MUF共缩聚树脂的合成、结构及性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了不同合成工艺路线对三聚氰胺-尿素-甲醛(MUF)共缩聚树脂性能的影响,以及在最佳合成工艺条件基础上,详细探讨了特定工艺条件下MUF共缩聚树脂的结构形成、分子组分的分布,以及借助现代仪器分析手段对其固化特征、耐热性能等进行了表征,为MUF共缩聚树脂的应用提供了有力的理论指导。
     主要研究内容如下:
     (1) MUF共缩聚树脂合成工艺的探讨。不同合成工艺与MUF树脂性能有着密切的联系,重点比较了三种MUF共缩聚树脂合成工艺路线对树脂性能的影响。不同合成工艺条件下的树脂分别命名为:MUF1、MUF2、MUF3。性能测试主要包括树脂的基本性能、结构分布、以及固化性能。
     (2) MUF共缩聚树脂的结构形成及分布的研究。在最佳合成工艺基础上,借助傅立叶红外光谱(FT-IR)和基质辅助激光解析电离飞行时间质谱仪(MALDI-TOF MS)对MUF共缩聚树脂合成过程中结构的形成及组分分布进行了追踪,同时辅助模型化合物之间的反应,对MUF共缩聚树脂的形成机理进行了剖析。
     (3) MUF共缩聚树脂固化性能的表征。固化是热固性树脂应用过程当中非常重要的一个过程,借助热分析方法,如差示扫描量热法(DSC)、动态热机械分析法(DMA),对不同条件下MUF共缩聚树脂的固化特征进行了表征。利用FT-IR对树脂固化过程中结构及基团的变化进行了分析,讨论了不同固化条件下MUF共缩聚树脂的固化机理。
     (4)耐热性能是评价MUF共缩聚树脂性能的另一重要指标。采用热重分析法(TG)对MUF共缩聚树脂的耐热性能进行评价,重点比较了固化剂、贮存时间、样品状态等条件对MUF树脂耐热性能的影响。
     (5)最后,通过实验室制备小型胶合木试件,对MUF共缩聚树脂的胶接及耐久性能进行了评价。比较了不同耐老化处理条件下树脂的胶接性能,评估了处理条件对耐久性的影响。
     对MUF共缩聚树脂的研究,得出的主要结论为:
     (1)在终摩尔比(即F:(U+M))一致的条件下,不同合成工艺路线对MUF共缩聚树脂的性能有显著影响。基本性能测试结果表明,不同合成工艺路线对树脂中游离甲醛含量、贮存稳定性有非常显著的影响,游离甲醛含量最低达到0.15%,而最高达0.54%。伴随着游离甲醛含量的不同,树脂的贮存时间亦有明显差异,从一周到一个月不等。FT-IR、~(13)C-NMR、1H-NMR对MUF1、MUF2、MUF3三种不同树脂的结构组成及基团分布进行表征发现,三种树脂中所含基团的类型极度相似,但组成比例存在差异。尤其是羟甲基(-CH_2OH)、亚甲基桥键(-CH_2-)、亚甲基醚键(-CH_2-O-CH_2-)的比例各不相同。而且,DMA测试结果显示,在固化剂作用条件下,所能获得的最大模量亦不尽相同。综合多方性能认为,MUF3的合成工艺路线最优。
     (2)以MUF3的合成工艺路线为基础,在合成过程中的不同反应阶段进行取样,对其中结构的形成和分布进行表征认为,MUF树脂合成过程中包含了三种主要反应类型,即羟甲基化、树脂化、共缩聚反应,并且彼此之间没有严格的划分界限。事实上,无论是羟甲基化阶段还是树脂化阶段,都存在着三聚氰胺与尿素之间的共缩聚反应,也就是说,共缩聚反应贯穿于整个反应过程当中。尤其是当二次三聚氰胺加入以后,对整个树脂的结构及性能有很重要的作用。从反应现象看,二次三聚氰胺加入后,在较短时间内即可变为清液,意味着反应速度很快。由此时样品的MALDI-TOF MS分析也证实了三聚氰胺主要参与了羟甲基化反应,随着反应时间的延长,高分子量物质所占丰度的上升,表明了缩聚反应的发生。根据相关分子量推断,此阶段共缩聚反应的连接方式以亚甲基桥键(U-CH_2-M)为主。
     利用模型化合物之间的反应,对二次三聚氰胺的作用进行了进一步的分析,结果发现三聚氰胺的加入对基体树脂中的羟甲基化合物,尤其是羟甲基脲,具有非常强的凝聚作用,对树脂分子量的增加具有重要影响。而且,共缩聚反应主要以羟甲基化合物中的羟甲基与剩余活性氢之间的缩合反应。
     (3)采用DSC表征MUF共缩聚树脂的固化特征,结果表明测试方式、固化剂等对MUF共缩聚树脂的固化过程有不同程度的影响。其中,开放式测试条件下,树脂的固化发生在较低温度(40~1000C)和较高温度(100~2000C)两个区域。而在封闭式测试条件下,树脂的固化发生在相对较高温度区域(100~2000C),仅有一个固化峰,类似于干燥样品的固化过程。对不同升温速率条件下的固化峰值温度进行线性拟合可知,测试方式并不影响树脂的固化峰值温度(约1000C)。固化剂的使用可以有效降低树脂的固化起始温度、加速固化反应的发生。FT-IR对不同固化条件下树脂中的基团变化进行分析结果也显示,固化剂的加入并不会改变树脂的固化机理,但可有效促进树脂中活性基团的缩合反应,尤其是羟甲基基团的消耗。DMA热分析结果显示,氯化铵作为MUF共缩聚树脂固化反应的固化剂时,使用量控制在0.5~1%之间时,可获得性能优异的固化胶层。
     (4) TG热分析结果表明,在氮气保护条件下,未加固化剂时液态树脂样品的残炭率均高于固态样品的残炭率,但并未影响树脂热分解的温度及达到最大分解状态的速率。加入1%固化剂后,液态样品的热分解分为三个区域,而固态样品的分解主要发生在一个大的区域。无论是液态样品还是固态样品,1%固化剂的加入,可以有效提高树脂的残炭率。
     不同贮存时间,并不会对MUF树脂的耐热分解性能造成影响,但对最终的残炭率略有影响。空气条件下,将树脂置于8000C的高温条件下,灼烧7min后,残炭率保留在6~9%之间,与氮气保护条件下的热分解强度和历程大不相同。
     (5)对MUF共缩聚树脂应用于胶合木制备的可行性试验表明,MUF树脂具有较强的胶接强度及耐久性能,均可满足结构用材标准中的相关规定。
The effect of different synthetic process on the MUF co-condensation resin performance wasstudied, and based on the best synthetic process, to investigate in detail the structure formation,molecular distribution of MUF resin. With the help of modern apparatus, the curing and thermalproperties of MUF resin were studied, which provide powerful theoretical basis for theapplication of MUF resin.
