水稻bsl基因的功能及其在杂交水稻混播制种中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
苯达松为苯并噻二唑类除草剂,可抑制杂草的光合作用,用于农田除草。野生型水稻(Oryza sativa L.)品种具有苯达松的抗性,可将苯达松快速代谢为羟基化的失活产物。水稻品种(‘N8'和‘W6154s')经辐射诱变获得了对苯达松极其敏感的突变体,研究表明其敏感致死表型由单个bsl基因控制。bsl基因作为一个化学致死标记,在水稻杂交制种中有广阔的应用前景,主要体现在以下两方面:一是将bsl基因转育到三系恢复系,可实现杂交水稻混播制种;二是将bsl基因转育到不育系,可确保水稻杂种纯度。为了验证bsl基因的功能,为该基因在农业生产上应用提供理论依据,本文开展了水稻苯达松抗性差异的生理基础和水稻微粒体蛋白质组学等方面的研究。开展了施药对恢复系花粉活力的影响、苯达松致死剂量与环境因子的关系以及苯达松农田残留等方面的研究。并利用研究成果进一步完善杂交水稻混播制种技术,加速其应用的步伐。
     首先,我们以野生型水稻品种‘农林8号'(‘N8')和‘W6154s'及相应的bsl突变体(‘农林8号m'(‘N8m')和‘8077s')为材料,分析了苯达松处理前后叶绿素(Chl)含量、丙二醛(MDA)含量、净光合速率(A_n)、叶绿素荧光参数及体内苯达松含量等生理生化指标的变化及水稻苯达松抗性差异的生理机制。结果表明:两个bsl水稻品种在苯达松处理后由于光合能力的丧失,进而引起氧自由基伤害的积累,最终导致Chl降解、质膜氧化加剧,植株死亡;Chl荧光参数的分析表明苯达松处理引起还原性Q_A组分积累,导致电子传递受阻是光合能力丧失的根源。在苯达松处理初期,野生型水稻品种及bsl突变体同样表现为光合能力丧失。但处理后2 h,野生型材料光合能力开始不断恢复,而bsl突变体无法恢复。体内苯达松含量分析表明,较强的苯达松代谢能力是抗性材料免受苯达松伤害的主要原因。
     为了寻找苯达松解毒相关蛋白,我们以‘N8'和‘N8m'为材料,通过优化条件,建立了适合于水稻微粒体蛋白的双向电泳技术。并通过双向电泳图谱的比对,共找到15个差异蛋白点,分为供试材料间差异、苯达松处理前后差异和‘N8'在苯达松处理后特异表达等3种类型。结合苯达松抗性比较及苯达松残留分析,推测材料间差异是因γ射线辐照引起基因结构变异,从而影响了基因的表达;苯达松处理前后差异与氧自由基清除酶系或系统获得抗性相关酶系有关;‘N8'在苯达松处理后特异表达与苯达松代谢有关。这为进一步开展bsl基因蛋白质组学研究奠定了基础。
     另外,我们通过对液体培养基中蔗糖、硼酸及钙离子浓度的优化选择,建立了适合水稻花粉离体萌发的液体培养基配方。并利用花粉萌发和碘.碘化钾(I_2-KI)染色测定法,研究了苯达松对含敏感致死基因的恢复系‘Mc526'的花粉生活力的影响。结果显示,在苯达松处理前期(施药后1~4天),Mc526花粉活力与对照接近,处理后期(施药后5~8天)略低于对照,但差异不显著。这为苯达松敏感致死基因应用于杂交水稻混播制种的可行性提供了生理依据。
     再者,我们以‘混制1号'恢复系‘Mc526'为材料,通过相关生理生化指标测定,比较了在不同光照、温度条件下苯达松伤害的差异,旨在为实际制种过程中合理调整施药浓度提供理论依据。温度对苯达松药效影响的研究表明:在21℃~36℃范围内,温度与苯达松药效呈显著正相关,即温度每增加1℃,苯达松致死浓度约下降74.09mg·L~(-1),药效约提高0.7%。生理生化研究表明,体内水分平衡失调引起水分胁迫和代谢旺盛引发氧自由基积累是高温下苯达松药效提高的主要原因。田间试验验证了温度对苯达松药效影响的室内研究结果。光强对苯达松药效影响的研究表明:强光(100μmol·m~(-2)·s~(-1))和弱光(25μmol·m~(-2)·s~(-1))条件下,苯达松药效较中光(50μmol·m~(-2)·s~(-1))均有显著提高。相关生理生化研究证实,强光下氧自由基胁迫增加是苯达松药效加强的主要原因。
     最后,我们建立了苯达松、6-OH-苯达松和8-OH-苯达松高效液相色谱同柱分析方法。同时利用该方法,对杂交水稻‘混制1号'制种田苯达松最终残留和消解动态进行研究,对杂交水稻混播制种技术应用引起环境威胁的可能性进行科学评估。结果表明:不育系稻谷和稻秆、制种田土样中苯达松残留量均低于最低检测浓度,而恢复系稻谷和稻秆中苯达松残留量较大。土壤中苯达松消解动态分析表明,苯达松在土壤中的消解速度较快。
Bentazon is used as a benzothiadiazole herbicide with high selectivity by an inhibition of photophythesis for killing sensitive plant.In general,common rice varieties(wild types) are all tolerant to bentazon,which can metabolize bentazon into 6-OH or 8-OH non-toxic molecules.Bentazon sensitive lethal(bsl) mutants were obtained byγ-ray radiation from wild rice varieties('N8' and 'W6154s').Previous genetic studies have confirmed that the bsl phenotype of is controlled by a single recessive gene.The bsl gene,as selective chemical marker,has a critical usage in seed production of hybrid rice(Oryza sativa.L).In hybrid breeding system,tagging the bsl gene to the male sterile line can ensure the hybrid seeds free of false hybrids(self-pollination of sterile lines) by spraying bentazon at the seedling stage.On the other hand,if the bsl gene is transferred into a restorer line,the restorer line is easily killed by spraying bentazon immediately after pollination,while the sterile line maintains normal growth and development.In order to clarify the function of bsl gene,and provide sufficient evidance for its application in rice breeding,we researched the physiological basis on the difference of bentazon tolerance and rice microsomal proteomics in wild type rice and their bsl mutants.In addition,the bentazon influence on the pollen viability of sensitive restorer line,the relation between bentazon lethal dosage and environmental factor,and the bentazon residues in mixed-planting seed production were studied to further perfect the technology of hybrid rice mixed-planting seed production and accelerate its application.
