthetic analysis of literature data. Ecol Monog, 2005, 75:139-157.
    153.Bollmann A, Conrad R. Influence of O_2 availability on NO and N_2O release by nitrification and denitrification in soils. Global Change Biol, 1998,4(4):387-396.
    154.Bouwmeester RJB, Velk PLG. Rate control of ammonia volatilization from rice paddies. Atmos Eviron, 1981,15: 131-140.
    155.Brookes PC, Landman A, Pruden G. Chloroform fumigation and the release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol Biochem, 1985,17:837-842.
    156.Branson KF, Neue HU, Singh U, Abao EB. Automated chamber measurement of methane and nitrous oxide flux in a flooded rice soil: I. Residue, nitrogen, and water management. Soil Sci Soc Am J, 1997, 61:981-987.
    157.Cai GX, Cao YC, Yang NC, Zhu ZL. Direct estimation of nitrogen gasses emitted from flooded soil during denitrification of applied nitrogen. Pedosphere, 1990, 1(3): 241-251.
    158.Cai GX, Chen DL, Ding H, Pacholski A, Fan XH, Zhu ZL. Nitrogen losses from fertilizers applied to maize, wheat and rice in the North China Plain. Nutr Cycl Agroecosyst, 2002, 63: 187-195.
    159.Cai ZC, Laughlin JR, Stevens RJ. Nitrous oxide and dinitrogen emissions from soil under different water regimes and straw amendment. Chemosphere, 2001, 42:113-121.
    160.Cai Z, Xing G, Yan X, Xu H, Tsurata H, Yagi K, Minami K. Methane and nitrous oxide emissions from rice paddy fields as affected by nitrogen fertilizers and water management. Plant Soil, 1997,196:7-14.
    161.Cai ZC, Xing GX, Shen GY, Xu H, Yan XY, Tsuruta H, Yagi K, Minami K. Measurement of CH_4 and N_2O emissions from rice paddies in Fengqiu, China. Soil Sci Plant Nutr, 1999,45:1-13.
    162.Cai GX, Zhu ZL. Evaluation of gaseous nitrogen losses from fertilizers applied to flooded rice fields. Acta Pedol Sin, 1995, 32 (S2): 128-135.
    163.Cai GX, Zhu ZL, Trevitt ACF, Freney JR, Simpson JR. Nitrogen loss from ammonium bicarbonate and urea fertilizers applied to flooded rice. Fertil Res, 1986, 10:203-215.
    164.Campbell CA , LaFond GPA, Leyshon J. Effect of cropping practiceson the initial potential rate of N mineralization in a thin chernozem. Can J Soil Sci, 1991, 71:43-53.
    165.Casals P, Romanya J, Cortina JF, Fons J, Bode M, Vallejo VR. Nitrogen supply rate in scots pine (Pinus sylvest ris L.) forests of contrasting slope aspect. Plant Soil, 1995, 168-169:67-73.
    166.Chan KY, Heenan DP. Microbial-induced soil aggregate stability under different crop rotations. Biol Fertil Soils, 1999, 30:29-32.
    167.Chauhan HS, Mishra B. Ammonia volatilization from a flooded rice field fertilized with amended urea materials. Fertil Res, 1989, 19:57-63.
    168.Chantigny MH. Dissolved and water-extractable organic matter in soils: A revies on the influence of land use and management practices. Geoderma, 2003, 113:357-380.
    169.Chen CR, Xu ZH. On the nature and ecological functions of soil soluble organic (SON) in forest ecosystems. J Soil Sediment, 2006, 6(2):63-66.
    170.Chen CR, Xu ZH, Zhang SL, Keay P. Soluble organic nitrogen pools in forest soils of subtropical Australia. Plant Soil, 2005,277:285-297.
    171.Chen GX, Huang GH, Huang B, Yu KW, Wu J, Xu H. Nitrous oxide and methane emissions from soilplant systems. Nutr Cycl Agroecosyst, 1997,49: 41-45.
    172.Cho JY, Han KW, Choi JK, Kim YJ, Yoon KS. N and P losses from a paddy field plot in Central Korea. Soil Sci Plant Nutr, 2002,48:301-306.
    173.Cho JY, Han KW, Choi JK. Balance of nitrogen and phosphorus in a paddy field of central Korea. Soil Sci Plant Nutr, 2000,46:343-354.
    174.Christou M, Avramides EJ, Roberts JP, Jones DL. Dissolved organic nitrogen in contrasting agricultural ecosystems. Soil Biol Biochem, 2005, 37:1560-1563
    175.Conrad R. Metabolism of nitric oxide in soil and soil microorganisms and regulation of flux into the atmosphere, in Murrell JC and Donovan PK (Eds.), Microbiology of atmospheric trace gases, NATO ASI Series, vol. I 39, Spring-Verlag, Berlin, Heidelberg, 1996, 167-203.