     The main content were as follows:
     (1) The investigation on the synthetic process of MUF co-condensation resin。There was aclose relationship between different synthetic process and MUF resin properties, so the effect ofthree synthetic processes of MUF resin on the MUF resin performance, which was mainlystudied. The resin was separately named MUF1, MUF2, MUF3by synthetic process. The resinperformance evaluation mainly included basic performance, the structure distribution of MUFresin and the curing performance.
     (2) Study on the structure formation and distribution of MUF co-condensation resin. On thebase of best synthetic route, the structure formation and component distribution of MUFco-condensation resin were tracked with the help of FT-IR and MALDI-TOF MS, moreover, theformation mechanism of MUF co-condensation resin was also further analyzed by reaction ofmodel compound.
     (3) The characterization of MUF co-condensation resin curing performance. Curing was anvery important process for application of thermoset resin, and the curing characteristics of MUFco-condensation resin were studied by DSC, DMA. The structure and group change of MUFco-condensation resin during curing process were studied using FT-IR, and the curing mechanismwas analyzed.
     (4) Heat-resistant quality was another important index for appreciating MUFco-condensation resin performance. Use TG to investigate heat-resistant quality of MUF resin,and the effect of curing agent, storage time, sample state on that was mainly studied.
     (5) At last, the bonding strength and durability performance of MUF co-condensation resinwere studied by glulam preparation in laboratory. And the durability performance was evaluatedby comparing bonding strength after treated by different condition.
     The main results were as follows:
     (1) With the same F:(U+M) mola ratio, it was remarkable that effect of synthetic process onMUF co-condensation resin performance. The basic property results showed that syntheticprocess focally impacted the formaldehyde-free content and storage time of MUF co-condensation resin, and the minimum content was0.15%, the highest content was0.54%.Simultaneously, the storage time was different changed from one week to one month due tochange of formaldehyde-free content. The FT-IR,~(13)C-NMR,1H-NMR characteristics results ofMUF1, MUF2, MUF3revealed that three resins included same group category, but its ratio wasdifferent, especially, the hydroxy-methyl group(-CH_2OH), methylene bridge(-CH_2-), methyleneether link(-CH_2-O-CH_2-). Furthermore, DMA results showed that the maximum modulus ofMUF resin was different under the curing agent condition. Many performance showed thatsynthetic process of MUF3resin was best.
     (2) On the bases of synthetic process of MUF3resin, samples were taken in differentreaction time during synthetic process, the characteristic results of samples revealed thatformation of MUF resin included three key types of reaction, that was hydroxy-methyl reaction,resinification, co-condensation reaction, in fact, there was no obvious boundary for three reactiontypes. The co-condensation reaction not only existed in hydroxy-methyl reaction phase but inresinification phase, in other words, there was always co-condensation reaction of melamine andurea though the whole reaction. Especially, seconde melamine addition had an important role inthe resin structure formation and its performance. Reaction phenomena revealed that reactionspeed of melamine and basic resin was very fast, because solution could change clear in veryshort time. MALDI-TOF MS analysis of sample also confirmed that melamine mainly takenhydroxy-methyl reaction, as the extension of reaction time, abundance rise of high molecularmeaned that condensation reaction taken place. According to distribution of molecular weight, itcould be deduced that formation of methylene bridges between melamine and urea wasdominant.
     Using model compound reaction, seconde melamine action on matrix resin was furtheranalyzed, the results showed that melamine had an strong cohesion effect on hydroxy-methylcompounds, especially methylolurea, and had important effects on the resin molecular weightincrease. Moreover, condensation reaction between hydroxy-methyl of hydroxy-methylcompounds and residual active hydrogen was major condensation reaction type.
     (3) Curing characteristic of MUF co-condensation resin was characterized by DSC, resultsrevealed that test method, curing agent had different degree impact on the curing process of MUFco-condensation resin. Among them, under open testing condition, curing of MUF resin took intwo areas, lower temperature area(40~1000C) and higher temperature area(100~2000C). Butunder the close testing condition, curing mainly took place in higher temperaturearea(100~2000C), which was similar to the dried sample curing process. By linear fitting of peaktemperature at different heating rate, it was found that testing method did not affect peaktemperature of MUF resin curing(about1000C). Curing agent could effectively reduced initialcuring temperature, and accelerated curing reaction. By FT-IR analyzing groups change of resinin different curing condition, it was found that curing agent did not change resin curingmechanism, but could effectively promote condensation reaction of active groups, especially consume the hydroxy-methyl group. DMA results showed when curing agent(NH4Cl) contentwas0.5~1%, the glue-line performance could achieve excellent.
     (4) TG thermal analysis results showed that under nitrogen protection, char residue rate ofliquid sample without curing agent was higher than solid sample’s char residue rate, but did notaffect resin thermal decomposition temperature and maximum decomposing rate. After adding1%curing agent, liquid thermal decomposition of the sample was divided into three regions, andthe decomposition of the solid sample mainly happened in a large area. Either liquid or solidsamples,1%curing agent addition, char residue rate of the resin could be effectively improved.
     Different storage time did not affect thermal decomposition properties of MUF resin, butslightly affect char residue rate of MUF resin. Under air condition, burned for7min at8000C, thechar residue rate of MUF resin was between6~9%, so the decomposition degree and processwere different from the nitrogen atmosphere.
     (5) The results of glulam performance showed that MUF co-condensation resin had strongbonding strength and durability, which can satisfy the standards of timber performance.
