基于稀疏分解的心电信号特征波检测及心电数据压缩
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
心脏病一直是威胁人类健康的主要疾病之一,心电图(Electrocardiogram, ECG)是心脏病检查重要的无创性辅助工具,因而心电信号处理在医学信号处理中一直占据重要地位。每种新信号处理理论出现后,都会被应用于心电信号处理领域,给心电信号处理带来新研究方向和方法。随着信号处理理论的发展,心电信号处理也相应地出现时域处理算法、变换域处理算法(傅立叶变换(FT)、离散余弦变换(DCT)、小波变换等)、参数空间算法(句法、神经网络、支持矢量机、隐马尔科夫模型等)等多种处理算法。
     心电信号处理主要包括心电信号去噪、心电信号特征波检测识别、心电信号数据压缩等内容。现有心电信号处理算法在以上的各个方面都取得了很多成就,但无论理论还是应用上,心电信号处理的这些方面都需进一步研究。稀疏分解理论的出现为心电信号处理提供了新切入点,论文的主要工作就是稀疏分解理论研究及其在心电信号特征波检测识别和心电数据压缩两方面的应用。
     稀疏分解在心电信号的特征波检测识别中的应用:论文中提出三种超完备字典,并根据稀疏分解所用超完备字典的不同,提出三种基于稀疏分解的心电信号特征波检测识别算法:第一种算法所用超完备字典是先根据心电信号特征波确定生成函数,再通过离散化生成函数参数构造的超完备字典;第二种算法所用超完备字典是根据实际心电数据和先验知识产生的训练样本,通过K-SVD算法训练得到超完备字典;第三种算法所用超完备字典是改进的Gabor字典。第一种算法和第二种算法所使用字典,是根据心电信号特征波的特征得到,因此该字典对心电信号特征波具有良好的可分性(指根据原子自身特点区分其代表波形属那种特征波的能力),可分性对特征波检测识别至关重要。可分性使得稀疏分解的结果可以直接用来检测识别心电信号的各种特征波,保证了算法的检测识别正确率。第三种特征波检测识别算法所用的改进的Gabor字典是一个固定的字典,因为生成函数是Gabor函数而得名,Gabor字典不随待分解信号种类的改变而改变,其在对心电信号特征波的可分性方面不如根据心电信号特征波构造的超完备字典好,这导致在Gabor字典上得到心电信号的稀疏分解结果不能直接用于特征波检测识别,需要结合其它理论来完成特征波检测识别。论文提出两种算法完成特征波检测识别:其一、把基于Gabor字典的稀疏分解结果和模糊理论相结合,利用模糊理论的不确定信息处理能力检测识别特征波;其二、把基于Gabor字典的稀疏分解结果和神经网络结合,利用神经网络的非线性分类能力检测识别特征波。两个途径都实现了P波、QRS波群及T波的检测识别,从检测识别正确率来看,二者相当,和神经网络相结合的算法能同时得到P波、QRS波群、T波的位置、波宽等参数,而和模糊理论相结合的算法需要先检测识别QRS波群,再根据QRS波群和医学先验知识检测识别P波、T波。
     稀疏分解在心电数据压缩中的应用:随着心电图的广泛应用,大量心电数据需要存储和传输,这使得心电数据压缩成为心电信号处理的重要内容。论文提出基于稀疏分解的心电数据压缩算法,该算法首先对心电数据进行稀疏分解,得到心电数据的稀疏表示,存储心电数据时,只需存储心电数据解向量非零元的位置、大小和稀疏分解所用的超完备字典。此处稀疏分解所用超完备字典是由K-SVD算法对心电样本数据进行训练得到的,该字典能从整体上充分体现心电信号的特征。因此,在压缩比相同的条件下,和其它心电数据压缩算法相比,该压缩算法的重构信号失真更小。该心电数据压缩算法能根据实际需要选择数据的压缩率。
     稀疏分解最优匹配原子搜索算法的优化:信号的稀疏分解能得到信号的稀疏表示方法,有利于后续信号处理,但稀疏分解涉及到NP难题的求解,计算复杂。这个缺点是制约信号稀疏分解广泛应用的瓶颈。分析可知,造成稀疏分解计算量过大的原因有两个:一是稀疏分解中最优匹配原子搜索算法计算复杂;二是超完备字典中原子数目较大。论文提出用粒子群优化算法优化稀疏分解最优匹配原子搜索的粒子群匹配追踪算法(PSO-MP),使信号的稀疏分解速度和用匹配追踪算法搜索最优匹配原子的稀疏分解相比提高两个数量级。第二个问题关键在于如何保证超完备字典性能的前提下,尽量减少原子数目,目前此问题仍然是一个开放的问题。论文研究Gabor字典在心电信号检测识别中的应用时,把原来的Gabor字典用Gabor函数的参数空间代替,用粒子群匹配追踪算法在参数空间上搜索最优匹配原子,这样造成稀疏分解计算量过大的两个问题同时得到解决。