     Firstly,this study was to elucidate the physiological mechanism of bentazon tolerance in rice.Tolerant rice varieties(W6154S and Norin 8) as well as their corresponding mutants,sensitive to bentazon,were employed in this study.Plant net photosynthetic rate (P_n),chlorophyll fluorescence,and the level of superoxide radical(O_2~·) as well as the contents of chlorophyll(Chl) and malondialdehyde(MDA),were analyzed for both tolerant and sensitive rice plants treated with bentazon.After treatment,the two sensitive mutants showed a significant reduction in P_n at 0.5 h.A continuous decrease of Chl contents was found over the first 3 d whereas a significant increase of MDA contents was noticed on the 3rd day and thereafter.Analysis of chlorophyll fluorescence revealed a bentazon-induced increase in the proportion of the reduced state of Q_A.In the early stage after bentazon treatment,wild types and their mutants showed no significant difference in the alteration of P_n and chlorophyll fluorescence.While these two parameters then increased progressively in both wild types and remained low in the mutants.A significant generation of O_2~·was found over the 5 d period in the mutants.Both wild types and mutants contained the same level of bentazon after 2 h of treatment.Bentazon content dropped to barely detectable amount in the wild type varieties at 1 d.However,the mutants retained a substantial amount of the herbicide after 5 d.It is proposed that the herbicide might inhibit rice photophythesis and accumulation of oxidative stress with the treatment of bentazon in both lethal mutants.The damaging effect on PSⅡsystem can be significantly alleviated in the wild type varieties due to a higher rate of catabolism of the herbicide.
     Secondly,we established a modified two-dimensional gel electrophoresis(2-DE) protocol suitable for rice microsomal proteins by using differential centrifugation in sample preparation,optimizing length and pH range of immobilized pH gradient(IPG) strips,and modifying the electrophoresis program.In order to search bentazon tolerance-related proteins,we used the 2-DE technique to detect the change of rice microsomal proteins expression induced by bentazon in N8 as well as its bentazon sensitive lethal mutant N8m. Results showed that 15 differentially expressed protein spots were found after bentazon treatment between or within the two lines.The proteins in these spots were classified into three types.TypeⅠproteins showed differential expression between the two lines while typeⅡproteins differed between the treated and untreated samples,and typeⅢproteins were only induced in N8 after the treatment.TypeⅠproteins arise from rice DNA damage byγ-ray radiation,based on the fact that N8m is a new strain from N8 mutated byγ-ray. Our previous study indicated that N8 and N8m showed no significant difference in the alteration of photosynthesis in the early stage after bentazon treatment,which induced accumulation of oxidative stress.It can be confirmed that typeⅡproteins are related to the reactive oxygen scavenging system or systemic acquired resistance.N8 could metabolize the absorbed bentazon thoroughly while residual bentazon was present in the treated leaves of N8m.Therefore,we predict the typeⅢproteins to be related to bentazon metabolism.