引文
[1]华毓坤.中国木材工业概况[J].人造板通讯,2002,(01):3-6
    [2]王恺,傅峰.我国人造板工业发展展望[J].人造板通讯,2002,(12):3-5
    [3]吴树栋.我国人造板工业的现状[J].人造板通讯,2001,(02):3-5
    [4]胡广斌,肖小兵.我国刨花板生产现状[J].中国人造板,2009,(11):10-13
    [5]夏志远.人造板产品游离甲醛问题的思考[J].人造板通讯,2001,(02):27
    [6]顾继友主编.胶粘剂与涂料[M].中国林业出版社,1999
    [7]周雪平.木材用胶粘剂行业发展应关注的问题[J].人造板通讯,2002,(01):12-13
    [8]雷洪,杜官本,阮虎昌.三聚氰胺改性树脂的研究进展[J].粘接,2004,25(5):37-40
    [9]孙成忠,吴洪森,邓香玉.人造板胶粘剂的现状与发展趋势[J].甲醛与甲醇,2003,(1):3-6
    [10]林昌镇,顾继友.三聚氰胺改性脲醛树脂胶粘剂研究进展[J].粘接,2001,22(5):92-96
    [11]王春鹏,赵临五.木材工业用胶粘剂的现状及发展趋势[J].粘接(增刊),1999:37-41
    [12] Kamoun C., A.Pizzi, M.Zanetti. Upgrading Melamine-Urea-Formaldehyde Polycondensation Resinswith Buffering Additives.Ⅰ.The Effect of Hexamine Sulfate and Its Limits[J]. Journal of AppliedPolymer Science,2003,90:203-214
    [13] Byung-Dae Park, Sang-Min Lee, Jeang-Kwan Roh. Effects of Formaldehyde/Urea Mole Ratio andMelamine Content on the Hydrolytic Stability of Cured Urea-Melamine Formaldehyde Resin[J]. Eur. J.Wood Prod.,2009,(69):121-123
    [14] B. Young No, Moon G. Kim. Evaluation of melamine-modified urea-formaldehyde resins as particleboardbinders[J]. Journal of Applied Polymer Science,2007,106:4148-4156
    [15]徐寿华,吴羽飞. MUF树脂胶粘剂的研究[J].南京林业大学学报,1986,(4):100-108
    [16]顾继友,赵佳宁,倪荣超.弱酸性条件起始合成MUF树脂工艺研究[J].哈尔滨工业大学学报,2009,41(5):161-164
    [17]金立维,王春鹏,储富详等. E1级MDF用三聚氰胺改性脲醛树脂的定量13C-NMR结构研究[J].林产工业,2006,33(6):38-41
    [18]杜官本.酸性环境下脲醛树脂结构形成特征[J].西南林学院学报,1999,19(2):126-138
    [19]杜官本.缩聚条件对脲醛树脂结构的影响[J].粘接,2000,21(1):12-16
    [20]金立维,王春鹏,周道兵等. E1级胶合板用脲醛树脂的13CNMR定量分析[J].林产化学与工业,2006,26(4):6-10
    [21]谢廷义.对供装饰板和装饰纤维板使用的三聚氰胺尿素甲醛树脂生产工艺的探讨[J].林产工业,1989,(1):29-30
    [22]徐德祥,许建平.尿素-三聚氰胺甲醛共缩合浸渍树脂生产与使用[J].湖北林业科技,1981,(1):30-35
    [23]闫文涛,张永娟,张雄.改性三聚氰胺-尿素-甲醛共缩聚树脂胶粘剂的合成[J].中国胶粘剂,2008,17(9):31-33
    [24] Chung-Yun Hse. Development of Melamine Modified Urea Formaldehyde Resins Based on Strong AcidicpH Catalyzed Urea Formaldehyde Polymer[J]. Forest Products Journal,2009,59(5):19-24
    [25]官仕龙,李代华,刘攀攀等.脲醛-三聚氰胺-甲醛复合树脂胶粘剂的研制[J].武汉工程大学学报,2008,30(4):12-19
    [26]柳川等.二羟甲脲和三聚氰胺或羟甲基三聚氰胺之间的反应研究.木材学会志,1962,8:234-238
    [27]富田文一郎.用13C核磁共振法(NMR)解析标记13C浓缩甲醛引起的三聚氰胺和尿素的共缩聚反应.木材学会志,1995,41(5):490-497
    [28]樋口光夫等. MUF树脂的固化过程和聚合物构造(第1报).木材学会志,1991,37(11):1041-1049
    [29] A.S. Angelatos, M. I. Burgar, N. Dunlop, etal. NMR Structural Elucidation of Amino Resins [J]. Journal ofApplied Polymer Science,2004,91:3504-3512
    [30] A.Pizzi, M.Beaujean, C.Zhao, M.Properzi. Acetal-Induced Strength Increases and Lower Resin Contentof MUF and Other Polycondesation Adhesives [J]. Journal of Applied Polymer Science,2002,84:2561-2571
    [31] A.T. Mercer, A. Pizzi. A13C-NMR Analysis Method for MF and MUF Resins Strength and FormaldehydeEmission from Wood Particleboard.I.MUF Resins[J]. Journal of Applied Polymer Science,1996,61:1687-1695
    [32] Panangama L.A., A.Pizzi. A13C-NMR Analysis Method for MUF and MF Resin Strength andFormaldehyde Emission[J]. Journal of Applied Science,1996,59(13):2055-2068
    [33] Amy Philbrook, Christopher J. B.etc. Demonstration of Co-polymerization inMelamine-Urea-Formaldehyde Reactions Using15N NMR Correlation Spectroscopy[J]. Polymer,2005,46:2153-2156
    [34]杜官本,杨忠,廖兆明等.尿素-三聚氰胺-甲醛共缩聚树脂应用进展[J].林产工业,2002,29(4):13-18
    [35]韩书广,吴羽飞等.三聚氰胺改性脲醛树脂化学结构及反应过程的13C-NMR研究[J].南京林业大学学报(自然科学版),2007,31(6):82-86