     超完备字典的构造:稀疏分解超完备字典的构造方法可以分为无训练字典构造方法和有训练字典构造方法两种。论文在第三章中根据心电信号特征波先验知识构造超完备字典以及第四章提出的改进的Gabor字典都属于无训练的字典。第三章和第六章中通过K-SVD算法训练得到超完备字典的字典构造算法属有训练字典构造方法。第三章通过K-SVD算法训练得到超完备字典对心电信号特征波保持了良好的可分性;第六章通过K-SVD算法训练得到超完备字典则能充分体现心电信号整体特征的超完备字典,但该字典对特征波的可分性表现较差,这一特点使得通过有训练超完备字典方法构造的超完备字典在应用于心电数据压缩时表现出很好的性能,但无法应用于心电信号的特征波检测识别。
Cardiopathy is one of the major diseases which threaten human health. As an important non-invasive assistant tool for the diagnosis of cardiopathy, electrocardiogram (ECG) signal processing plays an important role in the medical signal processing. The new signal processing theory will alaways be soon applied to the field of ECG signal and bring new directions and methods for the study of ECG signal processing. Along with the development of signal processing theory, a great deal of different algorithms has been emerged in the ECG Signal processing e.g. time domain processing algorithms, transform domain processing algorithms (Fourier Transform (FT), discrete cosine transform (DCT), wavelet transform, etc.), the parameter space algorithm ( Syntax, neural network and support vector machines, HMM) and such.
     ECG signal processing includes the ECG signal denoising, the detection and recognition of ECG signal feature waveform, the ECG data compression, etc. Though these existing ECG signal processing algorithms mentioned above have made a lot of success, theories and applications of them are required to investigate further. Recently, sparse decomposition theory provides a new developmental direction for ECG signal processing. This thesis foucses mainly on the theories of sparse decomposition and its applications in the detection and recognition of ECG signal feature waveform as well as in the ECG data compression.
