我国小麦秆锈菌兼Ug99监测新体系建立及其品种抗病基因分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小麦秆锈病是对小麦生产最具毁灭性的真菌病害,我国处在小麦秆锈病的特定流行区,秆锈病流行曾多次使我国小麦生产蒙受毁灭性损失。由于全球普遍引入抗秆锈病基因Sr31,保证了世界范围小麦秆锈病持续控制长达近40年。对Sr31具有高度致病力的小种Ug99(TTKSK)及其变异体的出现对包括我国在内的世界小麦生产造成了新的严重威胁。针对我国小麦秆锈病及Ug99的防控方面亟待解决的理论与关键技术问题,开展秆锈菌小种监测(部分工作配合国际小麦秆锈锈菌小种监测),中国的抗病品种和种质资源的筛选,抗病品种的基因检测和新抗性基因挖掘和中国重要辅助鉴别寄主Minn2761抗性相关的蛋白质组学研究。取得的主要进展如下。
     1.国内首次研究确定了能够对Ug99及其变异体具有区分作用的新鉴别寄主体系,并用五辅音字母对新监测的菌株命名。由于近几年全国小麦秆锈病发生罕见的轻,2009-2010年从全国重要秆锈病流行麦区采集共得到75个菌株。共鉴定出8个不同小种,其出现频率分别为:21C3CTHTM为42.7%、34MKGRM为14.7%、21C3CPHTM为13.3%和21C3CTHTP为9.3%、34MKGTM为6.7%、21C3CFHTM为5.3%、21C3CTHRM和34MKGRP分别为4.0%。说明21C3系统仍然是我国发生最普遍和出现频率最高的小种类群,但34系统出现频率有所上升由16.9%上升到25.4%,暂未发现Ug99。利用47个小麦抗秆锈病单基因系对上述8个小种的毒力谱进行了测定,结果表明:毒力频率100%的基因有:Sr7a,7b,8a,9a,9b,9d,9f,9g,12,13,14,15,16,18,19,20,23,24,25,27,28,29,32,34,Tmp,Dp-2;80%以上的有:Sr6;50%以上都有:Sr10,11,17,Wld-1,GT;30%以上的有:Sr5;10%~30%的有: Sr38;毒力频率为0的基因有:Sr9e,21,22,26,30,31,33,35,36,37,并与Ug99及其变异小种的毒力谱进行了比较,结果发现对我国小种具有良好抗性的基因Sr9e,21,30,31和38等均能被Ug99克服,对我国优势小种和Ug99均具有抗性的基因为Sr22,26,33,35和37等,为今后筛选和利用兼抗中、外秆锈菌小种的有效抗病基因提供了可靠依据。
     2.利用我国当前流行小种鉴定了57份国际抗Ug99小麦材料和1418份国内小麦品种(系)。国际材料中有51份材料对我国主要小种类型具有良好的抗性;在我国448份小麦种植品种中,对全部供试小种类型表现抗性的有147份,占32.8%。;长江中下游麦区的105份材料中只有1份对全部供试小种抗性表现免疫,其他都为高感品系;黄淮麦区的236份小麦高代系中对全部供试小种类型表现抗性的有64份,占27.6%;在东北春麦区供试的629份高代系中有562份表现为免疫至高抗,其中442份表现免疫,说明东北麦区育成的小麦品种对秆锈病的抗性较好。
     3.开展小麦品种中重要抗秆锈基因的分子检测分析研究:对现有报道的抗秆锈病基因标记的实用性进行反复验证后,选取了重要抗病标记Sr26(兼抗Ug99)、Sr31和Sr36对我国小麦品种含有的抗秆锈性基因进行检测,通过对448份小麦品种的检测结果表明:在黑龙江的垦九10号和北京的保丰104中检测到Sr26;在多达70份的小麦品种检测到含有Sr31,其中河南13份;河北7份;四川9份,黑龙江4份;辽宁、山东5份;北京、陕西4份;湖北、甘肃和贵州2份;安徽、云南各1份小麦品种;引自国外品种4份及其他品种9份;在检测中尚未测到含Sr36的品种。其中,关于国内品种含有的Sr26以前鲜见报道。
     4.国内首次.利用mRNA差异显示技术(DDRT-PCR)对我国重要辅助鉴别寄主明尼2761的与抗性相关基因进行了研究。筛选出24对引物能够在辅助鉴别寄主明尼2761接菌/未接菌和感病亲本萨其尔接菌/未接菌之间揭示出多态性,根据基因表达与否和表达量,获得9种不同差异表达的多态性条带类型,分别表示不同状态下测试材料的表达状况。通过对获得的cDNA差异片段进行测序,在NCBI网站上BLAST同源性比较分析,在GenBank数据库中并未找到与其具有同源性的已知序列。
     5.建立了适合小麦叶片蛋白的高通量、高分辨率和高重复性的双向电泳技术体系,确定了双向电泳最佳条件:以改进的三氯乙酸/丙酮法提取小麦叶片总蛋白,裂解缓冲液为9M尿素,2M硫脲,4%CHAPS,1%DTT,1%TBP,0.5%IPG buffer,IEF等点聚焦最终控制在10000V,99999vh,SDS-PAGE胶浓度为12%。
     6.首次对辅助鉴别寄主明尼2761进行双向电泳(2-DE)分离分析,结果显示:在明尼2761和萨其尔分别接菌/未接菌对比中,分别出现7个和6个差异表达蛋白点。经过比较共发现差异点11个。通过基质辅助激光解析电离飞行时间质谱技术(MALDI-TOF-TOF)获得了13个蛋白点的肤质量指纹图谱(PMF),Mascot数据库搜索比对后,鉴定了8个蛋白质点,根据蛋白质功能的不同分为三类,第一类是与植物防卫相关的蛋白:ascorbate peroxidase(66)和glutathione synthetase (247);第二类是与能量代谢相关蛋白:ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit RuBisCO largesubunit(152);第三类是与光合作用相关的蛋白:23kDa oxygen evolving protein ofphotosystem II(437,524);第四类是未知功能蛋白: ADP-ribosylation factor(498),unknown(147,648)。它们分别参与了植物自身的防卫反应、能量代谢、光合作用等多个生理生化过程,这些上调或下调的蛋白都是复杂的蛋白调控网络中的一部分,在植物的抗病反应中协同起着重要作用。