    176.Currie WS, Aber JD, McDowell WH, Boone RD, Magill AH. Vertical transport of dissolved organic C and N under long-term N amendments in pine and hardwood forests. Biogeochemistry, 1996, 35:471-505.
    177.Devries SED, Hauhs W, Rosen Rosen MK, Rasmussen L, Tamm CO, Nilsson J. Critical loads for nitrogen deposition on forest ecosystems. Water Air Soil Pollut, 1989,48:451-456.
    178.Dick RP. Soil enzymes activities as indicators of soil quality. In: Doran JW, Coleman DC, Bezdicek DF, Stewart BA (Eds.) Defining soil quality for a sustainable environment. SSSA Special Publication. MadisonWl, USA, vol 35, 1994,107-124.
    179.Drury CF, Beauchamp EG. Ammonium fixation, release, and immobilization in high- and low-fixing soil. Soil Sci Soc Am J, 1991, 55:125-129.
    180.Edar E, Yabuki R,Takayama K. Comparative studies on behavior, weeding and pest control of ducks (mallard, cherry valley and their crossbreded) free-ranged in paddy fields. Jpn Poult Sci, 1996,33(4):261-267.
    181.Ekurem E, Ryohei Y. Comparative studies on behavior, weeding and pest control of duck free ranged in paddy fields. Jpn Poult Sci, 1996, 33:261-267.
    182.Eriksen AB, Kjeldby M, Nilsen S. The effect of intermittent flooding on the growth and yield of wetland rice and nitrogen-loss mechanism with surface applied and deep placed urea. Plant Soil, 1985, 84(4): 387-401.
    183.European Environment Agency. Europe's water quality generally improving but agriculture stil 1 the main challenge. http/Avww.eea.eu.int/ 2003.
    184.Fan XL, Zhang YP, Li L. Effects of temperature and drying and wetting alternation on ammonium fixation in manured loessial soil. Pedosphere, 1996, 6(2): 155-161.
    185.Fan XL, Zhang YP, Juang T, Zhang FS. Thermodynamic properties of NH_4~+ fixation in manured loess soil in Shaanxi province, China. Pedosphere, 1997, 7(1):49-58.
    186.FAO. Fertilizer. FAO yearbook Vol. 48,1998.
    187.Feigin A, Yaalon DH. Non-exchangeable ammonium in soils of Israel and its relation to clay and parent mterials. J Soil Sci, 1974, 25(3):384-397.
    188.Fillery RP, de DattaATTA. Ammonia volatilization from nitrogen volatilization as a N loss mechanism in flooded rice fields. Fertil Res, 1986, 9: 78-98.
    189.Fillery IRP, Simpson JR., de Datta SK. Influence of field environment and fertilizer management on ammonia loss from flooded soil. Soil Sci Soc Am J, 1984, 48: 914-920.
    190.Franzluebbers AJ, Hons FM, Zuberer DA. Seasonal changes in soil microbial biomass and mineralizable C and N in wheat management systems. Soil Biol Biochem, 1994, 26 (11):1469-1475.
    191.Frei M, Becker K. Integrated rice-fish culture: coupled production saves resources. Nat Resour Forum, 2005a, 29:135-143.
    192.Frei M, Becker K. Integrated rice-fish production and methane emission under greenhouse conditions. Agric Ecosyst Environ, 2005b, 107:51-56.
    193.Frei M, Becker K. A greenhouse experiment on growth and yield effects in integrated rice-fish culture. Aquaculture, 2005c, 244:119-128.
    194.Frei M, Khan MAM, Razzak MA, Hossain MM, Dewan S, Becker K. Effects of a mixed culture of common carp, Cyprinus carpio L., and Nile tilapia, Oreochromis niloticus (1), on terrestrial arthropod population, benthic fauna, and weed biomass in rice Welds in Bangladesh. Biol Control, 2007a, 41:207-213.
    195.Frei M, Razzak MA, Hossain MM, Dewan S, Becker K. Mathane emissions and related physicochemical soil and water parameters in rice-fish systems in Bangladesh. Agic Ecosyst Environ, doi:10.1016/j.agee.2006.10.013,2007b.
    196.Freney JR, Trevitt ACF, De Datta SK, Obcemea WN, Real JG. The interdependence of ammonia volatilization and denitrification as nitrogen loss processes in flooded rice fields in the Philippines. Biol Fertil Soils, 1990, 9:31-36.
    197.Friedel JK, Munch JC, Fischer WR. Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation. Soil Biol Biochem, 1996,28:479-488.