     Application of sparse decomposition in the detection and recognition of ECG signal feature waveform: In this thesis, three over-complete dictionary are created. According to the differences of over-complete dictionaries used in the sparse decomposition, the detection and recognition algorithms of ECG signal feature waveform can be divided into three kinds. In the first kind of algorithm, over-complete dictionary is created through discretization the parameter of generating function which is made according to the ECG signal feather waveform. In the second kind of algorithm, over-complete dictionary is trained by K-SVD algorithm whose sample data is brought form ECG data and the prior knowledge. In the third kind of algorithm, over-complete dictionary is the improved Gabor dictionary. As the over-complete dictionary used in the first algorithm and the second algorithm are obtained according to the ECG signal feature waveform, they have good separability towards the feature waveforms, which is especially important in the detection and recognition of ECG feature waveform. This separability makes the results of sparse decomposition be used directly in the detection and recognition of ECG signal feature waveform and, at the same time, it ensures the right ratio of the detection and recognition. The Gabor dictionary used in the third algorithm is a fixed dictionary. It is named as Gabor dictionary because of its generating function being Gabor function. It is unchangeable to the change of the signal decomposed and, its separability towards the feature waveforms is poorer than the dictionary constructed according to various characteristics of the feature waveforms, which leads the sparse representation of the ECG signal based on the Gabor dictionary not to be directly used for the detection and recognization ECG feature waveforms. Therefore, we need to combine other theories to fulfill the detection and recognition. There are two approaches used in this thesis to solve the above problem, one is to combine the result of sparse decomposition based on Gabor dictionary and the fuzzy theory and use its process capability of the uncertainty information to detect and recognize ECG feature waveforms. The other one is to combine the result of sparse decomposition based on Gabor dictionary and the neural network and use its non-linear classification capability to do this job. Both of above approaches can realized the detections and recognitions of P wave, QRS wave groups and T wave. The accuracy of the detections and recognitions shows the capabilities of two approaches are almost equivalent. The approach combining neural network can get simultaneously the waveform parameters, such as P wave, QRS complex, T wave’s position, span, etc. While the approach combining fuzzy theory needs to detect QRS complex first, then P wave and T wave are detected and recognized according to the position of QRS complex and the medical knowledge.
     Application of sparse decomposition in the ECG data compression: With the extensive applications of ECG and the urgent requirement of storage and transmission of ECG data, the compression of ECG data has been an important domain of ECG processing. An ECG data compression algorithm based on sparse decomposition is presented in this thesis. First the sparse representation of ECG data is obtained on the bases of the sparse decomposition carried by this algorithm. When ECG data are compressed, we only need to store the position and non-zero value in the solution vector and over-complete dictionary used in the sparse decomposition of ECG data. The over-complete dictionary used here is acquired by the learning of the ECG sample data with K-SVD algorithm which makes it embody sufficiently the whole feature of ECG data. Compared with other algorithms of ECG data compression when the compression ratios are equal, the distortion of the ECG signal reconstructed with this algorithm is much smaller. Moreover, this ECG data compression algorithm can change the compression ratio to meet the practical needs.
     Optimization of the best matching atom searching algorithm: Sparse decomposition of signal can get the sparse representation of signal which is of great advantage to signal processing. However, the complex calculation because of solving NP problem has become the bottleneck that restricts the application of the signal sparse decomposition. There are two causes result in the excessive calculation complexity of sparse decomposition, one is the algorithm searching the best matching atom is too complex, the other one is the number of the atoms is too large in the over-complete dictionary. This thesis brings forward an optimization algorithm namely PSO-MP for searching best matching atom. Using PSO-MP, the time expensivement of the sparse decomposition is 2 orders of magnitude less than the basic MP. The key to second problem is how to minimize the number of atoms on the premise of ensuring the quality of the over-complete dictionary, and now, it is an open question still. Two main steps are presented in this thesis for the studies of the Gabor dictionary’s application in the ECG signal processing. One is to replace the original Gabor dictionary by the Gabor function's parameter space, the other one is to search the best matching atom in parameter space by PSO method. Then, the two problems causing the excessive calculation complexity of sparse decomposition can be solved at the same time.
     How to construct the over-complete dictionary: The methods of constructing the over-complete dictionary can be divided into the non-learning constructing method and the learning constructing method. In the third chapter of this thesis, the over-complete dictionary constructed according to the character of the feature waveforms belongs to non-learning dictionary. In the fourth chapter, the modified Gabor dictionary belongs to non-learning dictionary as well. In the third chapter and the sixth chapter, two over-complete dictionary are constructed by learning the ECG data with K-SVD algorithm, these over-complete dictionary are belonged to the learning constructing method. The over-complete dictionary constructed by K-SVD algorithm in third chapter keep the separability of waveforms, however, the dictionary in the sixth chapter gives a poor performance to the separability of waveforms. This characteristics makes the over-complete dictionary based on the learning constructing method do good in the ECG data compression learning. Yet it can not be applied in the detection and recognition of ECG feature waveform.