    [36]韩书广,吴羽飞,卢晓宁.三聚氰胺改性脲醛树脂化学结构及反应过程的13C-NMR研究[J].南京林业大学学报(自然科学版),2007,31(6):82-86
    [37]樋口光夫等. MUF树脂的固化过程和聚合物构造(第1报).木材学会志,1991,37(11):1041-1049
    [38]樋口光夫等. MUF树脂的固化过程和聚合物构造(第2报).木材学会志,1991,37(11):1050-1055
    [39]樋口光夫等. MUF树脂的固化过程和聚合物构造(第3报).木材学会志,1992,38(4):374-381
    [40]雷洪. MUF/PMUF共缩聚树脂结构形成及分子组分变化的研究(硕士论文).西南林学院,2005
    [41] Pababgana L.A.,A.Pizzi. A13C-NMR Analysis Method for MUF and MF Resin Strength andFormaldehyde Emission[J]. Journal of Applied Polymer Science,1996,59:2055-2068
    [42] Panangama L.A., A.Pizzi. A13C-NMR Analysis Method for MUF and MF Resin Strength andFormaldehyde Emission[J]. Journal of Applied Polymer Science,1996,59(13):2055-2068
    [43] Pizzi A, Panamgama. Diffusion Hindrance VS Wood-induced Catalytic Activation of MUF AdhesivePolycondensation[J]. Journal of Applied Polymer Science,1995,58(1):109-115
    [44] Angelatos A S, Burgar M I, Dunlop N, etal. NMR Structural Elucidation of Amino Resins[J]. Journal ofApplied Polymer Science,2004,91(6):3504-3512
    [45]杜官本,雷洪,方群. PMUF共缩聚树脂制备过程中分子结构变化特征的研究[J].北京林业大学学报,2006,28(6):132-136
    [46]顾继友,赵佳宁,倪荣超.弱酸性条件起始合成MUF树脂工艺研究[J].哈尔滨工业大学学报,2009,41(5):161-164
    [47]杜官本.尿素与甲醛加成及缩聚产物13CNMR研究[J].木材工业,1999,13(4):9-13
    [48]赵临五,王春鹏等.三种三聚氰胺改性脲醛树脂胶结构与性能关系的研究[J].林产工业,2011,38(1):16-20
    [49] A.Despres, A.Pizzi, etal. Comparative13C-NMR and Matrix-Assisted Laser Desorption/IonizationTime-of-Flight Analyses of Species Variation and Structure Maintenance DuringMelamine-Urea-Formaldehyde Resin Preparation[J]. Journal of Applied Polymer Science,2007,106:1106-1128
    [50]李智立,郭兴华.酚醛环氧树脂的基质辅助激光解析电离飞行时间质谱(MALDI-TOF)[J].材料研究学报,1997,11(4):419-422
    [51]赵伟刚,杜官本,雷洪等. NaOH用量对PUF共缩聚树脂结构和性能的影响[J].粘接,2009,(5):39-43
    [52] Guanben Du, Hong Lei, A.Pizzi, etal. Synthesis-Structure-Performance Relationship of Co-condensedPhenol-Urea-Formaldehyde Resins by MALDI-TOF and13C NMR[J]. Journal of Applied Science,2008,110:1182-1194
    [53]顾继友,朱丽滨等.低甲醛释放脲醛树脂固化反应历程的研究[J].林产化学与工业,2005,2(4):11-16
    [54]杜官本,雷洪, A.Pizzi.脲醛树脂固化过程的热机械性能分析[J].北京林业大学学报,2009,31(3):106-110
    [55] Pizzi A. Advanced Wood Adhesives Technology[M]. New York: Dekker,1994
    [56] Young-Geun Eom, Guang-Zhu Xu, etal. Effects of Hardner and Extender Contents on Curing Behavior ofUrea-Melamine-Formaldehyde Resin[J]. Mokchae Konghak,2008,36(5):42-48
    [57] Xiaolin Cai, Bernard Riedl, etal. A Study on the Curing and Viscoelastic Characteristic ofMelamine-Urea-Formaldehyde Resin in the Presence of Aluminum Silicate Nanoclays[J]. Composites:part A,2010,41:604-611
    [58] B.Young No, Moon G.Kim. Curing of Low Level Melamine-Modified Urea-Formaldehyde ParticleboardBinder Resins Studied with Dynamic Mechanical Analysis(DMA)[J]. Journal of Applied Polymer Science,2005,97:377-389
    [59] K.Siimer, P.Christjanson, etal. TG-DTA Study of Melamine-Urea-Formaldehyde Resins[J]. Journal ofThermal Analysis and Calorimetry,2008,92:19-27
    [60] Pizzi,A., L.A.Panamgama. Diffusion Hindrance vs.Wood-Induced Catalytic Activation of MUF AdhesivePolycondensation[J]. Journal of Applied Polymer Science,1995,58:109-115
    [61]金立维,王春鹏,赵临五等. E1级三聚氰胺改性脲醛树脂的制备与性能研究[J].林产化学与工业,2005,25(1):40-44
    [62] Delmonte. The Technology of Adhesives[J]. New York,1947:260
    [63]胡庆堂. E1级三聚氰胺改性脲醛树脂的研制[J].产品与开发,2005(9):23-27
    [64]李建章等.三聚氰胺改性脲醛树脂及其制备方法[P]. CN:1834186A.