    198.Gao XJ, Hu XF, Wang SP, He BG, Xu SY. Nitrogen losses from flooded rice field. Pedosphere, 2002,12(2): 151-156.
    199.Gianfreda L, Ruggiero P. Enzyme Activities in Soil. In: Nannipieri P, Smalla K (Eds.) Nucleic Acids and Proteins in Soil. Soil Biology, 2006, 8, 257-258.
    200.Giller KE, Witter E, McGraph SP. Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: a review. Soil Biol Biochem, 1998, 30:1389-1414.
    201.Goodroad LL, Keeney DR. Nitrous oxide production in aerobic soils under varying pH, temperature and water content. Soil Biol Biochem, 1984, 16(1):39-43.
    202.Gouveia GA, Eudoxie GD. Distribution of fertilizer N among fixed ammonium fractions as affected by moisture and fertilizer source and rate. Biol Fertil Soils, 2007, 44(1):9-18.
    203.Granli T, Bockman OC. Nitrous oxide from agriculture. Norw J Agri Sci, 1994, 12(Suppl): 11-28.
    204.Halwart M. Fish as biological control agents in rice. Verlag M, Weikerskeim Germany. 1994,169.
    205.Hao XH, Liu SL, Wu JS, Hu RG, Tong CL, Su YY. Effect of long-term application of inorganic fertilizer and organic amendments on soil organic matter and microbial biomass in three subtropical paddy soils. Nutr Cycl Agroecosyst, DOI 10.1007/s10705-007-9145-z, 2007.
    206.He ZL, Wu J, O'Donnell AG, Syers JK. Seasonal responses in microbial biomass carbon, phosphorus and sulfur in soils under pasture. Biol Fertil Soils, 1997, 24:421-428.
    207.Henckel T, Conrad R.Characterization of microbial NO production, N_2O production and CH_4 oxidation initiated by aeration of anoxic rice field soil. Biogeochemistry, 1998,40:17-36.
    208.Huang Y, Wang H, Huang H, Feng ZW, Yang ZH, Luo YC. Characteristics of methane emission from wetland rice-duck complex ecosystem. Agri Eco Environ, 2005,105:181-193.
    209.Houghton JT, Jenkins GJ, Ephraums JJ. Climate change: the IPCC assessment. Cambridge University Press, Cambridge, 1990.
    210.Inubushi K, Acquaye S, Tsukagoshi S, Shibahara F, Komatsu S.Effects of controlled-release coated urea (CRCU) on soil microbial biomass N in paddy fields examined by the ~(15)N tracer technique. Nutr Cycl Agroecosyst, 2002, 63:291-300.
    211.Izaurralde RC, Lemke RL, Goddard TW, McConkey B, Zhang Z. Nitrous oxide emissions from agricultural toposequences in Alberta and Saskatchewan. Soil Sci Soc Am J, 2004, 68: 1285-1294.
    212.IPCC. The Scientific Basis: Chapter4, Atmospheric Chemistry and Greenhouse Gases, Third Assessment Report-Climate change 2001. Intergovernmental Panel on Climate Change, Cambridge, UK, 2001a.
    213.IPCC. The Scientific Basis: Technical Summary. Third Assessment Report-Climate change 2001. Intergovernmental Panel on Climate Change, Cambridge, UK, 2001b.
    214.Jagadeesh BY, Li C, Frolking S, Nayak DR, Adhy TK, Field validation of DNDC model for methane and nitrous oxide emissions from rice-based production systems of India. Nutr Cycl Agroecosyst, 2006, 74:157-174.
    215.Jenkinson DS. Determination of microbial biomass carbon and nitrogen in soil. In: Wilson JR (Eds.) Advances in nitrogen cycling in agricultural ecosystems. CAB Wallingford, UK, 1988, 368-386.
    216.Jenkinson DS, Ladd JN. Microbial biomass in soil: measurement and turnover. In: Paul EA, Ladd JN (Eds) Soil biochemistry, vol 5. Decker, New York, 1981, 415-417.
    217.Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A. Dissolved organic nitrogen uptake by plants—an important N uptake pathway? Soil Biol Biochem, 2005, 37:413-423.
    218.Jones DL, Kielland K. Soil amino acid turnover dominates the nitrogen flux in permafrost-dominated taiga forest soils. Soil Biol Biochem, 2002, 34:209-219.
    219.Jones DL, Shannon D, Murphy DV, Farrar J. Role of dissolved organic nitrogen (DON) in soil N cycling in grassland soils. Soil Biol Biochem, 2004, 36:749-756.
    
    220.Jordan D, Kremer RJ, Bergfield WA, Kim KY, Cacnio VN. Evaluation of microbial methods as potential indicators of soil quality in historical agricultural fields. Biol Fertil Soils, 1995,19:297-302.