     Thirdly,A culture solution for rice's pollen germination in vitro was established through Studying on the concentration of sucrose,boric acid and calcium chloride.The influence of bentazon treatment on the pollen viability of Mc526,which included bsl gene, was researched by using pollen bourgeoned and I_2-KI pigmentation's measurement.The results shown that in early period(1~4 days) after bentazon treatment Mc526's pollen viability was close to comparison and in later period(5~8 days) Mc526's pollen viability was a bit lower than comparison,but the difference was not salience.The setting rate results showed that bentazon treatment had no salient influence on the setting rate of sterile line.This indicates that bentazon does not effect on bsl rice's pollen viability immediately, which provides the physiological basis for the feasibility of applying the method of mixed-planting seeds production in hybridize rice.
     In addition,this study investigated the differences of bentazon injure at different light intensities and temperatures in order to provide theoretical basis for properly regulating bentazon dosage in hybridize rice seeds production.'Mc526' was employed in this study. The research of the influence of temperature on bentazon injure indicated that there was significant positive correlation between temperature and bentazon injure degree in the range of 21℃~36℃.As for 1℃increase of temperature,the lethal concentration of bentazon declined 74.09 mg·L~(-1),namely bentazon injure degree increased 0.7%.Related physiological research showed that the increases of water stress and Oxygen free radical stress were the main cause for the increase of bentazon injures in high temperature.The same results were obtained from the field experiments.The research of the influence of light intensity on bentazon injure indicated that bentazon injures in strong light(100μmol·m~(-2)·s~(-1)) or weak light(25μmol·m~(-2)·s~(-1)) were significantly increased compared with bentazon injure in medium light(50μmol·m~(-2)·s~(-1)).Related physiological research showed that the increases of Oxygen free radical stress was the main cause for the increasing bentazon injure degree in strong light.
     Finally,a reversed phase HPLC method was determined for analyzing bentazon and its metabolites—6-hydroxy-bentazon and 8-hydroxy-bentazon in this study.We used the HPLC method to detect the bentazon residue and degradeation behaveior in the field of hybrid rice maxed-planting seed production,in order to scientifically evaluate the possibility of environmental threat induced by the application of hybrid rice maxed-planting seed production.The results showed that the herbicide residues in the grain and plant of sterile line were lower than the minimum detectable concentrateion. However,there were more residues in the grain and plant of restorer line.The analysis of bentazon degradeation behaveior indicated that bentazon in soil could be rapidly degraded.
引文
[1].曾川,徐洪志,廖淑梅,张大琼,陈吉光.我国杂交水稻种业发展研究.中国种业,2007,(10):20-22,25