引文
[1] Laguna P, Jane R, Caminal P. Adaptive filtering of ECG baseline wander. Engineering in Medicine and Biology Society, 1992. Vol. 14. Proceedings of the Annual International Conference of the IEEE, 1992. 2.
    [2] Pandit S V. ECG baseline drift removal through STFT. Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine. Proceedings of the 18th Annual International Conference of the IEEE. 4.
    [3] Von Borries R F, Pierluissi J H, Nazeran H. Wavelet Transform-Based ECG Baseline Drift Removal for Body Surface Potential Mapping. Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005: 3891-3894.
    [4] Zhang D. Wavelet Approach for ECG Baseline Wander Correction and Noise Reduction. Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005: 1212-1215.
    [5] Kohler B U, Hennig C, Orglmeister R. The principles of software QRS detection. Engineering in Medicine and Biology Magazine, IEEE, 2002. 21(1): 42-57.
    [6] Di Virgilio V, Francaiancia C, Lino S, et al. ECG fiducial points detection through wavelet transform. Engineering in Medicine and Biology Society, 1995. IEEE 17th Annual Conference, 1995. 2.
    [7] Li C W, Zheng C X, Tai C F. Detection of ECG characteristic points using wavelet transforms Ieee Transactions on Biomedical Engineering, 1995. 42(1): 21-28.
    [8] Vai M I, Zhou L G. Beat-to-beat ECG ventricular late potentials variance detection by filter bank and wavelet transform as beat-sequence filter. Ieee Transactions on Biomedical Engineering, 2004. 51(8): 1407-1413.
    [9] Kumari R S S, Bharathi S, Sadasivam V. Design of optimal discrete wavelet for ECG signal using orthogonal filter bank. Iccima 2007: International Conference on Computational Intelligence and Multimedia Applications, Vol I, Proceedings, 2007: 525-529.
    [10] Afonso V X, Tompkins W J, Nguyen T Q, et al. ECG beat detection using filter banks. Ieee Transactions on Biomedical Engineering, 1999. 46(2): 192-202.
    [11] Husain H, Fatt L L. Efficient ECG signal classification using sparsely connected radial basis function neural network. Proceedings of the Wseas International Conference on Circuits, Systems, Electronics, Control & Signal Processing, 2007: 412-416.
    [12] Mozhiwen, Jun F, Qiu Y Z, et al. Neural network classifier based on the features of multi-lead ECG. Advances in Natural Computation, Pt 1, Proceedings, 2005.3610: 33-43.
    [13] Christov I, Bortolan G. Ranking of pattern recognition parameters for premature ventricular contractions classification by neural networks. Physiological Measurement, 2004. 25(5): 1281-1290.
    [14] Mohebbi M, Moghadam H A. Real-time ischemic beat classification using backpropagation neural network. 2007 Ieee 15th Signal Processing and Communications Applications, Vols 1-3, 2007: 1252-1255.
    [15] Shyu L Y, Wu Y H, Hu W C. Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. Ieee Transactions on Biomedical Engineering, 2004. 51(7): 1269-1273.
    [16] Lagerholm M, Peterson C, Braccini G, et al. Clustering ECG complexes using Hermite functions and self-organizing maps. Ieee Transactions on Biomedical Engineering, 2000. 47(7): 838-848.
    [17] Andre?o R V. A comparison of wavelet transforms through an HMM based ECG segmentation and classification system. Proceedings of the 24th IASTED international conference on Biomedical engineering, 2006: 264-269.
    [18] Hamilton P S, Tompkins W J. Adaptive matched filtering for QRS detection. Engineering in Medicine and Biology Society, 1988. Proceedings of the Annual International Conference of the IEEE, 1988: 147-148.