    [65]潘德全,徐力,李鸿馨等. MUF树脂生产环保型刨花板技术[J].林业建设,2002(5):15-19
    [66]韩书广,卢晓宁,吴羽飞等.脲醛树脂及其改性树脂的化学结构[J].东北林业大学学报,2007,35(8):36-45
    [67]宋作梅,赵仁杰,刘忠会.“苯酚-三聚氰胺-甲醛”共缩聚树脂(PMF)的研制[J].湖南林业科技,2007,34(6):44-47
    [68]王春鹏,赵临五,卜洪忠等. E0级胶合板用UMF树脂胶固化体系的研究[J].林产工业,2008,35(5):23-27
    [69]钟建荣. MUF共缩合树脂的研制[J].粘接,2006,27(3):25-26
    [70]林景武,肖兆麟,陈维宁.苯酚-三聚氰胺-尿素-甲醛胶粘剂的合成及其应用[J].林产工业,2000,27(4):28-30
    [71]杜官本,李君,杨忠.苯酚-尿素-甲醛共缩聚树脂研制I合成与分析[J].林业科学,2000,36(5):73-77
    [72]赵临五,穆有炳,储富祥等.低成本E0级地板用UMF胶的研制[J].林产工业,2009,36(4):6-10
    [73]刘志英.低物质量比甲醛-尿素-三聚氰胺树脂快速固化剂研制[J].2010,(1):51-52
    [74]吕守茂,丁亚玲.改性脲醛树脂新进展[J].化学与粘合,2000,(3):130-133
    [75]廖兆明,张建军,杜官本等.高性能防潮型刨花板的开发[J].林产工业,2002,29(3):44-45
    [76]王超,梁钒,黄玉东.胶粘剂固化行为对性能的影响[J].中国胶粘剂,2005,14(10):14-16
    [77]朱丽滨,顾继友,曹军.木材胶接用三聚氰胺改性脲醛树脂胶黏剂性能研究[J].化学与粘合,2009,31(4):1-3
    [78]王艳良,李光沛.浅谈木材用胶粘剂的发展[J].林业机械与木工设备,2005,33(9):10-13
    [79]朱丽滨,顾继友.三聚氰胺改性低毒脲醛树脂耐水性研究[J].林产工业,2008,35(2):19-22
    [80]张红春,邵广义,孙丽玫等.新型三聚氰胺尿素甲醛共聚树脂的研制[J].林业科技,2005,30(4):51-52
    [81] Sunmin Kim, Hyun-Joong Kim, Hee-Soo Kim etal. Thermal Analysis Study of Viscoelastic Properties andActivation Energy of Melamine-modified Urea-formaldehyde Resins[J]. J.Adhesion Sci. Technol.,2006,20(8):803-816
    [82] A.Kandelbauer, G.Wuzella, A.Mahendran etal. Model-free Kinetic Analysis of Melamine-FormaldehydeResin Cure[J]. Chemical Engineering Journal,2009,152:556-565
    [83] Han Chien Lin, Jin-Cherng Huang. Using Single Image Multi-Processing Analysis Techniques to Estimatethe Internal Bond Strength of Particleboard[J]. Taiwan J For Sci,2004,19(2):109-117
    [84] M.Dunky. Urea-formaldehyde(UF)Adhesive Resins for Wood[J]. International Journal of Adhesion&Adhesives,1998,(18):95-107
    [85] C.Cremonini, A.Pizzi,P.Tekely. Influence of PMUF Resins Preparation Method on Their MolecularStructure and Performance as Adhesives for Plywood[J]. Holz als Roh und Werkstoff,1996,(54):85-88
    [86] M. Properzi, A. Pizzi, L. Uzielli. Performance Limits of Pure MUF Honeymoon Adhesives for ExteriorGrade Glulam and Fingerjoints [J]. Holzforschung und Holzverwertung,2001,53(4):73-77
    [87] M. Zanetti, A. Pizzi. Upgrading of MUF Polycondensation Resins by Buffering Additives. Ⅱ.HexamineSulfate Mechanisms and Alternate Buffers [J]. Journal of Applied Polymer Science,2003,90:215-226
    [88] M. Properzi, A. Pizzi, L. Uzielli. Honeymoon MUF Adhesive for Exterior Grade Glulam [J]. Holz alsRoh-und Werkstoff,2001,59:413-421
    [89] M. Properzi, A. Pizzi, L. Uzielli. Honeymoon MUF Adhesive for Exterior Grade Glulam [J]. Holz als Rohund Werkstoff,2001,59:413-421
    [90] A. Root, P. Soriano. The Curing of UF Resins Studied by Low-Resolution1H-NMR [J]. Journal of AppliedPolymer Science,2000,75:754-765
    [91] M. Zanetti, A. Pizzi. Colloidal Aggregation of MUF Polycondensation Resins: Formulation Influence andStorage Stability [J]. Journal of Applied Polymer Science,2004,91:2690-2699
    [92] Byung-dae Park, Bernard Riedl, Yoon Soo Kim, Won Tek So. Effect of Synthesis Parameters on ThermalBehavior of Phenol-Formaldehyde Resole Resin [J]. Journal of Applied Polymer Science,2002,83:1415-1424
    [93] Guangbo He, Ning Yan.13C-NMR Study on Structure, Composition and Curing Behavior ofPhenol-Urea-Formaldehyde Resole resins [J]. Polymer,2004,45:6831-6822
    [94] Hong,L., A.Pizzi, G.B.Du, Despres. Variation of MUF and PMUF Resins Mass Fractions duringPreparation[J]. Journal of Applied Polymer Science,2006,100:4842-4855
    [1]马春妹. FT-IR红外光谱法在涂料工业中的应用[J].测试与分析,2002,40(3):35-38
    [2]胡够英,李延军,杜兰星等. DMA技术在木材科学中的应用及展望[J].林业机械与木工设备,2011,39(6):9-12
    [3]程瑞香.动态热机械分析在木材加工行业的应用[J].木材工业,2005,19(4):28-29
    [4]陈广辉,武轲,杨亚峰等. DMA在木质复合材料研究中的应用及展望[J].中南林业科技大学学报,2012,32(6):177-179
    [5]朱丽滨,顾继友.利用动态热机械分析仪对低毒脲醛树脂性能的研究[J].林产工业,2006,33(5):36-38
    [6]李建章,李文军,周文瑞等.脲醛树脂固化机理及其应用[J].北京林业大学学报,2007,29(4):90-94
    [7]姜小萍.红外光谱定性解析原则[J].张家口师范专科学校学报,2001,17(6):56-58
    [8]李俊平,路晓娟,刘秉爱等.一种未知胶粘剂的剖析[J].化学分析计量,2012,21(2):78-80
    [9]顾继友,程瑞香.采用DSC和FTIR对木材和API胶粘剂间反应的研究[J].中国胶粘剂,2005,14(4):10-14