    [2].张集文,武晓智,谭禄宾.运用除草剂技术进行杂交水稻除杂保纯的研究.杂草科学,2001,(2):2-5,21
    [3].陈忠明,邹江石,曾大力,钱前.水稻农林8号m苯达松敏感致死性的遗传及其应用前景.杂交水稻,1999,14(2):39-40
    [4].林郁主编.农药应用大全.北京:农业出版社出版,1989,72
    [5].王泽奇,沈海燕.48%灭草松水剂在大豆田除草效果.现代化农业,2007,355(6):6
    [6].张子丰,韩逢春,王义明,权明顺.采用两次施药技术防除稻田蔗草.2000,26(4):46-48
    [7].苏运河,周家源,贾平安,朱水平.48%排草丹防除移栽稻田杂草试验示范.湖北植保,1996,(2):6
    [8].范昭能,张成双.灭草松防除花生田杂草的效果.植保工程,2007,(9):49
    [9].涂鹤龄编著.麦田杂草化学防除.北京:化学工业出版社,2003,139
    [10].李群,耿跃,徐蕾,黄必余,桑学俊,陈学宝,田长柏.苯达松防除黄花苜蓿田阔叶杂草试验.杂草科学,2002,(3):34-36
    [11].倪汉文,张朝贤编著.除草剂使用的基本原理.北京:化学工业出版社,2004,23-30
    [12].Huber R,Otto S.Environmental behavior of bentazon herbicide.Rev Environ Contam Toxicol,1994,137:113-134
    [13].苏少泉.除草剂作用靶标的分类与使用.农药,1998,37(1):1-7
    [14].Wu C,C Wang.Physiological study on bentazon tolerance in inbred com(Zea mays).Weed Tech,2003,17:565-570
    [15].徐志防,罗广华,王爱国.光合作用的光抑制和光合器官的活性氧代谢.植物生理学通讯,1999,35(4):325-332
    [16].Han Y,Wang C.Physiological basis of bentazon tolerance in rice(Oryza sativa L.) lines.Weed Bio Manag,2002,(2):186-193
    [17].苏少泉,宋顺祖.中国农田杂草化学防治.北京:中国农业出版社,1996,42-59
    [18].Ma SY,Kim SW,Chun JC.Antagonistic mode of action of fenoxaprop P-ethyl phytotoxicity with bentazon.Korean J Weed Sci.1998,18(2):161-170
    [19].王焕民,张子明.新编农药手册.北京:中国农业出版社,1989,536-539
    [20].Clay SA,Oelke EA.Basis for differential susceptibility of rice(Oryza sativa),wild rice(Zizania palustris)and giant burreed(Sparganium eurycarpum)to bentazon.Weed Sci,1998,36(3):301-304
    [21].向太和,杨剑波,黄大年.水稻突变体对除草剂苯达松敏感致死的机理研究.农药,2004,43(5):217-220,232
    [22].Sterling TM,Balke NE.Differential bentazon metabolism and retention of bentazon metabolites by plant cell culture.Pestic Biochem Physiol,1989,34:39-48
    [23].Sticher L,Mauch-Mam B,Metraux JP.Systemic acquired resistance.Annu Rev Phytopathol,1997,35:235-270
    [24].Ryals L,Neuenschwander UH,Willits MG.Systemic acquired resistance.Plant Cell,1996,8:1809-1819
    [25].Gorlach J,Volrath J,Knaul-Beiter.Benothiadiazole,a novel class of inducers of systemicacqired resistance,activates gene experssion and disease resistance in wheat.Plant Cell,1996,8:629-643
    [26].葛秀春,宋凤鸣,郑重,谢艳.苯并噻二唑诱发水稻对白叶枯病的系统获得抗性.中国水稻科学,2001,15(4):323-326
    [27].葛秀春,宋凤鸣,陈永叶,郑重.苯并噻二唑诱发水稻对稻瘟病抗性中防卫相关酶活性的变化.中国水稻科学,2002,16(2):171-175
    [28].冷欣夫,邱星辉编著.细胞色素P450酶系的结构、功能与应用前景.北京:科学出版社,2001,1
    [29].Morant M,Bak S,Lindberg B,Werck-Reichhart D.Plant cytochrome P450:tools for pharmacology,plant protection and phytoremediation.Current Opinnion in Biotech,2003,14:151-162
    [30].Chapple C.Molecular-genetic analysis of plant cytochrome P450-dependent mono-oxygenases.Annu Rev Plant Mol Biol,1998,49:311-343
    [31].Werch-Reichhart D,Hehn A,Didierjean L.Cytochromes P450 for engineering herbicide tolerance.Trends in Plant Sci,2000,5(3):116-123
    [32].Forthoffer N,Helvig C,Dillon N,Benveniste,Zimmerlin A,Tardif F,Salaun JP.Induction and inactivation of a cytochrome P450 conferring herbicide resistance in wheat seadings.Eur J Drug Metab Pharmacokinet,2001,26:9-16
    [33].Fonne-Pfister R,Kreuz K.Ring-methyl hydroxylation of chlortoluron by an inducible cytochrome P450-dependent enzyme from maize.Phytochemistry,1990a,29:2793-2796