    [19] Xue Q Z, Hu Y H, Tompkins W J. Neural-network-based adaptive matched filtering for QRS detection Ieee Transactions on Biomedical Engineering, 1992. 39(4): 317-329.
    [20] Poli R, Cagnoni S, Valli G. Genetic design of optimum linear and nonlinear QRS detectors Ieee Transactions on Biomedical Engineering, 1995. 42(11): 1137-1141.
    [21] Benitez D S, Gaydecki P A, Zaidi A, et al. A new QRS detection algorithm based on the Hilbert transform. Computers in Cardiology 2000, 2000: 379-382.
    [22] de Oliveira F I, Cortez P C. A QRS detection based on Hilbert Transform and wavelet bases. Machine Learning for Signal Processing Xiv, 2004: 481-489.
    [23]陈文菊,潘敏,赵治栋.基于小波分析和Hilbert变换的R波检测算法.传感技术学报, 2006. 19(1): 248-252.
    [24]季虎,毛玲,孙即祥.一种基于Hilbert变换的R波检测算法.信号处理, 2007. 23(3): 444-447.
    [25] Trahanias P, Skordalakis E. Syntactic pattern recognition of the ECG. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 1990. 12(7): 648-657.
    [26] Borjesson P O, Pahlm O, Sornmo L, et al. Adaptive QRS Detection Based on Maximum A Posteriori Estimation Ieee Transactions on Biomedical Engineering, 1982. 29(5): 341-351.
    [27] Kohler B U, Hennig C, Orglmeister R. QRS detection using zero crossing counts.Int J Med Informatics, 1998. 52: 1-3.
    [28] Pan J, Tompkins W J. A real-time QRS detection algorithm. Biomedical Engineering, IEEE Transactions on, 1985: 230-236.
    [29] Christov, II. Real time electrocardiogram QRS detection using combined adaptive threshold. BioMedical Engineering OnLine, 2004. 3(28).
    [30] Morlet D, Peyrin F, Desseigne P, et al. Wavelet analysis of high-resolution signal-averaged ECGs in postinfarction patients. Journal of Electrocardiology, 1993. 26(4): 311-320.
    [31] Alvarado C, Arregui J, Ramos J, et al. Automatic detection of ECG ventricular activity waves using continuous spline wavelet transform. Electrical and Electronics Engineering, 2005 2nd International Conference on, 2005: 189-192.
    [32] Lin C H, Du Y C, Chen T. Adaptive wavelet network for multiple cardiac arrhythmias recognition. Expert Systems with Applications, 2008. 34(4): 2601-2611.
    [33] Szilágyi S M, Szilágyi L. Wavelet transform and neural-network-based adaptive filtering for QRS detection. Proceedings of World Congress on Medical Physics and Biomedical Engineering, July, 2000: 23-28.
    [34] Trahanias P E. An approach to QRS complex detection using mathematicalmorphology. Ieee Transactions on Biomedical Engineering, 1993. 40(2): 201-205.
    [35] Zhang F, Lian Y. Electrocardiogram QRS detection using multiscale filtering based on mathematical morphology. Conf Proc IEEE Eng Med Biol Soc, 2007. 2007: 3196-9.
    [36] Luthje L, Vollmann D, Rosenfeld M, et al. Electrogram configuration and detection of supraventricular tachycardias by a morphology discrimination algorithm in single chamber ICDs. Pace-Pacing and Clinical Electrophysiology, 2005. 28(6): 555-560.
    [37] Boriani G, Biffi M, Dall'Acqua A, et al. Rhythm discrimination by rate branch and QRS morphology in dual chamber implantable cardioverter defibrillators. Pace-Pacing and Clinical Electrophysiology, 2003. 26(1): 466-470.
    [38]季虎,毛玲,孙即祥.基于小波变换与形态学运算的R波检测算法.计算机应用, 2006. 26(5): 1223-1225.
    [39]季虎,孙即祥,毛玲.基于小波变换与形态学运算的ECG自适应滤波算法.信号处理, 2006. 22(3): 333-337.