Wheat stem rust caused by Puccinia graminis f.sp. tritici is a catastrophic wheat diseasebecause of its ability to cause complete annihilation of wheat crops over wide areas. China isin special wheat stem rust epidemic region and had suffered from several times of devastatingwheat losses due to the rust. For nearly four decades this disease has been under controlinternationally by widespread use of the1BL.1RS translocation with Sr31.Race variation isinternal reasons for wheat rust pandemic and resistance loss. Resurgence of raceUg99(TTKSK) is such a case. The race is highly virulent on Sr31and causes severe threat towheat production in China and the world. the urgent researches would be included in thefollowing aspects Race survey (a section of international wheat stem rust surveillance),Chinese resistant variety and germplasm screening, Chinese resistant variety gene detectionand new resistant gene mining, and Chinese important complementary host: Minn2761resistance related proteomics studies. The main progresses were as follows.
     1. The new sets of wheat stem rust differential single gene lines and five-letter racenomenclature system which could distinguish new races Ug99and its mutants were used toidentify75isolates in the year2009-2010. Eight pathotypes, namely,21C3CTHTM,34MKGRM,21C3CPHTM,21C3CTHTP,34MKGTM,21C3CFHTM,21C3CTHRM and34MKGRP, were identified with frequencies of42.7%,14.7%,13.3%,9.3%,6.7%,5.3%,4.0%and4.0%, respectively. Only a few races were found, without finding new pathotypeUg99. Race21C3still remained predominant. The virulence spectra of eight race pathotypeswere determined on47single gene lines. The virulence frequencies for Sr7a,7b,8a,9a,9b,9d,9f,9g,12,13,14,15,16,18,19,20,23,24,25,27,28,29,32,34,Tmp,Dp-2were100%; thosefor Sr6, Sr10,11,17, Wld-1, GT, between50%-80%; those for Sr5and Sr38, between10%-30%; and those for Sr9e,21,22,26,30,31,33,35,36,37,0. It was indicatedthat Sr5,9e,11,21,30and31were highly resistant to Chinese wheat stem rust races currentlybut susceptible to Ug99and only Sr22,26,33,35and37were resistant to both Chinese racesand Ug99and could be utilized in breeding for resistance.
     2. Using current main races of wheat stem rust in China, the resistance of57abroadUg99-resistant wheat cultivars and1418Chinese cultivars (lines) was appraised. It wasindicated that51wheat materials resistant to Chinese stem rust races and Ug99;52.0%of448cultivars from China also had good resistance, only1in105materials from Jiangsu was resistant to all races tested,64in236breeding lines from Shandong, resistant to all racestested;562in629wheat lines from Heilongjiang were highly resistant and442of them wereimmune.
     3. Molecular detection for stem rust resistant genes carried in448Chinese commercialcultivars was conducted by using validated closely linked stem rust resistant gene markers,such as those of available STS and SSR markers of Sr26(resistant to Ug99), Sr31and Sr36.The result was indicated that among those cultivars, Kenjiu10grown in HeilongjiangProvince and Baofeng104grown in Beijing were detected to contain Sr26, about70cultivarswere shown to carry the Sr31and no Sr36-carrying varieties were met with.