    221.Kalbitz K, Solinger S, Park JH, Michalzik B, Matzner E. Controls on the dynamics of dissolved organic matter in soils: a review. Soil Sci, 2000,165:277-304.
    222.Katyal JC, Gadalia AM. Fate of urea-N in floodwater I. Relation with total N loss. Plant Soil, 1990, 121:21-30.
    223.Keeney DR, Sahrawat KL. Nitrogen transformations in flooded rice soils. Fertil Res, 1986,9:15-38.
    224.Keerthisinghe G, De Datta SK, Mengel K. Importance of exchangeable and non-exchangeable soil NH_4~+ in nitrogen nutrition of lowland rice. Soil Sci, 1985, 140(3): 194-201.
    225.Keerthisinghe G, Mengel K, De Datta SK. The release of nonexchangeable ammonium (15N-labeled) in wetland rice soils. Soil Sci Soc Am J, 1984, 48: 291-294.
    226.Klose S, Tabatabai MA. Urease activity of microbial biomass in soils. Soil Biol Biochem, 1999,31:205-211.
    227.Koyama T, App A. Nitrogen balance in flooded rice soils. In: International Rice Research Institute (Eds.), Nitrogen and rice. IRRI, Los Banos, Philippines, 1979, 95-104.
    228.Kranabetter JM, Dawson CR, Dunn, DE. Indices of dissolved organic nitrogen, ammonium and nitrate across productivity gradients of boreal forests. Soil Biol Biochem, 2007, 39:3147-3158.
    229.Kreye C, Dittert K, Zheng XH, Zhang X, Lin S, Ta HB, Sattelmacher B. Fluxes of methane and nitrous oxide in water-saving rice production in north China. Nutri Cycl Agroecosyst, 2007, 77:293-304.
    230.Kushwaha CP, Tripathi SK, Singh KP. Variations in soil microbial biomass and N availability due to residue and tillage management in a dryland rice agroecosystem. Soil Till Res, 2000, 56:153-166.
    231.Kyaw KM, Toyota K, Okazaki M, Motobayashi T, Tanaka H. Nitrogen balance in a paddy field planted with whole crop rice (Oryza sativa cv. Kusahonami) during two rice-growing seasons. Biol Fertil Soils, 2005,42:72-82.
    232.Laverman AM, Zoomer HR, Verhoef HA. The effect of oxygen, pH and organic carbon on soil-layer specific denitrifying capacity in acid coniferous forest. Soil Biol Biochem, 2001, 33:683-687.
    233.Li HL, Han Y, Cai ZC. Modeling Nitrogen mineralization in paddy soils of Shanghai region. Pedosphere, 2003, 13(4): 331-336.
    234.Li YS, Wu LH, Lu XH, Zhao LM, Fan QL, Zhang FS. Soil microbial biomass as affected by non-flooded plastic mulching cultivation in rice. Biol Fertil Soils, 2006, 43:107-111.
    235.Liang BC, Mackenzie AF. 1994. Fertilization rates and clay fixed ammonium in two quebec soils. Plant Soil, 163:103-109.
    236.Liesack W, Schnell S, Revsbech NP. Microbiology of flooded rice paddies. FEMS Microbiol Res, 2000,24:625-645.
    237.Lightfoot C, van Dam A, Costa-Pierce B. What's happening to rice yields in rice-fish systems? In: dela Cruz CR, Lightfoot C, Costa-Pierce BA, Carangal VR, Bimbao MP (Eds.), Rice-Fish Research and Development in Asia. ICLARM Conf Proc, 1992, 245-254.
    238.Lu JB, Li X. Review of rice-fish-farming systems in China — one of the globally important ingenious agricultural heritage systems (GIAHS). Aquaculture, 2006, 260:16-113.
    239.Malla G, Bhatia A, Pathak H, Prasad S, Jain N, Singh J. Mitigating.Nitrous oxide and methane emissions from soil in rice-wheat system of the Indo-Gangetic plain with nitrification and urease inhibitors. Chemosphere, 2005, 58:141-147.
    240.Mailhol JC, Ruelle P, Nemeth I. Impact of fertilisation practices on nitrogen leaching under irragation. Irri Sci, 2001,20:139-147.
    241.Maljanen, Martikkala, Koponen HT, Virkajarvi P, Martikainen PJ. Fluxes of nitrous oxide and nitric oxide from experimental excreta patches in boreal agricultural soil. Soil Biol Biochem, 2007, 39:914-920.
    242.Matson PA, Mcdowell WH, Townsend AR, Vitousek PM. The Globalization of N Deposition: Ecosystem Consequences in Tropical Environments. Biogeochemistry, 1999,46:67-83.