    [10] A. Kandelbauer, A. Despres, A. Pizzi etal. Testing by Fourier Transform Infrared Species Variation DuringMelamine-Urea-Formaldehyde Resin Preparation[J]. Journal of Applied Polymer Science,2007,106:2192-2197
    [11] Moon G. Kim. Examination of Selected Synthesis Parameters for Typical Wood Adhesive-TypeUrea-Formaldehyde Resins by13C-NMR Spectroscopy.II[J]. Journal of Applied Polymer Science,2000,75:1243-1254
    [12] Moon G. Kim. Examination of Selected Synthesis Parameters for Wood Adhesive-TypeUrea–Formaldehyde Resins by13C NMR Spectroscopy. III [J]. Journal of Applied Polymer Science,2001,80:2800-2814
    [13] Moon G. Kim, Hui Wan, Byung Y. No, World L. Nieh. Examination of Selected Synthesis andRoom-Temperature Storage Parameters for Wood Adhesive-Type Urea–Formaldehyde Resins by13C-NMR spectroscopy. IV [J]. Journal of Applied Polymer Science,2001,82:1155-1169
    [14]顾丽莉,朱利平,罗云.脲醛树脂胶粘剂13C核磁共振分析[J].中国胶粘剂,2005,14(9):23-25
    [15] Pababgana, L.A. and A.Pizzi. A13C-NMR Analysis Method for MUF and MF Resin Strength andFormaldehyde Emission[J]. Journal of Applied Polymer Science,1996,59:2055-2068
    [16]杜官本.摩尔比对脲醛树脂初期产物结构影响的研究[J].粘接,1999,20(3):1-5
    [17]李建法,宋湛谦,李芳.13C核磁共振研究磺化脲醛树脂的反应机理[J].分析测试学报,2005,24(6):37-41
    [18] Peep Christjanson, Tonis Pehk, Kadri Siimer. Structure Formation in Urea-Formaldehyde ResinSynthesis[J]. Proc. Estonian Acad. Sci.Chem.,2006,55(4):212-225
    [19] Angelatos A S, Burgar M I, Dunlop N, etal. NMR Structural Elucidation of Amino Resins[J]. Journal ofApplied Polymer Science,2004,91(6):3504-3512
    [20] Philbrook A, Blake C J, Dunlop N, etal. Demonstration of Co-polymerization inMelamine-Urea-Formaldehyde Reactions Using15N NMR Correlation Spectroscopy[J]. Polymer,2005,46(7):2153-2156
    [21]杜官本,华毓坤.脲醛树脂结构研究进展[J].林业科学,1999,35(4):86-92
    [22]魏莉萍,刘运传,郑会保等. DMA测量高聚物粘弹性参数重复性研究[J].工程塑料应用,2007,35(6):54-57
    [23] Chen Yangfei, Chen Zhiqin, Xiao Shaoyi etal. A Novel Thermal Degradation Mechanism ofPhenol-Formaldehyde Type Resins[J]. Thermochimica Acta,2008,(476):39-43
    [1]徐友宜,彭师奇.蛋白质及多肽的液相色谱-电喷雾离子化质谱研究进展[J].药学学报,1997,32(10):792-799
    [2]应万涛,钱小红.生物质谱技术应用及进展[J].军事医学科学院院刊,2000,24(2):146-150
    [3]吕茂民,章金刚.生物质谱技术及其应用[J].生物技术通报,2001,(4):38-41
    [4]应万涛,钱小红.生物质谱技术应用及进展[J].军事医学科学院院刊,2000,24(2):146-150
    [5]何美玉,何江涛,贺晓然等.合成高分子的质谱研究[J].质谱学报,2000,21(4):13-14
    [6]季怡萍,孙淑清,刘志强等. MALDI-TOF-MS在生物化学和高分子化学中的应用[J].分析测试学报(增刊),2001,20:153-154
    [7]何美玉,何江涛. MALDI-TOF MS分析研究合成高分子的综述[J].质谱学报,2002,23(1):43-55
    [8]郭长娟,黄正旭,陈华勇等.飞行时间质谱仪国内研究状况及发展趋势[J].现代仪器,2007,(4):1-5
    [9]魏先文,徐正.电喷雾电离质谱在化学中应用新进展[J].有机化学,1999,19:97-103
    [10] A.Kandelbauer, A. Despres, A. Pizzi etal. Testing by Fourier Transform Infrared Species Variation DuringMelamine-Urea-Formaldehyde Resin Preparation[J]. Journal of Applied Polymer Science,2007,106:2192-2197
    [11]连海兰,尤纪雪,周定国.稻草中密度纤维板用改性脲醛树脂的研究[J].林产化学与工业,2006,26(4):92-96
    [12]萨特勒标准红外谱图集[M].
    [13]李智立,张银生,冀克俭等.酚醛环氧树脂的基质辅助激光解析电离飞行时间质谱(MALDI-TOF-MS)表征[J].材料研究学报,1997,11(4):419-422
    [14]王红华,陈天禄.芳香环状低聚体的结构表征[J].高分子通报,2005,(6):76-83
    [15] A.Pizzi, H.Pasch, C.Simon etal. Structure of Resorcinol, Phenol, and Furan Resins by MALDI-TOF MassSpectrometry and13C NMR[J]. Journal of Applied Polymer Science,2004,92:2665-2674
    [16] A.Despres, A.Pizzi, H. Pasch etal. Comparative13C-NMR and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Analyses of Species Variation and Structure Maintenance DuringMelamine-Urea-Formaldehyde Resin Preparation[J]. Journal of Applied Polymer Science,2007,106:1106-1128
    [17] Toshio Fukai, Jun Kuroda, Taro Nomura. Accurate Mass Measurement of Low Molecular WeightCompounds by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry[J].American Society for Mass Spectrometry,2000,458-463
    [18] M.Zanetti, A.Pizzi, M.Beaujean etal. Acetals-Induced Strength Increase of Melamine-Urea-Formaldehyde(MUF)Polycondensation Adhesives. II. Solubility and Colloidal State Disruption[J]. Journal of AppliedPolymer Science,2002,86:1855-1862