     4. For the first time in China, the mRNA differential display was used to study wheatstem rust resistance related protein of Chinese complementary differential: Minne2761.Twenty-four pairs of primers could amplify differential expression bands among Minn2761and Thatcher byDDRT-PCR analysis. Polymorphic bands were grouped into nine different types and four types of themwere supposed to correspond to disease-resistant genes. After sequencing cDNA differentialfragments and Blast homology analysis in the GenBank database it was indicated that therewas no known similar sequences found.
     5. A high-throughput, high-resolution and high-repeatability2-DE system was established for wheatleaf proteins. the proteins were extracted by using the TCA/acetones, the elements of lysis buffer werecomposed of urea:9mol/L, Thiourea:2mol/L,4%CHAPS,1%DTT,1%TBP and0.5%IPGbuffer. IEF condition was10000vh(17cm), SDS-PAGE was performed in12%polyacrylamide gels.
     6. The2-D maps of inoculated and un-inoculated Minn2761and Thatcher by of34MKGwere analyzed. The analysis result was shown that there were seven and six differentiallyexpressed protein spots, respectively, there were eleven differentially expressed protein spotsin inoculated Minne2761and Thatcher. Analysis of13interested protein spots was conductedwith MALDI-TOF-TOF. Among them,8proteins spots were obtained by Mascot databasesearching and inter-comparison preliminary identification. These protein spots could beclassified into three groups: group1was included in ascorbate peroxidase(66) and glutathionesynthetase (247), which is thought to relate to host defense; group2,ribulose-1,5-bisphosphate carboxylase/oxygenase large subunitRuBisCO large subunit(152), which isthought to relate to energy metabolism; group3,23kDa oxygen evolving protein ofphotosystem II(437,524) and group4was included in ADP-ribosylation factor(498),unknown(147,648).All of those up-or down-regulated proteins were probably parts of network of resistance of development-related proteins had close connection with plant defense responses,energy metabolism, cell signal transduction and transcriptional regulation.
引文
1. Atwood JA3rd,Weatherly DB,Minning TA,Bundy B,Cavola C,Opperdoes FR,Orlando R, TarletonRL.2005.The Trypanosoma cruzi proteome.Science.309(5733):473-476
    2. Bariana H S,Hayden M J,Ahmed N U,et al.1998.Mapping of durable adult plant and seedingresistances to stripe rust and stem rust diseases in wheat.Australian Journal of Agricultural Research,52(12):1247-1255.
    3. Bestel-Corre G,Dumas-Gaudot E,Poinsot V,Dieu M,Dierick JF,van Tuinen D,RemacleJ,Gianinazzi-Pearson V,Gianinazzi S.2002.Proteome analysis and identification of symbiosis-relatedproteins from Medicago truncatula Gaertn.by two-dimensional electrophoresis and massspectrometry.Electrophoresis.23:122–137.
    4. Bhagwat S G.2006.Development of SCAR markers for identification of stem rust resistance geneSr31in the homozygous or heterozygous condition in bread wheat. Plant Breeding,125(6):544-549.
    5. Blaszczyk L, Chelkowski J, Korzun V, Kraic J, Ordon F, Ovesnd J, Pumhauscr L, Tar M, Vida G.2004.Verification of STS markers for leaf rust resistance genes of wheat by seven European laboratories,Cell Mol. Bio1. Lett,9(4B):805-817.
    6. Bonetta L.2006.Protein purification:proteomics at Harvard.Nature.439(7079):1017.
    7. Bowers WD,Delbert SS,Hunter RL,McIver RTJ.1984.Fragmentation of oligopeptide ions usingultraviolet laser radiation and Fourier transform mass spectrometry. J.Am.Chem.Soc.106:7288–7289.
    8. Carpentier SC,Witters E,Laukens K,Deckers P,Swennen R,Panis B.2005.Preparation of ProteinExtracts from Recalcitrant Plant Tissues:An Evalution of Different Methods for Two-dimensional GelElectrophoresis Analysis.Proteomics.5(10):2497-2507.
    9. Christina W,Giavalisco P,Schad M,Juenger M,.Klose J,Kehr J.2004.Proteomics of curcurbit phloemexudate reveals a network of defence proteins.Phytochemistry,65(12):1795-1804.
    10. CIMMYT Expert Panel.2005. Sounding the Alarm on Global Stem Rust. Mexico, DF: CIMMYT.Available from: URL: http://www.globalrust.org/documents/SoundingAlarmGlobal Rust.pdf (verified1June2006)
    11. Corbett JM,Dunn MJ,Posch A,Gorg A.1994.Positional Reproducibility of Protein Spots InTwo-dimensional Polyacrylamide Gel Eletrophoresis Using Immobilised pH Gradient IsoelectricFocusing in the First Dimension:An Interlabratory Comparison.Eletrophoresis.15(8-9):1205-1211
    12. Das B K, Saini A, Bhagwa S G, Jawali N.2007. Development of SCAR markers for identiWcation ofstem rust resistance gene Sr31in the homozygous or heterozygous condition in bread wheat. PlantBreed,125:544-549.