    243.Matsumoto S, Ae N, Yamagata M. Possible direct uptake of organic nitrogen from soil by chingensai (Brassica campestris L.) and carrot (Daucus carota L.). Soil Biol Biochem, 2000, 32:1301-1310
    244.McDowell WH, Likens GE. Origin, composition and flux of dissolved organic carbon in the Hubbard brook Valley. Ecol Monogr, 1988, 58:177-195.
    245.McCarty GW, Meisinger JJ. Effect of N fertilizer treatments on biologically active N pools in soils under plow and no tillage. Biol Fertil Soils, 1997, 24:406-412.
    246.Mengel K. Dynamics and availability of major nutrients in soils. Adv Soil Sci, 1985, 2:65-131.
    247.Mengel K. Turnover of organic nitrogen in soils and its availability to crops. Plant Soil, 1996,181:83-93.
    248.Michalzik B, Matzner E. Dynamics of dissolved organic nitrogen and carbon in a Central European Norway spruce ecosystem. Soil Sci, 1999,50:579-590.
    249.Moore JW. Seasonal succession of algae in a eutrophic stream in Southern England. Hydrobiol, 1997, 53 (2):181-193.
    250.Murphy DV, Macdonald AJ, Stockdale EA, Goulding.kWT, Fortune S, Gaunt JL, Poulton PR, Wakefield JA, Webster CP, Wilmer WS. 2000. Soluble organic nitrogen in agricultural soils. Biol Fertil Soils, 30:374-387.
    251.Nagele W, Conrad R. Influence of pH on the release of NO and N_2O from fertilized and unfertilized soil. Biol Fertil Soils, 1990, 10:139-144.
    252.Narteh LT, Sahrawat KL. Potentially mineralizable nitrogen in West African lowland rice soils. Gederma, 1997,76:145-154.
    253.Nastri A, Toderi G, Bernti. Ammonia volatilization and yield response from urea applied to wheat with urease (NBPT) and nitrification (DCD) inhibitors. Agrochimica, 2000, 5(6): 231-238.
    254.Neff JC, Hobbe SE, Vitousek PM. Nutient and mineralogical control on dissolved organic C, N and P fluxes and stoichiometry in Hawaiian soils. Biogeochemistry, 2000,51:283-302.
    255.Nommik H. Fixation and defixation of ammonium in soils. Acta Agric Scand, 1957, 7:395-436.
    256.Nommik H. Fixation and biological availability of ammonium in soil clay minerals. In: Terrestrial Nitrogen Cycles (Clark FE and Rosswall T, Eds.), Ecol Bulletin (Stockholm), 1981, 33:273-279.
    257.OECD. Environmental indicators for agriculture methods and results. Executive Summary, 2000, Paris, 2000.
    258.Panda MM, Ghosh BC, Sinhababu DP. Uptake of nutrients by rice under rice-cum-fish culture in intermediate deep water situation (up to 50-cm depth). Plant Soil, 1987,102:131-132.
    259.Panda D, Mahata KR, Sen HS, Patnaik S. Transformation and loss of nitrogen due to leaching and ammonia volatilization in wetland rice (Oryza sativa) soil. India J Agric Sci, 1989, 59:291-136.
    260.Paramasivam E, Breitenbeck G A. Distribution of nitrogen in soil of the southern mississippi river alluvial plain. Commun Soil Sci Plant Anal, 1994,25:247-267.
    261.Park JH, Kalbitz K, Matzner E. Resource control on the production of dissolvedorganic carbon and nitrogen in a deciduous forest floor. Soil Biol Biochem, 2002, 34:813-822.
    262.Park JH, Matzner E. Detrital control on the release of dissolved organic nitrogen (DON) and dissolved inorganic nitrogen (DIN) from the forest floor under chronic N deposition. Environ Pollution, 2006,143:178-185.
    263.Paromita, Ghosh AK, Kashyap. Effect of rice cultivars on rate of N-mineralization, nitrification and nitrifier population size in an irrigated rice ecosystem. Appl Soil Ecol, 2003, 24:27-41.
    264.Paul EA, Clark FE. Soil Microbiology and Biochemistry, second ed., Academic Press, New York. 1996.
    265.Perakis SS, Hedin LO. Nitrogen loss from unpolluted South American forests mainly via dissolved organic compounds. Nature, 2002,415:416-419.
    266.Porter LK, Stewart BA. Organic interferences in the fixationof ammonium by soils and clay minerals. Soil Sci, 1970,100:229-233.
    267.Quails RG, Haines BI. Geochemistry of dissolved organic nutrients in water percolating through a forest ecosystem. Soil Sci Soc Am J, 1991, 52:1112-1123.