    [40] Tapanainen J M, Thomsen P E B, Kober L, et al. Fractal analysis of heart rate variability and mortality after an acute myocardial infarction. American Journal of Cardiology, 2002. 90(4): 347-352.
    [41] Christov I, Simova I. Q-onset and T-end delineation: assessment of theperformance of an automated method with the use of a reference database. Physiological Measurement, 2007. 28(2): 213-221.
    [42]段靖芳,郝莹.基于小波变换和神经网络的心电信号P波检测.生物医学工程研究, 2005. 24(4): 209-211.
    [43]谢国明,聂志伟.用小波变换结合神经网络检测ECG信号的P波.生物医学工程学杂志, 1999. 16(3): 320-323.
    [44] Senhadji L, Wang F, Hernandez A I, et al. Wavelets extrema representation for QRS-T cancellation and P wave detection. Computers in Cardiology, 2002, 2002: 37-40.
    [45]季虎,孙即祥,王春光.基于小波变换的自适应QRS-T对消P波检测算法.电子与信息学报, 2007. 29(8): 1868-1871.
    [46]万相奎,秦树人,梁小容,等.基于“小波-幅值-斜率”的P波检测新方法.生物医学工程学杂志, 2006. 23(4): 722-725.
    [47] Soria-Olivas E, Martinez-Sober M, Calpe-Maravilla J, et al. Application of adaptive signal processing for determining the limits of P and T waves in an ECG. Ieee Transactions on Biomedical Engineering, 1998. 45(8): 1077-1080.
    [48] Censi F, Calcagnini G, Ricci C, et al. P-Wave morphology assessment by a gaussian functions-based model in atrial fibrillation patients. Biomedical Engineering, IEEE Transactions on, 2007. 54(4): 663-672.
    [49] Yan G H. The syntactic recognition method of a sub-waveform. Istm/2003: 5th International Symposium on Test and Measurement, Vols 1-6, Conference Proceedings, 2003: 945-947.
    [50] Stridh M, Sornmo L. Spatiotemporal QRST cancellation techniques for analysis of atrialfibrillation. Biomedical Engineering, IEEE Transactions on, 2001. 48(1): 105-111.
    [51]夏恒超,陈旭华.基于小波变换和波形信息的P波检测方法.北京生物医学工程, 2003. 22(1): 27-29,4.
    [52] Murthy I S N, Niranjan U C. Component wave delineation of ECG by filtering in the Fourier domain. Medical and Biological Engineering and Computing, 1992. 30(2): 169-176.
    [53] Murthy I S N, Prasad G. Analysis of ECG from pole-zero models. Ieee Transactions on Biomedical Engineering, 1992. 39(7): 741-751.
    [54] Mehta S S, Saxena S C, Verma H K. Recognition of P and T waves in electrocardiograms using fuzzy theory. Proceedings of the Regional Conference, IEEE Engineering in Medicine and Biology Society, 1995 and 14th Conference of the Biomedical engineering Society of India, New Delhi, 1995: 15-18.
    [55] Gao Y, Hu Y. An ECG waves separation technique based on mathematicalmorphology. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2001. 18(1): 55-9, 63.
    [56] Courses E, Surveys T, View T O C. An algorithm for QRS onset and offset detection in single lead electrocardiogram records. Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual International Conference of the IEEE, 2007: 541-544.
    [57] Christov I, Dotsinsky I, Simova I, et al. Dataset of manually measured QT intervals in the electrocardiogram. BioMedical Engineering OnLine, 2006. 5(1): 31.
    [58] Hernandez J M. Sparse decompositions for ventricular and atrial activity separation, MS thesis, Signal Processing Institute, Ecole Polytechnique Federale de Lausanne, Switzerland, August 2005.
    [59]赵国良,孙坤.心电图数据的组合式增量调制压缩方法.应用科技, 2003. 30(9): 25-27,31.