    13. Davis BJ.1964.Disc electrophoresisII.Method and application.of human serum proteins.Ann NY AcadSci.121:401-411.
    14. Drs.Shiaoman Chao, North Dakota, Evans Lagudah, CSIRO.2009. Developing and optimizingmarkers for Sr13and pyramiding Sr2, Sr13and Sr25in tetraploid what. In: Technical Workshop ofBlrlaug Global Rust Initiative. Full Papers and Abstractsfor the Presented Talks. Mexico.March17-20.P45
    15. Dundas I S, Shepherd K W.1996. Towards yield improvement of stem rust resistant wheat varietiescarrying Sr26. In: Richards R A, Wrigley C W, Rawson H M, Rebetzke G J, Davidson J L, Brettell R IS (eds) Proc8th Assembly Wheat Breed Soc Australia,Canberra, Australia, pp201-203.
    16. Flor H H.1942. Inheritance of pathogenicity in Melampsora lini. Phytopathology,32:653-669.
    17. Flor H H.1971. Current status of the gene-for-gene concept. Annu Rev Phytopathol,9:275-296.
    18. Gavin AC,Aloy P,Grandi P,Krause R,Boesche M,Marzioch M,Rau C,Jensen LJ,Bastuck S,DümpelfeldB,Edelmann A,Heurtier MA,Hoffman V,Hoefert C,Klein K,Hudak M,Michon AM,Schelder M,SchirleM,Remor M,Rudi T,Hooper S,Bauer A,Bouwmeester T,Casari G, Drewes G,Neubauer G,RickJM,Kuster B,Bork P,Russell RB,Superti-Furga G.2006.Proteome survey reveals modularity of theyeast cell machinery.Nature.440(7084):631-636.
    19. Gerechter-Amitaj, Z K, Wahl I, Vardi A, Zohary D.1971. Transfer of stem rust seedling resistancefrom wild diploid einkorn to tetraploid durum wheat by means of a triploid hybrid bridge. Euphytica,20:281-285.
    20. Gold J, Harder D, Townley-Smith F, Aung T, Procunier J.1999. Development of a molecular markerfor rust resistance gene Sr39and Lr35in wheat breeding lines. Electron. J. Biotechnol,2:35-40.
    21. Gousseau H D.1987. Manipulations of temperature-sensitive expression of Sr15allele conditioningresistance to Puccinia graminis f.sp.tritici.Physiol.and Mol.Plant Pathol,30(2):57-65.
    22. Greenberg J T, Guo A, Klessig D F.1994. Programmed cell death in plants:A pathogen-triggeredresponse activated coordinately with multiple defense functions. Cell,77:551-563.
    23. Hayden M J,Kuchel H,Chalmers K J.2004. Sequence tagged microsatellites for the Xgwm533locusprovide new diagnostic markers to select for the presence of stem rust resistance gene Sr2in breadwheat (Triticum aestivum L.).Theor Appl Genet,109(8):1641-1647.
    24. Hayes RN,Gross ML.1990.Collision-induced dissociation.Methods Enzymol.193:237-263.
    25. Helguera M, Khan I A, Kolmer J, et a1.2003. PCR assays for the Lr37-Yr17-Sr38cluster of rustresistance genes and their use to develop isogenic hard red spring wheat lines. Crop Science,43(5):1839.
    26. Helguera M, Khan I A, Kolmer J, Lijavetzky D, Zhong-qi L, Dubcovsky J. PCR assays for theLr37-Yr17-Sr38cluster of rust resistance genes and their use to develop isogenic hard red springwheat lines. Crop Science,2003,43(5):1839-1847
    27. Hutchens TW,Yip Tai-Yung.1993.New Desorption Strategies for the Mass Spectrometric Analysis ofMacromolecules.Rapid Commun Mass Spectrom,.7(1):576-580
    28. Janet Raloff.2005. Wheat Warning-New Rust Could Spread Like Wildfire. Science News Online,http://www.sciencenews.org/articles/20050924/food.asp
    29. Jin Y.2005.Races of Puccinia graminis in the United States during2003. Plant Dis,89:1125-1127.
    30. Jin Y, Pretorius Z, Singh R.2007a. New virulence within race TTKS (Ug99) of the stem rust pathogenand effective resistance gene(Abstract). Phytopathology,97:S137(Abstract).