    268.Quails RG, Haines BL, Swank WT, Tyler SW. Retention of soluble organic nutrients by a forested ecosystem. Biogeochemistry, 2002, 61:135-171.
    269.Rawluk CDL, Grant CA, Razc GJ. Ammonia volatilization from soils fertilizer with urea and varying rates of urease inhibitor NBPT. Can J Soil Sci, 2001, 81:239-246.
    270.Reddy KR. Nitrogen cycling in a flooded-soil ecosystem planted to rice (Oryza sativa L.). Plant Soil, 1982, 67:209-220.
    271.Rochette P, van Bochove E, Prevost D, Angers DA, Cote D, Bertrand N. Soil carbon and nitrogen dynamics following application of pig slurry for the 19th consecutive year. II. Nitrous oxide fluxes and mineral nitrogen. Soil Sci Soc Am J, 2000, 64:1396-1403.
    272.Rodhe H. A comparison of the contribution of various gases to the greenhouse effect. Science, 1990, 1217-1219.
    273.Rothuis AJ, Vromant N, Xuan VT, Richter CJJ, Ollevier F. The effect of rice seeding rate on rice and fish production, and weed abundance in direct-seeded rice-fish culture. Aquaculture, 1999, 172,255-274.
    274.Rosswall T (Eds.). Terrestrial nitrogen cycles, ecosystem strategies and management impacts. Ecol Bull (Stockholm), 1981, 33:273-279.
    275.Saffigna PG, Powlson DS, Brookes PC, Thomas GA. Influence of Sorghum residues and tillage on soil organic matter and soil microbial biomass in an Australian Vertisol. Soil Biol Biochem, 1989, 21 (6):759-765.
    276.Scherer HW. Fixed NH_4~+-N in relation to EUF-extractable K. Plant Soil, 1982, 64:67-71.
    277.Schneiders M, Scherer H W. Fixation and release of ammonium in flooded rice soils as affected by redox potential. Eur J Agron, 1998, 8:181-189.
    278.Scherer HW, Zhang YS. Studies on the mechanisms of fixation and release of ammonium in paddy soils after flooding I. Effect of iron oxides on ammonium fixation in paddy soils. Z Pflanzenernaehr Bodenk, 1999,162:593-597.
    279.Sharpley AN, Charpa SC, Wedepohl R, Sims JT, Daniel TC, Reddy KR. Managing agriculture phosphorus protection of surface waters: Issues and options. J Environ Qual, 1994,23:437-451.
    280.Schobert C, Komor E. Amino-acid-uptake by Ricinus communis roots: characterization and physiological significance. Plant Cell Environ, 1987, 10:493-500.
    281.Shen SM. Contribution Of nitrogen fertilizer to the development of agriculture and its loss in China. Acta Pedol Sin, 2002, 39:12-15.
    282.Shine KP, Derwent RG, Wuebbles DJ. Radiative forcing of climate. Cliamater change: The IPCC scientific assessment. Houghton JT et al. (Eds.), Cambridge University Press, Cambridge, 1995, 47-68.
    283.Siemens J, Kaupenjohann M. Contribution of dissolved organic nitrogen to N leaching from four German agricultural soils. J Plant Nutr Soil Sci, 2002, 165:675-681.
    284.Singh H, Singh KP. Effect of residue placement and chemical fertilizer on soil microbial biomass under tropical dryland cultivation. Biol Fertil Soils, 1993, 16:275-281.
    285.Singh JS, Sing S, Raghubanshi AS, Singh S, Kashyap AK. Methane flux from rice/wheat agroecosystem as affected by crop phenology, fertilization and water lever. Plant Soil, 1996,183:323-327.
    286.Silva JA, Bremner JM. Determination and isotope-ratio analysis of different form of nitrogen in soils: Fixed ammonium. Soil Sci Soc Am Proc, 1966, 30:587-594.
    287.Smith KA. The potential for feedback effects induced by global warming on emissions of nitrous oxide by soils. Global Change Biol, 1997, 3:327-338.
    288.Smith KA, Moshe A, Pepper TJ. Nutrient losses by surface runoff following the application of organic manures to arable and nitrogen. Environ Pollution, 2001, 112:41-51.
    289.Stevens RJ, Laughlin RJ, Malone JP. Soil pH affects the processes reducing.Nitrate to nitous oxide and di-nitrogen. Soil Biol Biochem, 1998, 30:1119-1126.
    290.Streeter TC, Bol R, Bardgett RD. Amino acids as a nitrogen source in temperate upland grasslands: the use of dual labelled (~(13)C~(15)N) glycine to test for direct uptake by dominant grasses. Rapid Commun Mass Spectrom, 2000, 14:1351-1355.