    [34].Mougin C,Cabanne F,Canivence MC,Scalla R.Hydroxylation and N-demethylation of chlortoluron by wheat microsomal enzymes.Plant Sci,1990,66(2):195-203
    [35].Mcfadden JJ,Frear DS,Mansager ER.Aryl hydroxylation of diclofop by a cytochrome P450-dependent monooxygenase from wheat.Pesticide Biochem,1989,34:92-96
    [36].Persans MW,Schuler MA.Differential induction of cytochrome P450-mediated triasulfuron metabolism by naphthalic anhydride and triasulfuron.Plant Physiol,1995,109(4):1483-1490
    [37].Thalacker FW,Swanson HR,Frear DS.Characterization,purification and reconstitution of an inducible cytochrome P450-depentent triasulfuron hydroxylase from wheat.Pestic Biochem Physiol,1994,49:209-223
    [38].Fonne-Pfister R,Gaudin J,Kreuz K.Hydroxylation of primisufuron by an inducible cytochrome P450-dependent monooxygenase system from maize.Pesticide Biochem Physiol,1990b,37:165-173
    [39].McFadden JJ,Gronwald JW,Eberlein CV.In vitro hydroxylation of bentazon by microsomes from naphthalic anhydridetreated corn shoots.Biochem Biophys Res,1990,168:206-213
    [40].Batard Y,Letret M,Schalk M.Molecular cloning and functional expression in yeast of CYP76B1,a xenobiotic-inducible 7-ethoxycoumarin O-decthylase from Helianthus ruberosus.Plant J,1998,14:111-120
    [41].Cabello-Hurtado F,Batard Y,Salaun JP.Cloning expression in yeast and functional characterization of CYP81B1,a plant P450 which catalyzase inchain hydroxylation of fatty acids.J Biol Chem,1998,273:7260-7267
    [42].Yamada T,Kambara Y,Imaishi H,Ohkawa H.Molecular cloning of a novel eytochro me P450 species induced by chemical treatments in tobacco cells.Pestic Biochem Physiol,2000,68:11-25
    [43].Siminszky B,Corbin FT,Ward ER,Flei RC,Oshmann TJ,Dewey RE.Expression of a soybean cytochrome P450 monooxygenase cDNA in yeast and tobacco enhances the metabolism of phenylurea herbicides.Proc Natl Acad,USA,1999,4:1750-1755
    [44].Pierrel MA,BatardY,Kazmaier M,Mignotte-Vieus C,Durst F,Werck-Reichhart D.Catalytic properties of the plant cytochrome P450 CYP73 expressed in yeast.Substrate specificity of a cinnamate hydroxylase.Eur J Biochem,1994,224(3):835-844
    [45].Xiang W,Wang X,Ren T,Ju X.Expression of a wheat cytochrome P450 monooxygenase in yeast and its inhibition by glyphosate.Pest Manug Sci,2005,61:402-406
    [46].Xiang W,Wang X,Ren T,Ci S.Purification of recombinant wheat cytochrome P450 monooxygenase expressed in yeast and its properties.Protein Expression and Purification.2006,45:54-59
    [47].Mori K.Inheritance of susceptible mutant in rice plant to herbicide bentazon.Jpn J Breed,1984,34 (Suppl 1):421-422
    [48].张集文,武晓智.水稻光-温敏雄性不育系化学致死突变体的诱变筛选与初步研究.中国水稻科学,1999,13(2):65-68
    [49].Zhang J,Xu Y,Wu X,et al.A bentazon and sulfonylurea sensitive mutant:breeding,genetics and potential application in seed production of hybrid rice.Theor Appl Genet,2002,105:16-22
    [50].邢俊杰,成志伟,杨剑,李亦群,梁铃,殷绪明,张朝良,杨塞,谢宝贵,曹孟良.利用基因芯片技术分析水稻杂种优势的分子机理.杂交水稻,2005,20(4):59-61