    31. Jin Y, Singh R P, Ward R W, et al.2007b.Characterization of Seedling Infection Types and AdultPlant Infection Responses of Monogenic Sr Gene Lines to Race TTKS of Puccinia graminis f..sp.tritici. Plant Disease,91:1096-1099.
    32. Jin Y, Szabo L J, Pretorius Z A, Singh R P, et al.2008. Detection of virulence to resistance gene Sr24within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis,92:923-926.
    33. Jones S S, Dvorak J, Knot D R, Qualset C O.1991. Use of double-ditelosomic and normalchromosome1D recombinant substitution lines to map Sr33on chromosome arm1DS in wheat.Genome,34:505-508.
    34. Kerber E R, Dyck P L.1973. Inheritance of stem rust resistance transferred from diploid wheat(Triticum monococcum) to tetraploid and hexaploid wheat and chromosome location of the geneinvolved. Can. J. Genet. Cytol.15:397-409.
    35. Khan R R, Bariana H S, Dholakia B B, Naik S V, Lagu M D, Rathjen A J, Bhavani S, Gupta V S.2005.Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet,111:846-850.
    36. Kogel K, Beissmann B, Reisener H J.1988. Specific binding of a hypersensitive Lignification elicitorfrom Puccinia graminis. f.sp.Tritici to the plasma membranes from wheat. Planta,183:164-169.
    37. Luig N H,Rajaram S.1972.The effect of temperature and genetic background on host gene expressionand interaction to puccinia graminis f.sp. tritici. Phytopathology,62:1171-74.
    38. Lyon G D,Reglinski T,Newton A C.1995. Novel disease control compounds: the potential toimmunize plants against infection. Plant Patho1,44:407-427.
    39. Mago R, Bariana H S, Dundas I A, Spielmeyer W, Lawrence G J, Pryor A J, Elli J G.2005.Development of PCR markers for the selection of wheat stem rust resistance genes Sr24and Sr26indiverse wheat germplasm. Theor Appl Genet,111:496-504.
    40. Mago R, Spielmeyer W, Lawrence G J, Ellis J G., Prior A J.2004. Resistance genes for rye stem rust(SrR) and barley powdery mildew (Mla) are located in syntenic regions on short arm of chromosome.Genome,47:112-121.
    41. Mago R, Spielmeyer W, Lawrence G J, Lagudah E S,JEllis J G, Pryor A.2002. Identification andmapping of molecular markers linked to rust resistance genes located on chromosome1RS of ryeusing wheat-rye translocation lines. Theor Appl Genet,104:1317-1324.
    42. Mater Y, Baenzinger S, Gill K, Graybosch R, Whitcher L, Baker C, Specht J, Dweikat I. Linkagemapping of powdery mildew and greenbug resistance genes on recombinant1RS from ‘Amigo’ and‘Kaukaz’ wheat-rye translocations of chromosome1RS.1AL. Genome,2004,47:292-298.
    43. McLuckey SA,Goeringer DE.1997.Slow Heating Methods in Tandem Mass Spectrometry.J MassSpectrom.32:461-474.
    44. McLuckey SA,Van Berkel GJ,Glish GL,Schwartz JC.1995.Electrospray and the Quadrupole IonTrap.In Practical Aspects of Ion Trap Mass Spectrometry,Volume II,Ion Trap Instrumentation;Ed.byMarch,R.E.and Todd,J.F.J.;CRC Press:Boca Raton,Chapter3:89-141.
    45. Molloy MP.2000.Two-dimensional Eletrophoresis of Membrane Proteins Using Immobilized pHGradients.Anal Biochem.280(1):1-10.
    46. Mukoyi F, Soko T, Mutari B, et al. Detection of Variants of Wheat Stem Rust Race Ug99(Pucciniagraminis f. sp. tritici) in Zimbabwe and Mozambique[J]. Plant Dis,2011(95):1188.
    47. O’Farrell PH.1975.High Resolution Two-dimensional Eletrophoresis of Proteins.J Biol Chem.250(10):4007-4021.
    48. Olson M, Hood L, Cantor C, et al.1989. A common language for Physical mapping of the humangenome. Seience,245:1434-1435.
    49. Ornstein L.1964.Disc electrophoresisI.Background and theory.Ann.New York Acad.Sci.121:321-349.
    50. Parker G D, Chalmers K J, Rathjen A J, Landgridge P.1998. Mapping loci associated with flour colourin wheat (Triticum aestivum L). Theor Appl Gene,96:1021-1032.
    51. Parker G D, Chalmers K J, Rathjen A J, Landgridge P. Mapping loci associated with flour colour inwheat (Triticum aestivum L). Theoretical and Applied Genetics,1998,96:1021-1032.
    52. Paull J G,Pallotta M A,Langridge P,et al.1994.RFLP markers associated with Sr22and recombinationbetween chromosome7A of bread wheat and the diploid species Triticum boeoticum.Theoretical andApplied Genetics,89(7-8):1039-1045.