    [19] Hong Lei, A. Pizzi, A. Despres etal. Ester Acceleration Mechanisms in Phenol-Formaldehyde ResinAdhesives[J]. Journal of Applied Polymer Science,2006,100:3075-3093
    [20]张珍英,邓慧敏,邓芹英等. MALDI-TOF MS表征均聚芳香硫酚环状低聚物[J].分析测试学报,2004,23(1):58-60
    [21] M.Schrod, K. Rode, D.Braun etal. Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry ofSynthetic Polymers. VI. Analysis of Phenol-Urea-Formaldehyde Cocondensates[J]. Journal of AppliedPolymer Science,2003,90:2540-2548
    [22] Alexander Bootz, Thomas Russ, Friedhelm Gores etal. Molecular Weights of Poly(butyl cyanoacrylate)Nanoparticles Determined by Mass Spectrometry and Size Exclusion Chromatography[J]. EuropeanJournal of Pharmaceutics and Biopharmaceutics,2005,60:391-399
    [23] Humayun Mandal, Allan S. Hay. Polycyclic Phosphonate Resins: Thermally Cross-Linkable Intermediatesfor Flame-Retardant Materials[J]. Journal of Polymer Science: Part A: Polymer Chemistry,1998,36:1911-1918
    [24] Kerstin Schmidt, Dirk Grunwald, Harald Pasch. Preparation of Phenol-Urea-Formaldehyde CopolymerAdhesives under Heterogeneous Catalysis[J]. Journal of Applied Polymer Science,2006,102:2946-2952
    [25]孙雷,毕言锋,张骊等.飞行时间质谱分析技术及其应用研究进展[J].中国兽医杂志,2009,43(7):37-40
    [26] Guanben Du, Hong Lei, A. Pizzi etal. Synthesis-Structure-Performance Relationship of Co-condensedPhenol-Ureas-Formaldehyde Resins by MALDI-TOF and13C NMR[J]. Journal of Applied PolymerScience,2008,110:1182-1194
    [27] A.Marie, F.Fournier, J.C.Tabet. Characterization of Synthetic Polymers by MALDI-TOF/MS:Investigation into New Methods of Sample Target Preparation and Consequence on Mass SpectrumFinger Print[J]. Analytical Chemistry,2000,72(20):5106-5114
    [1]孙振鸢,吴书泓.脲醛树脂的结构与形态——脲醛树脂胶体理论及其进展[J].林业科学,1993,29(1):49-56
    [2]刘定之,李强,付桂明.脲醛树脂固化机理探讨[J].林产工业,1997,24(1):26-28
    [3]顾继友,程瑞香.采用DSC和FTIR对木材和API胶粘剂间反应的研究[J].中国胶粘剂,2005,14(4):10-14
    [4]郝丙业,刘正添.应用DSC研究脲醛树脂胶合异氰酸酯胶混合液的固化过程[J].木材工业,1993,7(2):2-6
    [5]张洋,华毓坤.用DSC法研究麦秸人造板用胶的热反应特征[J].南京林业大学学报,2000,24(5):17-20
    [6]朱丽滨.低甲醛释放脲醛树脂固化反应历程研究(博士论文).东北林业大学,2005
    [7] Xiaolin Cai, Bernard Riedl, Hui Wan etal. A Study on the Curing and Viscoelastic Characteristics ofMelamine-Urea-Formaldehyde Resin in the Presence of Aluminium Silicate Nanoclays[J]. Composites:Part A,2010,41:604-611
    [8] Eun-Chang Kang, Sang-Bum Park, Xiuzhi Susan Sun etal. Curing Behavior of Urea-Formaldehyde ResinModified with Cooking Waste Oil-based pMDI Prepolymer and Its Influence on ParticleboardProperties[J]. Forest Products Journal,2007,57(6):51-58
    [9]刘若工.应用DSC方法对脲醛树脂氯化铵固化反应的研究[J].木材工业,1989,3(3):8-12
    [10]徐刚.用DSC法研究环氧树脂/环氧封端酚酞聚芳醚腈的固化特性[J].中国胶粘剂,2000,9(3):24-26
    [11]宫文娟,戚嵘嵘,史子兴. DSC法研究UP树脂及增韧剂改性UP树脂的固化行为[J].工程塑料应用,2008,36(12):51-54
    [12]陈少峰,谢建良,邓龙江. DSC法研究聚异氰酸酯/环氧树脂胶粘剂的固化反应动力学及固化工艺[J].中国胶粘剂,2006,15(6):1-4
    [13]杜官本,雷洪, A.Pizzi.脲醛树脂固化过程的热机械性能分析[J].北京林业大学学报,2009,31(3):106-110
    [14]吴晓青,李嘉禄,康庄等. TDE-85环氧树脂固化动力学的DSC和DMA研究[J].固体火箭技术,2007,30(3):264-268
    [15] B.Young No, Moon G. Kim. Curing of Low Level Melamine-Modified Urea-Formaldehyde ParticleboardBinder Resins Studied with Dynamic Mechanical Analysis(DMA)[J]. Journal of Applied Polymer Science,2005,97:377-389
    [16] Sumin Kim, Hyun-Joong Kim, Hee-Soo Kim etal. Thermal Analysis study of Viscoelastic Properties andActivation Energy of Melamine-Modified Urea-Formaldehyde Resins[J]. J. Adhesion Sci.Technol.,2006,20(8):803-816
    [17]吴瑶曼,黄志镗.用红外光谱法对热固性酚醛树脂固化过程的研究[J].高分子通讯,1981,(6):403-407
    [18]王治流,刘全伟,杨琥等.红外光谱法对环氧沥青固化机理的研究[J].高分子材料科学与工程,2005,21(3):93-95
    [19]谷晓昱,张军营.用FT-IR研究双氰胺固化环氧树脂的反应机理[J].高分子材料科学与工程,2006,22(5):182-184
    [20]付东升,张康助,朱光明等. E-39D/METHPA固化体系性能及固化机理探讨[J].化学与粘合,2004,(2):70-73
    [21] A.Kandelbauer, A. Despres, A. Pizzi etal. Testing by Fourier Transform Infrared Species Variation DuringMelamine-Urea-Formaldehyde Resin Preparation[J]. Journal of Applied Polymer Science,2007,106:2192-2197
    [22]连海兰,尤纪雪,周定国.稻草中密度纤维板用改性脲醛树脂的研究[J].林产化学与工业,2006,26(4):92-96
    [23]萨特勒标准红外谱图集[M].