    291.Stucki JW, Golde CD, Roth CB. Effect of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites. Clays Clay Miner, 1984, 32:350-356.
    292.Suratno W, Murdiyarsob D, Suratmoc FG, Anas I, Saenic MS, Rambec A. Nitrous oxide flux from irrigated rice fields in West Java. Environ Pollution, 1998, 102, Sl: 159-166.
    293.Tabatabai MA. Soil enzymes. In: Weaver RW, Angel JS, BottomLey PS (Eds.). Methods of soil analysis, part 2. Microbiological and biochemical properties. Soil Sci Soc Am Book Series 5, SSSA, Madison, WI, 1994, 775-833.
    294.Towprayoon S, Smakgahn K, Poonkaew S. Mitigation of methane and nitrous oxide emissions from drained irrigated rice fields. Chemosphere, 2005, 59:1547-1556.
    295.Trasar-Cepeda C, Leiros C, Gil-Sotres F, Seoane S. Towards a biochemical quality index for soils: an expression relating several biological and biochemical properties. Biol Fertil Soils, 1998, 26:100-106.
    296.Tsuruta H, Kanda K, Hirose T. Nitrous oxide emission from a rice paddy field in Japan. Nutr Cycl Agroecosyst, 1997,49:51-58.
    297.Tiedje JM. Ecology of denitrification and dissimilatory nitrate reduction to ammonium. In: Zehnder (Eds.), Biology of Anaerobic Soils. Wiley, New York. 1988.
    298.US Environmental Protection Agency. Non-Point Source Pollution from Agriculture. http://www.epa.gov/region8/water/nps/npsurb.html, 2003.
    299.Van Cleemput O. Biogeochemistry of nitrous oxide in wetlands. Curr Topics Wet Biogeochem, 1994, 3-14.
    300.Van Miegroet H, Cole DW. Acidification sources in red alder and Douglas fir soils—importance of nitrification. Soil Sci Soc Am J, 1985,49:1274-1279.
    301.Vermoesen A, de Groot CJ, Nollet L, Boeckx P, van Cleemput O. Effect of ammonium and nitrate application on the NO and N_2O emission out of different soils. Plant Soil, 1996,181: 153-162.
    302.Vighi M, Chiaudani G. Eutrophication in Europe, the role of agricultural activities. In: Hodgson E. Reviews of Environmental Toxicology. Amsterdam: Elsevier, 1987:213-257.
    303.Vlek PLG, Byrens BH. The efficacy and loss of fertilizer N in lowland rice. Fertil Res, 1986, 9(1-2):131-147.
    304.Vlek PLG, Diakite MY, Mueller H. The role of Azolla in curbing ammonia volatilization from flooded rice systems. Fertil Res, 1995, 42:165-174.
    305.Vogt KA, Grier CC, Meier CE, Keyes MR. Organic matter and nutrient dynamics in forest floors of young and mature Abies amabilis stands in western Washington, as affected by fine root input. Ecol Monogr, 1983, 53:139-157.
    306.Vromant N, Chau NTH, Ollevier F. The effect of rice-seeding rate and fish stocking on the floodwater ecology of the trench of a concurrent, direct-seeded rice-fish system. Hydrobiologia, 2001,457: 105-117.
    307.Wang JY, Wang SJ, Chen Y. Leaching.Loss of nitrogen double-rice-cropped paddy fields in China. Acta Agri Zhejiangesis, 1995, 155-160.
    308.Wang J Y, Wang SL, Chen Y. Study on leaching.Loss of nitrogen in rice fields by using.Large undisturbed momolith lysimeters. Pedoshpere, 1994,4:87-92.
    309.Weeraratna CS, Craswell ET. Nitrogen losses from labelled ammonium sulphate and Urea applied to a flooded rice soil. Fertil Res, 1985, 6:199-203.
    310.Weigelt A, Bol R, Bardgeett RD. Preferential uptake of soil nitrogen forms by grassland plant species. Oecologia, 2005,142:627-635.
    311.Wen QX, Cheng LL, Zhang XH. Fixed ammonium contents and NH/ fixation capacities of some cultivated soils in China. Pedosphere, 1995, 5(4):247-267.
    312.Witt C, Cassman KG, Ottow JCG, Biker U. Soil microbial biomass and nitrogen supply in an irrigated lowland rice soil as affected by crop rotation and residue management. Biol Fertil Soils, 1998,28:71-80.
    313.Xiong L.The effects of integrated Azolla Duck Rice Farming system on weeding, pest control and the behavior of duck. Jpn J lives. Management, 1996, 34(1): 13-22.
    314.Xiong ZQ, Xing GX, Zhu ZL. Nitrous oxide and methane emissions as affected by water, soil and nitrogen. Pedosphere, 2007,17(2): 146-155.