    53. Pederson W L, Leath S.1988. Pyramiding major genes for resistance to maintain residual eVects. AnnuRev Phytopatho,l26:369-378.
    54. Pestsova E, Ganal M W, R der M S.2000. Isolation and mapping of microsatellite markers speciWcfor the D genome of bread wheat.Genome,43:689-697
    55. Pretorius Z A, Bender C M, Visser B, et al. First report of a Puccinia graminis f. sp. tritici race virulentto the Sr24and Sr31wheat stem rust resistance genes in South Africa[J]. Plant Dis,2010(94):784
    56. Pretorius Z A,Singh R P, Wagoire W W,Payne T S.2000.Detection of virulence to wheat stem rustresistance gene Sr31in Puccinia graminis f. sp. tritici in Uganda. Plant Diseases,84:203.
    57. Price WD,Williams ER.1997.Activation of Peptide Ions by Blackbody Radiation:Factors That Lead toDissociation Kinetics in the Rapid Energy Exchange Limit.Journal of Physical Chemistry A,101(47):8844-8852,
    58. Prins R, Groenewald J Z., Marias G F, Snape J W, Koebner R M D. AFLP and STS tagging of Lr19, agene conferring resistance to leaf rust in wheat. Theoretical and Applied Genetics,2001,103:618-624
    59. Ravi P. Singh.2008.11. Overview of Cornell Stem Rust Project and CIMMYT Activity. In:AnnualMeeting of Naional wheat Rust collaborative group(NWRCG). PR.China.
    60. Raymond S,Weintraub L.1959.Acrylamide gel as a supporting medium for zoneelectrophoresis.Science.130:711.
    61. Reisener H J.1990. Resistance of wheat to Puccinia graminis f.sp. tritici: association of thehypersensitive reaction with the cellular accumulation of lignin-like material and callose. Physiol MolPlantPathol,36:109-120.
    62. Roder M S,Korum V,Wendehake K,Plaschke J,Tixier M H,Leroy P,Ganal M W.1998.A microsatellitemap in wheat.Genetics,149:2007-2023.
    63. Roelfs A P, Long D L, Roberts J J.1995. Races of Puccinia graminis in the United States during1993.Plant Dis,79:969-972.
    64. Roelfs A P, Martens J W.1988. An International System of Nomenclature for Puccinia graminis f. sp.tritici. Phytopathology,78:526-533.
    65. Roelfs A P.1989. Epidemiology of the cereal rusts in North America. Can J Plant Pathol,11:86-90.
    66. Seah S, Bariana H, Jahier J, et al.2001.The introgressed segment carry rust resistance genes YrI7,Lr37and Sr38in wheat can be assayed by a cloned disease resistance gene-like sequenee. Theor ApplGenet,102:600-605.
    67. Seed Quest News section. El Batán.2006.The wheat rust threat-global rust initiative tackles a clearlypresent danger. CIMMYT E-News,3(10):17458.
    68. Shuangye Wu.2008. Molecular mapping of stem rust resistance genes in wheat. Ph.D Thesis
    69. Singh R P, Hodson D P, J in Y,et al.2006. Current status,likely migrations and strategies tomitigate the threat to wheat production from race Ug99(TTKS) of stem rust pathogen.CAB Reviews.Perspectives in Agriculture, Veterinary Science, Nut rition and Natural Resources,(1)054:13.
    70. Singh R P, Hodson D P, Jin Y, et al. The Emergence of Ug99Races of the Stem Rust Fungus is aThreat to World Wheat Production[J]. Annual Review of Phytopathology,2011(49):465-481.
    71. Sourdille P, Singh S, Cadalen T, Brown-Guedira G L, Gay G, Qi L, Gill B S, Dufour P, Murigneux A,Bernard M.2004. Microsatellitebased deletion bin system for the establishment of genetic-physicalmap relationships in wheat (Triticum aestivum L.). Funct Integr Genomics,4:12-25.
    72. Spielmeyer W, Sharp P, Lagudah E.2003. Identification and validation of markers linked tobroad-spectrum stem rust resistance gene Sr2in wheat (Triticum aestivum L.). Crop Science,43:333-336
    73. Stafford H A.1974.The metabolism of aromatic. Ann Rev Plant Physiol,25:459-486.
    74. Stakman E C, Stewart D M, Loegering W Q. Identification of physiologic races of Pucciniagraminis var.tritici.U.S.D.A.Agr.Res.Service,E.617,(Revised1962).
    75. Stephenson P,Bryan G,Kirby J, Ccollins A,Devos K,Busso C,Gale M.1998.Fify newMircrosateljite loci for the wheat genetic map.Theor Appl Genet,97:946-949.