    [1] Sebastian Clauβ, Matus Joscak, Peter Niemz. Thermal Stability of Glued Wood Joints Measured by ShearTests[J]. Eur. J. Wood Prod.,2011,69:101-111
    [2] Sumin Kim, Hyun-Joong Kim. Thermal Stability and Viscoelastic Properties of MF/PVAc Hybrid Resins onthe Adhesion for Engineered Flooring in under Heating System; ONDOL[J]. Thermochinica Acta,2006,444:134-140
    [3] Sumin Kim, Hyun-Joong Kim, Hee-Soo Kim etal. Thermal Analysis Study of Viscoelastic Properties andActivation Energy of Melamine-Modified Urea-Formaldehyde Resins[J]. J. Adhesion Sci. Technol.,2006,20(8):803-816
    [4] Chen Yangfei, Chen Zhiqin, Xiao Shaoyi etal. A Novel Thermal Degradation Mechanism ofPhenol-Formaldehyde Type Resins[J]. Thermochimica Acta,2008,476:39-43
    [5]马伟,王苏,崔季平等.酚醛树脂的热解动力学模型[J].物理化学学报,2008,24(6):1090-1094
    [6]李爱玲,熊金平,左禹等.聚氨酯胶粘剂的热分解动力学[J].物理化学学报,2007,23(10):1622-1626
    [7] Annelise E. Gerbase, Cesar L. Petzhold, Ana Paula O. Costa. Dynamic Mechanical and Thermal Behaviorof Epoxy Resins Based on Soybean Oil[J].JAOCS,2002,79(8):797-802
    [8] K. Siimer, P. Christjanson, T. Kaljuvee etal. TG-DTA Study of Melamine-Urea-Formaldehyde Resins[J].Journal of Thermal Analysis and Calorimery,2008,92(1):19-27
    [9] P.le Parolue..r. TG-DSC As a New Method of Investigation of Polymers and Resins[J].Journal of ThermalAnalysis,1988,33:1085-1090
    [10]冀克俭,邓卫华,张银生等.新型酚醛树脂固化过程的表征研究[J].工程塑料应用,2003,31(4):44-47
    [11]华幼卿,秦倩,吴一弦.用DSC和TG方法研究钼酚醛树脂的固化反应及动力学[J].现代科学仪器,1998,5:33-36
    [12]白永平,张志谦,魏月贞.新型马来酰亚胺树脂耐热稳定性研究[J].材料科学与工艺,1995,3(1):63-66
    [13]倪晓雪,李晓刚,张三平等.环氧-聚酰胺胶粘剂的热老化行为研究[J].粘接,2009,(4):31-33
    [14] Chun-Shan Wang, Jeng-Yueh Shieh. Synthesis and Properties of Epoxy Resins ContainingBis(3-Hydroxyphenyl) Phenyl Phosphate[J]. European Polymer Journal,2000,36:443-452
    [15]沈玉芳,陈栋华,胡小安.热分析动力学处理方法现状及进展[J].中南民族大学学报(自然科学版),2002,21(3):11-15
    [16] Okko Ringena, Ron Janzon, Gerd Pfizenmayer etal. Estimating the Hydrolytic Durability of Cured WoodAdhesives by Measuring Formaldehyde Liberation and Structural Stability[J]. Holz als Roh-undWerkstoff,2006,64:321-326
    [17]强敏,张双庆,林蕙珊等.热固性钼酚醛树脂的表征及其应用[J].耐火材料,2005,39(2):119-122
    [18]王濂生,陈克权,周燕. PETG树脂热分解稳定性研究[J].合成纤维,2005,34(6):1-5
    [19]杨南贼,李荣勋,刘光烨.基于TGA-FTIR联用技术研究ABS树脂的热氧降解行为[J].分析测试学报,2010,29(8):777-781
    [20]徐复铭,周伟良. Reso1型酚醛树脂热解特征的TG-MS研究[J].宇航材料工艺,2003,33(1):18-23
    [1]刘利清.胶合木结构住宅发展现状[J].山东建材,200,28(6):19-22
    [2]程瑞香,顾继友.落叶松、桦木和柞木集成材胶接性能的研究[J].木材加工机械,2003,(2):1-4
    [3]张彦娟,俞友明,马灵飞.人工林杉木结构集成材胶合工艺的研究[J].木材工业,2008,22(4):7-12
    [4]彭立民,王金林.集成材胶合工艺的研究[J].木材工业,2004,18(3):29-31
    [5]张明建,郝志强,郝金城.结构集成材的加工[J].林业机械与木工设备,2008,36(5):58-59
    [6]构造用集成材日本农林规格[S].农林水产省告示第235号,平成15年2月27日.
    [7]王辉,杜官本.三聚氰胺-尿素-甲醛共缩聚树脂的性能研究[J].胶体与聚合物,2012,30(4):174-175
    [8] Turgay Ozdemir, Salim Hiziroglu. Influence of Surface Roughness and Species on Bond Strength Betweenthe Wood and the Finish[J]. Forest Products Society,2009,59(6):90-94
    [9] Pierre Blanchet, Robert Beauregard, Alexandre Erb etal. Comparative Study of Four Adhesives Used asBinder in Engineered Wood Parquet Flooring[J]. Forest Products Journal,2003,53(1):89-93
    [10] M. Properzi, A. Pizzi, L. Uzielli. Honeymoon MUF Adhesives for Exterior Grade Glulam[J]. Holz alsRoh-und Werkstoff,2001,59:413-421
    [11] M. Properzi, A. Pizzi, M. Properzi etal. Comparative Wet Wood Glueing Performance of Different Typesof Glulam Wood Adhesives[J]. Holz als Roh-und Werkstoff,2003,61:77-78
    [12] Burhanettin Uysal, Seref Kurt, Mehmet Nuri Yildirim. Bonding Strength of Wood Materials Bonded withDifferent Adhesives after Aging Test[J]. Construction and Building Materials,2010,24:2628-2632
    [13] Rene Steiger, Ernst Gehri, Klaus Richter. Quality Control of Glulam: Shear Testing of Bondlines[J]. Eur. J.Wood Prod.,2010,68:243-256
    [14]李丽霞(译).集成材用胶粘剂[J].国外林业,1995,25(1):104-108
    [15]王宏棣,张佳彬,何金存.人工林小径落叶松集成木梁试验研究[J].林业机械与木工设备,2008,36(1):17-20
    [16]张明建,郝志强,郝金城.结构集成材的加工[J].林业机械与木工设备,2008,36(5):58-59
    [17]江泽慧,常亮,王正等.结构用竹集成材物理力学性能研究[J].木材工业,2005,19(4):22-24
    [18] Pavlos I. Mouratidis, Eugenia Dessipri, A. Pizzi. New Adhesive System for Improved Exterior-GradeWood Panels[J]. Wood Adhesives,2000,197-202

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700