    [51].杨振玉,高勇.水稻籼粳亚种间杂种优势利用研究进展.作物学报,1996,22(4):422-429
    [52].贺立伟,肖层林.提高杂交水稻制种产量与质量的技术研究进展.作物研究,2006,20(5):397-400
    [53].文义湘,黄金城.涉及杂交水稻种子投诉案的原因分析和建议.中国种业,2007,(8):28
    [54].赵民军.杂交水稻制种田间除杂的主要困难及对策.杂交水稻,2005,15(1):16-17
    [55].王飞飞,张雨.杂交水稻制种与种植成本比较.中国农村小康科技,2006,(11):22-23
    [56].Kiyoaki M,Hiroshi K,Hitoshi A.Mechanized production of F1 seeds in rice by mixed planting.Japan Agricultural Research Quartery,1991,24(4):243-252
    [57].邓小林.杂交水稻在美国的研究现状和应用前景.杂交水稻,1998,13(4):29-30
    [58].朱启升,王安东.水稻除草剂敏感基因导入恢复系的研究.杂交水稻,2000,15(3):5-6
    [59].廖伏明,袁隆平.光温敏不育水稻不育性表达不稳定的遗传机制与原因综述.杂交水稻,2003,18(2):1-6
    [60].刘学军,刘瑞符,马忠友.粳型三系不育系混杂退化原因及对策探讨.北方杂交粳稻育种研究.北京:中国农业科技出版社,1999,231-236
    [61].杜士云,王守海,李成荃,王德正,罗彦长,吴爽.温度对三系BT型粳稻不育系育性的影响.安徽农业科学,2003,31(3):343-344
    [62].董凤高,朱旭东,熊振民,程式华,孙宗修,闵绍楷.以淡绿叶为标记的籼型光.敏核不育系M2_s的选育.中国水稻科学,1995,9(2):65-70
    [63].牟同敏,李春海,杨国才,卢兴桂.紫叶水稻苗期叶色的遗传研究.中国水稻科学,1995,9(1):45-48
    [64].吴伟,刘鑫,舒小丽,舒庆尧,夏英武,吴殿星.携带白化转绿型叶色标记两系杂交水稻不育系NHRlllS.核农学报,2006,20(2):103-105
    [65].黄大年,李敬阳.用抗除草剂基因快速检测和提高杂交稻纯度的新技术.科学通报,1998,43(1):67-70
    [66].张集文,武晓智.苯达松致死标记两用不育系8077S的选育及其应用.杂交水稻,2000,15(6): 5-8
    [67].向太和,杨剑波,李莉,倪大虎,杨前进,朱启升,汪秀峰,张毅,黄大年.水稻苯达松敏感致死基因的RAPD标记和SCAR标记.植物学报(英文版),2003,45(2):223-228
    [68].刘秋华,陆作楣.水稻农林8号m苯达松敏感致死基因的初步定位.南京农业大学学报,2004,27(4):17-19
    [69].杨剑波,向太和,李莉,王永杰,黄大年.水稻苯达松敏感致死基因(ben)的电子杂交定位和基因预测.作物学报,2004,30(11):1152-1158
    [70].朱磊,朱友林,余潮,张集文.水稻苯达松敏感致死基因bel的初步定位.南昌大学学报(理科版),2005,29(6):540-542
    [71].彭凌,朱必凤,刘主,刘盈盈.水稻苯达松敏感致死基因的RAPD标记的克隆及测序.韶关学院学报(自然科学版),2005,26(12):78-81
    [72].朱必凤,朱友林,吴成钢,廖朝晖,黎书伟,刘主,彭凌,郭克婷,刘安玲.对除草剂敏感致死水稻bel基因的RAPD和SCAR分子标记.作物学报,2006,32(4):618-624
    [73].Pan G.,Zhang X,Liu K,Zhang J,Wu X,Zhu J,Tu J.Map-based cloning of a novel rice cytichrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides.Plant Mol Biol,2006,61(6):933-943
    [74].赵寿元,乔守怡主编.现代遗传学.北京:高等教育出版社,2001,238-256
    [75].曹孟飞,廖翠猛,唐善德,周宗岳著.杂交水稻种子科学与技术.北京:中国农业出版社,2002,47-78
    [76].朱启升.杂交水稻混播制种技术研究进展.作物研究,2004,(4):204-207
    [77].张德文,陈多璞,杨前进,朱启升.不同时期喷施苯达松对混制1号制种产量的影响.安徽农业科学,2007,35(11):3212-3213,3215
    [78].中华人民共和国卫生部法制与监督司编制.生活饮用水卫生规范,2001,358
    [79].US Environmental protection Agency.Federal Register rules and regulations.2006,71(187):56383
    [80].Phillip Y,Young AJ.Occurrence of the carotenoid lactucaxanthin in higher plant LHCII.Photosynth Res,1995,43:273-282
    [81].Minagawa J,Takahashi Y.Structure,function and assembly of photosystem Ⅱ and its light-harvesting proteins.Photosynth Res,2004,82:241-263
    [82].Wentworth M,Ruban AV,Horton R The functional significance of the monomeric and trimeric states of the photosystem Ⅱ light harvesting complexes.Biochemistry,2004,43:501-509
    [83].曹锡清.膜质过氧化对细咆与机体的作用.生物化学与生物物理学进展,1986,(2):17-23
    [84].Genty BE,Briantais JM,Baker NR.The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence.Biochimica et Biophysica Acta,1989,990:87-92
    [85].李晓,冯伟,曾晓春.叶绿素荧光分析技术及应用进展.西北植物学报,2006,26(10):2186-2196
    [86].Porra RJ,Thompson WA,Kriedemann PE.Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophyll a and b extracted with four defferent solvents:verification of the concentration of chlorophyll standards by atomic absorption spectroscopy.Biochem Biophys Acta,1989,975:384-394