    76. Sutherland M W, Deverall B J, et al.1989.Wheat cultivar and chromosomals electivity of two types ofeliciting preparations from rust pathogens. Physiological and Molecular Plant Pathology,35:535-541.
    77. Sutherland M W, Deverall B J.1990. The ubiquity of non-specific eliciting activity in intercellularwashing fluids from rust-infected wheat leaves. Plant Pathology,39:50-57.
    78. Taylor RS,Wu CC,Hays LG,Eng JK,Yates JR3rd,Howell KE.2000.Proteomics of rat liver Golgicomplex:minor proteins are identified through sequential fractionation. Electrophoresis.21(16):3441-3459.
    79. The T T.1973. Chromosome location of genes conditioning stem rust resistance transferred fromdiploid to hexaploid wheat. Nature New Biology,241:256.
    80. The T T, McIntosh R A.1975. Cytogenetical studies in wheat. VIII. Telocentric mapping and linkagestudies involving Sr22and other genes in chromosome7AL. Aust J Biol Sci,28:531-538.
    81. Tiburzy R, Reisener H J.1990.Resistance of wheat to Puccinia graminis f.sp. tritici: association ofthe hypersensitive reaction with the cellular accumulation of lignin-like material and callose. PhysiolMol PlantPathol,36:109-120.
    82. Tsilo T J, Chao S, Jin Y, Anderson J A. Identification and validation of SSR markers linked to thestem rust resistance gene Sr6on the short arm of chromosome2D in wheat. Theoretical and AppliedGenetics,2009,118:515-524
    83. Tsilo T J, Jin Y, Anderson J A.2007. Miicrosatellite markers linked to stem rust resistance allele Sr9ain wheat. Crop Sci,47:2013-2020.
    84. Tsilo T J, Jin Y, Anderson J.2008a. Diagnostic microsatellite markers for detection of stem rustresistance gene Sr36in diverse genetic backgrounds of wheat. Crop Sci,48:253-261.
    85. Tsilo T J, Shiaoman Chao, Yue Jin, James A. Anderson.2008b. IdentiWcation and validation of SSRmarkers linked to the stem rust resistance gene Sr6on the short arm of chromosome2D inwheata,.Theor Appl Genet.,Springer-Verlag.
    86. Wanyera R, Kinyua M G, Kenya.2006.The Spread of Stem Rust Caused by Puccinia graminis f. sp.Tritici with Virulence on Sr31in Wheat in Eastern Africa. Plant Diseases,90:113.
    87. Wolday A, Fetch T, Hodson D, et al. First report of Puccinia graminis f. sp. tritici races with virulenceto wheat stem rust resistance genes Sr31and Sr24in Eritrea[J]. PlantDis,2011(10):1094/PDIS-07-11-0582.
    88. Xiaojuan Xiao,Yuanzhu Yang.2009,Comparative analysis of young panicle proteome inthermosensitive genic male-sterile rice under sterile and fertile conditions.Biotechnology Letters,31:157-161.
    89. Zambino P J,Kubelik A R, et al.2000. Gene action and linkage of avirulence genes to DNA markersin the rust fungus Puccinia graminis. Phytopathology,90:819-826.
    90. Zubarev RA,Kellerher NL,McLafferty FW.1998.Electron Capture Dissociation of Multiply ChargedProtein Cations.A Nonergodic Process.J.Am.Chem.Soc.120:3265-3266.
    91.曹远银,陈万权.小麦秆锈菌生理小种鉴别寄主及命名方法的演变.麦类作物学报[J],2010,30(1):167-172.
    92.曹远银,韩建东,朱桂清等.2007.小麦秆锈菌新小种Ug99及其对我国的影响分析.植物保护,33(6):86-89.
    93.曹远银,姚平,黄振涛等.1996.小麦秆锈菌不同小种间竞争能力的研究.植物保护学报,23(1):45-50.
    94.曹远银,姚平,朱桂清等.1994b.中国41个小麦生产品种抗秆锈病基因推导及其抗性稳定性分析.沈阳农业大学学报,25(4):392-3971.
    95.曹远银.1994a.中国小麦秆锈菌主要流行、传播规律及基因控制系统工程.沈阳农业大学博士论文.
    96.陈荣智,翁清妹,黄臻,祝莉莉,何光存,2002,水稻对褐飞虱抗性相关蛋白的双向电泳分析,植物学报,44(4):427-432.
    97.陈万权,王奎荣等.1997a.江苏省重要小麦品种抗叶锈病和秆锈病基因初步分析.植物保护学报,24(2):225-234.
    98.陈万权,王剑雄.1997b.76个小麦品种资源抗叶锈及秆锈基因初步分析.作物学报,(23)6:655-662.
    99.关西贞.2010.小麦白粉病近等基因系的差异蛋白质组学研究.山东农业大学硕士学位论文.