    315.Xiong ZQ, Xin GX, Tsuruta H, Shen GY, Shi SL, Du LJ. Measurement of nitrous oxide emissions from two rice-based cropping systems in China. Nutr Cycl Agroecosyst, 2002,64:125-133.
    316.Xu H, Xing G, Cai Z, Tsuruta H. Nitrous oxide emissions from three rice paddy fields in China. Nutr Cycl Agroecosyst, 1997,49:23-28.
    317.Yang C, Yang L, Ouyang Z. Organic carbon and its fraction in paddy soil as affected by different nutrient and water regimes. Geoderma, 2005,124:133-142.
    318.Yu ZS, Northup RR, Dahlgren RA. Determination of dissolved organic nitrogen using persulfate oxidation and conductimetric quantification of nitrate - nitrogen. Commun Soil Sci. Plant Analysis, 1994, 25:3161-3169.
    319. Yuan XQ. Role of fish in pest control in rice farming. In: dela Cruz CR, Lightfoot C, Costa-Pierce BA, Carangal VR, Bimbao MP (Eds.). Rice-fish Research and Development in Asia. ICLARM Conf Proc, 1992, 235-243.
    320.Yue JN, Shi Y, Liang W, Wu J, Wang CR, Huang GH. Methane and nitrous oxide emissions from rice field and related microorganism in black soil, northeastern China. Nutr Cycl Agroecosyst, 2005, 73:293-301.
    321.Zak DR, Groffman PM, Pregitzer KS, Christensen S, Tiedje JM. The vernal dam: plant-microbe competition for nitrogen in northern hardwood forests. Ecology, 1990, 71:651-656.
    322.Zehr JP, Ward BB. Nitrogen cycling in the ocean: new perspectives on processes and paradigms. Appl Environ Microbiol, 2002, 68:1015-1024.
    323 .Zhang C, Chen X. Influence of Reclamation of ForestLand on Nutrients and Enzyme Activities in Soil. Chinese J Ecol, 1998,17(6): 18-21.
    324.Zhang YS, Scherer HW. Mechanisms of fixation and release of ammonium in paddy soils after flooding II. Effect of transformation of nitrogen forms on ammonium fixation. Biol Fertil Soils, 2000, 31:517-521.
    325.Zhang YS, Scherer HW. Ammonium fixation by clay minerals in different layers of two paddy soils after flooding. Biol Fertil Soils, 1999, 29:152-156.
    326.Zhang YZ, Liao JP, Sun YH, Feng YH, Huang YX. Fixed ammonium in major types of paddy soils in Hunan Province, China. Pedosphere, 2003, 13 (3): 199-208.
    327.Zheng XH, Wang MX, Wang YS, Shen RX, Li J. Comparison of manual and automatic methods for measurement of methane emission from rice paddy fields. Adv Atmos Sci, 1998,15(4):569-579.
    328.Zheng XH, Wang MX, Wang YS, Shen RX, Zhang W, Gong AB. Impact of soil moisture on nitrous oxide emission from croplands: a case study on the rice-based agro-ecosystem in Southeast China. Chemosphere-Global Change Sci, 2000, 2:207-224.
    329.Zhong ZK, Makeschin F. Soluble organic nitrogen in temperate forest soils. Soil Biol Biochem, 2003, 35:333-338.
    330.Zhong WH, Cai ZC. Long-term effects of inorganic fertilizers on microbial biomass and community functional diversity in a paddy soil derived from quaternary red clay. Appl Soil Ecol, 2007, 36:84-91.
    331.Zhu WX, Carreiro MM. Variations of soluble organic nitrogen and microbial nitrogen in deciduous forest soils along an urban-rural gradient. Soil Biol Biochem, 2004, 36:279-288.
    332.Zhu JG, Han Y, Liu G, Zhang YL, Shao XH. Nitrogen in percolation water in paddy fields with a rice/wheat rotation. Nutr Cycl Agroecosyst, 2000, 57:75-82.
    333.Zhuang SY, Yin B, Zhu ZL. Model estimation of volatilization of ammonia applied with surface file- forming materal. Pedosphere, 1999, 9(4): 299-304.
    334.Zou JW, Huang Y, Jiang JY, Zheng XH, Sass RL. A 3-year field measurement of methane and nitrous oxide emission from rice paddies in China: effects of water regime, crop residue, and fertilizer application. Global Biogeochem Cycl, 2005, 19:GB2021.
    
    335.Zsolnay A. Dissolved humus in soil waters. In: Piccolo A (Eds.). Humic Substances in Terrestrial Ecosystems. Amsterdam: Elsevier, 1996,171-223.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700