    [87].苏正淑,张宪政.几种测定植物叶绿素含量的方法比较.植物生理学通讯,1989,(5):77-78
    [88].Heath RL,Packer L.Photoperoxidation in isolated chloroplasts Ⅰ Kinetics and stoichiometry of fatty acid peroxidation.Archives of Biochemistry and Biophysics,1968,125:189-198
    [89].Dhindsa RS,Plumb-Dhindsa P,Thorpe T.A leaf senescence:correlated with increased leaves of membrance permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase.J Exp Bot,1981,32:93-101
    [90].王爱国,罗广华.植物的超氧物自由基与羟胺的反应.植物生理学通讯,1990,(6):55-57
    [91].Giannopolitis CN,Ries SK.Superoxide dismutase Ⅱ purification and quantitative relationship with water-soluble protein in seed-ings.Plant Physiol,1977,59:315-318
    [92].Beers RF,Sizer Ⅰ.Aspectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase.J Biol Chem,1952,195:133-137
    [93].许大全著.光合作用效率.上海:上海科学技术出版社,2002,29-37
    [94].Burton JD,Maness EP.Constitutive and inducible bentazon hydroxylation in shattercane(Sorghum bicolor) and johnsongrass(S.halapense).Pestle Biochem Physiol,1992,44:40-49
    [95].Ahrens WH.Herbicide Handbook.7th ed.Champaign IL:Weed Science Society of America,1994,352
    [96].Connelly JA,Johnson MD,Gronwald JW,Wyse DL.Bentazon metabolism in tolerant and susceptible soybean(Glycine max) genotypes.Weed Sci,1998,36:417-423
    [97].Gronwald JW,Connelly JA.Effect of monooxygenase inhibitors on bentazon uptake and metabolism in maize cell suspension cultures.Pestic Biochem Physiol,1991,40:284-294
    [98].Sterling TM,Balke NE.Use of soybean(Glycine max) and velvetleaf(Abutilon theophrasti)suspension-cultured cells to study bentazon metabolism.Weed Sci,1988,36:558-565
    [99].Dietz K J,Schreiber U,Heber U.The relationship between the redox state of QA and photosynthesis in leaves at various carbon-dioxide,oxygen and light regimes,planta,1985,166:219-226
    [100].Demming-Adarns B,Adams Ⅲ ww.Photoprotection and other responses of plants to high light stress.Annual Review of Plant Physiology and Plant Molecular Biology,1992,43:599-626
    [101].Shen B,Jensen RG,Bohnert HJ.Increased resistance to oxidative stress in transgenic plants by targeting mannitol biosynthesis to chloroplast.Plant Physiol,1997,113:1177-1183
    [102].Wasinger VC,Cordwell SJ,Cerpa-Poljak A,Yan JX,Gooley AA,Wilkins MR,Duncan MW,Harris R,Williams KL,Humphery-Smith Ⅰ.Progress with gene-product mapping of the mollicutes:Mycoplasma genetalium.Electrophoresis,1995,16(7):1090-1094
    [103].Quadroni M,James P.Proteomics and automation.Electrophoresis,1999,20(4-5):664-677
    [104].梁宇,荆玉祥,沈世华.植物蛋白质组学研究进展.植物生态学报,2004,28(1):114-125
    [105].Komatsa S,Kajiwara H,Hirano H.A rice protein library:a data-file of rice proteins separated by two-dimensional electrophoresis.Theor Appl Genet,1993,86(8):935-942
    [106].Sun T K,Kyu S C,Yu S J.Two-dimensional eletrophoretic analysis of rice proteins by polyethylene glycol fraction for protein arrays.Electrophoresis,2001,22(10):2103-2109