    [60]李刚,刘蓉.一种基于复合编码的心电数据压缩算法.中国生物医学工程学报, 2002. 21(6): 557-562.
    [61]成巍,方滨,沈毅.基于DCT系数的二级矢量量化压缩ECG数据的方法.中国生物医学工程学报, 2005. 24(6): 690-695.
    [62]寇鹏,方滨,沈毅.一种可控重构质量的心电信号压缩方法.北京生物医学工程, 2004. 23(2): 109-111,151.
    [63]蔡红苹,成礼智.基于二维DCT和分段编码的ECG信号压缩方法.中国图象图形学报:A辑, 2003. 8(12): 1406-1411.
    [64]周仲兴,张永伟,万柏坤,等.应用时变小波包零树编码实现心电数据的高效压缩.天津大学学报, 2007. 40(2): 210-215.
    [65]赵志华,穆海军.基于小波神经网络的心电数据压缩方法研究.自动化技术与应用, 2007. 26(7): 1-3,15.
    [66]赵安,吴宝明.基于整数小波变换和嵌入式编码的ECG信号压缩.北京生物医学工程, 2006. 25(6): 606-610.
    [67]赵安,吴宝明.基于小波变换和感兴趣区域编码的ECG压缩方法.生物医学工程学杂志, 2006. 23(6): 1177-1182.
    [68]郑凯梅,余生晨.基于小波变换的心电信号准无损压缩算法.生物医学工程研究, 2003. 22(2): 8-10.
    [69]张增芳,陈瑞中.基于小波神经网络的心理数据压缩研究.广西工学院学报, 2002. 13(1): 12-16.
    [70] Brito M, Henriques J, Gil P, et al. A predictive adaptive approach to generic ECG data compression. Intelligent Signal Processing, 2005 IEEE International Workshop on, 2005: 32-37.
    [71]杨宜康,贾敬肖.动态心电数据的小波网络压缩算法.西北大学学报:自然科学版, 2001. 31(6): 469-472.
    [72]张浙亮,吕维雪.基于混合神经网络的ECG数据压缩.浙江大学学报:自然科学版, 2000. 34(1): 71-76.
    [73]李延龙,吕文红,郭银景,等.基于HMM的心电数据压缩方法研究.计算机工程与应用, 2006. 42(25): 183-184,226.
    [74] Gilbert A C, Strauss M J, Tropp J A, et al. Algorithmic linear dimension reduction in the l_1 norm for sparse vectors. Arxiv preprint cs.DS/0608079, 2006.
    [75] Tropp J A, Gilbert A C, Strauss M J. Algorithms for simultaneous sparse approximation. Part I: Greedy pursuit star, open. 2006, Elsevier. p. 572-588.
    [76] Chen S S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 1999. 20(1): 33-61.
    [77] Chen S. Basis Pursuit. 1995.
    [78] Tropp J A. Greed is good: algorithmic results for sparse approximation. Information Theory, IEEE Transactions on Signal Processing, 2004. 50(10): 2231-2242.
    [79] Mallat S G, Zhang Z. Matching pursuits with time-frequency dictionaries. IEEE Transactions on Signal Processing, 1993. VOL. 41, (NO. 12, DECEMBER): 19.
    [80] Rebollo-Neira L, Lowe D. Optimized orthogonal matching pursuit approach. IEEE Signal Processing Letters, 2002. 9(4): 137-140.
    [81] Tropp J A. Just relax: Convex programming methods for subset selection and sparse approximation. ICES Report, 2004: 04.
    [82]邵君,尹忠科,王建英.基于FFT的MP信号稀疏分解算法的改进.西南交通大学学报, 2006. 41(4): 466-470.
    [83]邵君,尹忠科,王建英,等.信号稀疏分解中过完备原子库的集合划分.铁道学报, 2006. 28(1): 68-71.
    [84]尹明,尹忠科,王建英.利用蚁群算法实现基于MP的信号稀疏分解.计算机工程与应用, 2006. 42(36): 47-48,85.