    100.韩建东,曹远银,孙仲桂.2007-2008年我国小麦秆锈菌小种种群结构及其对Ug99抗性新种质的毒性分析[J].麦类作物学报,2010,30(1):163-166.
    101.韩建东,朱桂清,李伟华,曹远银. New SSR Markers for Stem Rust Resistance Gene Sr22in Wheat.中国农业科学,2010,43(15):3244-3250
    102.韩建东.2009.小麦秆锈菌小种Ug99入侵的基因防控及相关机理研究.沈阳农业大学博士学位论文.
    103.何瑞锋,丁毅,余金洪.2001.水稻温敏叶绿素突变体叶片蛋白的双向电泳分析,作物学报,27(6):875-880.
    104.何中虎,夏先春,陈万全等.2008.小麦对秆锈菌新小种Ug99的抗性研究进展.麦类作物学报,28(1):170-173.
    105.黄振涛,曹远银,姚平等.1991.小麦秆锈菌不同小种间相对生存能力研究.植物病理学报,21(1):65-71.
    106.黄振涛,姚平,吴友三.1986.1984年全国小麦秆锈菌生理小种区系分析及寄主离体叶培养鉴定法的应用.沈阳农业大学学报,17(2):21-26.
    107.贾显禄,王振中,王平.2002.水稻与稻瘟病菌非亲和性互作中重要防御酶活性变化规律研究.植物病理学报,32(3):206-213.
    108.贾显禄.1997.小麦与小麦秆锈菌互作及非亲和机制研究.沈阳:沈阳农业大学博士学位论文.
    109.姜玉英,陈万权,赵中华等.2007.新型小麦秆锈病菌Ug99对我国小麦生产的威胁和应对措施.中国植保导刊,27(8):14-16.
    110.李冰.2007.小麦抗叶锈病近等基因系TcLr10与Thatcher蛋白质组表达差异分析.河北农业大学硕士学位论文
    111.李勇,倪福太,贺福初.1999,英特网上生物信息资源的利用.生物化学与生物物理进展,41(4):295-296.
    112.李跃建,姬红丽,彭云良,高荣,高霞,刘世贵2005..应用双向电泳技术研究条锈菌侵染后小麦蛋白质的改变.四川大学学报(工程科学版),37(2):80-85.
    113.李跃建,彭云良,高荣,刘世贵.2003.条锈菌侵染后小麦体内蛋白质的变化.西南农业学报,16(4):1-3.
    114.李振岐,曾士迈(主编).2002.中国小麦锈病.北京:中国农业出版社.
    115.李振歧,商鸿生.2005.中国农作物抗病性及其利用(第一版).北京:中国农业出版社.
    116.理查德J.辛普森(Simpson RJ)主编,何大澄主译.2006.蛋白质与蛋白质组学实验指南.北京:化学工业出版社.
    117.梁根云,姬红丽,章振羽,魏会廷,康振生,彭云良,李跃建.2007.条锈菌侵染慢锈性小麦品种川麦107后的蛋白质组学分析.麦类作物学报.27(2):335-340.
    118.梁根云,康振生,彭云良.2006.“川麦107”受条锈菌侵入后叶片蛋白质组学分析.西北农林科技大学硕士学位论文.
    119.廖玉才,张启发,郑用琏.1991.受白粉菌诱导大麦抗感等基因系蛋白质变化的双向电泳分析.遗传学报.18(5):431-436.
    120.刘大伟.2011.灰皮支黑豆对大豆胞囊线虫3号生理小种抗性机制研究.沈阳农业大学博士学位论文.
    121.刘静.2008.小麦抗条锈病品系Taichung29*6/Yr5的蛋白质组学分析.东北农业大学博士学位论文.
    122.马成.2009.小麦抗条锈病近等基因系Taichung29*6/Yr5的比较蛋白质组学分析.中国农业科学院硕士学位论文.
    123.裘维藩.1982.农业植物病理学.北京:中国农业出版社,54-76.
    124.司晓敏,李巧云,晏月明.2005.蛋白质组技术及小麦蛋白质组研究进展.麦类作物学报.25(3):100~105
    125.孙德权.2011.基于蛋白质组学技术的小麦抗条锈病近等基因系Taichung29*6/Yr5叶片低丰度蛋白质分析.四川农业大学硕士学位论文.
    126.乌云塔娜,张党权,谭晓风.2005.蛋白质组学及其在植物研究中的应用.中南林学院学报.25(4):115-119.
    127.闫红飞.2009.小麦抗叶锈基因系Lr38、Lr45分子标记及抗病相关分析.河北农业大学博士学位论文.
    128.曾嵘,夏其昌.2004.蛋白质化学与蛋白质组学.北京:科学出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700