    [107].Nijat Ⅰ,Tursun K,Jeremy J W.Characterization of rice anther proteins expressed at the young microspore stage.Proteomics,2001,1(9):1149-1161
    [108].Berkelman T,Stenstedt T.2-D Electrophoresis Principles and Methods.Uppsala:Handbooks from Amersham Biosciences,1998.87
    [109].向太和,黄大年,汪秀峰,倪大虎,李莉,杨剑波,朱启升,杨前进.60~Co辐照对水稻基因组DNA诱变的分子生物学效应.生物化学与生物物理进展,2002,29(5):754-759
    [110].Haack A E,Balke N E.Enhancement of microsomal bentazon 6-hydroxylase and cinnamic acid 4-hydroxylase activities from grain sorghum shoots.Pestic Biochem Physiol,1994,50(1):92-105
    [111].罗丽华,刘国华,肖应辉,唐文帮,陈立云.高温胁迫对水稻花粉和小穗育性及稻谷粒重的影响.湖南农业大学学报(自然科学版),2005,31(6):593-596
    [112].王胜华,陈放,周开达.水稻花粉的离体萌发.作物学报,2000,26(5):609-612
    [113].陈良碧,肖辉海,李要民.不同温湿条件下贮藏的3种禾本科植物花粉的一些生理变化.热带亚热带植物学报,2003,11(3):236-240
    [114].王金祥,陈良碧.不同气体下贮藏的3种禾本科植物花粉活力和呼吸速率变化.植物生理学通讯,2001,37(2):113-116
    [115].李训贞,梁满中,周广洽,陈良碧,水稻开花时的环境条件对花粉活力和结实的影响.作物学报,2002,28(3):417-420
    [116].廖伏明,杨益善,袁隆平.水稻高世代光温敏不育系低温下育性选择效果研究.杂交水稻,2003,18(4):51-54
    [117].何小弟,赵正兰,周魁,吴发明,徐玮玮,刘华.17种梅(桃)属观赏树木花粉生活力的比较.南京林业大学学报,2005,29(2):29-32
    [118].邹琦.植物生理学实验指导.北京:中国农业出版社,2000,148-150
    [119].王险峰,关成宏.植物对苗后除草剂的吸收与传导及影响药效的因素.现代化农业,2002,272(3):7-9
    [120].黄坤洋,赖耀光.环境条件对农药药效的影响.植物医生,1995,(5):32
    [121]邹琦.植物牛理学实验指导.北京.中国农业出版社,2000,11-12
    [122].Chaoui A,Mazhoudi S,Ghorbal MH.Cadmium and zinc induction of lipid peroxideation and effects on antioxidant enzyme activities in bean(Phase o-lusulgaris L.).Plant Sci,1997,127:139-147
    [123].肖美秀,林文雄,陈冬梅,梁康径,柯庆明.镉胁迫对耐性不同的水稻幼苗膜脂过氧化和保护酶活性的影响.中国生态农业学报,2006,14(4):256-258
    [124].Berry JA,Bjorkman O.Photosynthetic response and adaptation to temperature in higher plants.Annu Rev Plant Physiol,1980,31:491-543
    [125].周海燕,赵世杰,孟庆伟.高等植物光系统Ⅱ对高温的响应.生物技术通报,2006,(5):8-11
    [126].Barber J,Andersson B.Too much of a good thing:light can be bad for photosynthesis.Trends Biochem Sci,1992,17:61-66
    [127].魏爱丽,王志敏.高等植物PSII的光抑制与光破坏研究进展.西北植物学报,2004,24(7):1342-1347
    [128].Kolpin DW,Thurman EM,Linhart SM.The environmental occurrence of herbicides:the importance of degradates in ground water.Archives of Environmental Contamination and Toxicology,1998,35(3):385-390
    [129].张中一,施正香,周清.农用化学品对生态环境和人类健康的影响及其对策.中国农业大学学报,2003,8(02):73-77
    [130].Lagana A,Bacaloni A,De Leva I,Faberi A,Fago G,Marino A.Occurrence and determineation of herbicides and their major transformation products in environmental waters.Anal Chin Acta,2002,462:187-198
    [131].Huber R,Otto S.Environmental behavior of bentazon herbicide.Rev Environ Contam Toxicol,1994,137:111-134
    [132].Amaud B,Richard C,Corinne PG,Michel S.Time effect on bentazone sorption and degradation in soil.Pest Manag Sci,2004,60:809-814
    [133].Boesten JJTI,Van der Pas LJT.Movement of water,bromide and the pesticides ethoprophos and bentazone in a sandy soil:the Vredepeel dataset.Agric Water Manage,2000,44:21-22
    [134].全国农药残留试验研究协作组编.农药残留量实用检测方法手册.北京:化学工业出版社,2001,312-323
    [135].曹坳程,郭美霞,蒋红云,张向才.抗除草剂作物对未来化学农药发展的影响.生物技术通报,1998,4:22-24
    [136].薛南冬,王洪波,徐晓白.水环境中农药类内分泌干扰物的研究进展.科学通报,2005,50(22):2441-2449

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700