    [85]尹忠科,王建英, P. V.基于GA和原子特性的信号稀疏分解.铁道学报, 2005. 27(3).
    [86]尹忠科,王建英,邵君.基于原子库结构特性的信号稀疏分解.西南交通大学学报, 2005. 40(002): 173-178.
    [87]尹忠科邵君Pierre V.利用FFT实现基于MP的信号稀疏分解.电子与信息学报, 2006. 28(4): 614-618.
    [88]张春梅,尹忠科.信号过完备稀疏表示的唯一解及其边界条件.交通运输工程与信息学报, 2006. 4(4): 7-10,108.
    [89] Michael Elad, Yavneh I. A weighted average of sparse representations is betterthan the sparsest one alone. 2008.
    [90] Andrle M, Rebollo-Neira L, Sagianos E. Backward-optimized orthogonal matching pursuit approach. Signal Processing Letters, IEEE, 2004. 11(9): 705-708.
    [91] Pati Y C, Rezaiifar R, Krishnaprasad P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition. Signals, Systems and Computers, Conference Record of The Twenty-Seventh Asilomar Conference on, 1993: 40-44.
    [92] Engan K, Rao B, Kreutz-Delgado K. Frame design using FOCUSS with method of optimal directions (MOD). Proc. NORSIG, 1999. 99.
    [93] Engan K, Rao B D, Kreutz-Delgado K. Regularized FOCUSS for subset selection in noise. Proc. NORSIG 2000, Sweden, 2000: 247–250.
    [94] Kreutz-Delgado K, Rao B D. FOCUSS-based dictionary learning algorithms. Proceedings of SPIE, 2000. 4119: 459.
    [95] Murray J F, Kreutz-Delgado K. An improved FOCUSS-based learning algorithm for solving sparselinear inverse problems. Signals, Systems and Computers, 2001. Conference Record of the Thirty-Fifth Asilomar Conference on, 2001. 1.
    [96]杜小勇,胡卫东,郁文贤.推广的正则化FOCUSS算法及收敛性分析.系统工程与电子技术, 2005. 27(5).
    [97] Bryt O, Elad M. Compression of facial images using the K-SVD algorithm. Journal of Visual Communication and Image Representation, 2008.
    [98] Aharon M, Elad M, Bruckstein A M. K-SVD and its non-negative variant for dictionary design. Proceedings of the SPIE conference wavelets, 2005. 5914: 591411.
    [99] Aharon M, Elad M, Bruckstein A M. The K-SVD: An algorithm for designing of overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing, 2006. 54(11): 4311–4322.
    [100] Murray J F, Kreutz-Delgado K. Learning Sparse Overcomplete Codes for Images. The Journal of VLSI Signal Processing, 2006. 45(1): 97-110.
    [101] Kreutz-Delgado K, Rao B D, Engan K, et al. Convex/schur-convex (csc) log-priors and sparse coding. 6th Joint Symposium on Neural Computation, 1999.
    [102] JosephF.Murray. Visual Recognition, Inferenceand coding using learned sparse overcomplete representations, in ElectricalEngineering (IntelligentSystems, RoboticsandControl). 2005, University Of California, Sandiego: California.
    [103]董优丽,谢勤岚.不确定信号源个数的语音分离.现代电子技术, 2008. 31(3): 125-127,130.
    [104]杜小勇,胡卫东,郁文贤.单自由度多分量线性调频信号的参数估计. 2005.
    [105]傅霆,刘永健,尧德中.基于稀疏分解法的单次诱发电位提取.生物医学工程学杂志, 2005. 22(5): 1036-1039.
    [106]李恒建,尹忠科,王建英.基于量子遗传优化算法的图像稀疏分解.西南交通大学学报, 2007. 42(1): 19-23.
    [107]李恒建,张跃飞,王建英,等.分块自适应图像稀疏分解.电讯技术, 2006. 46(4): 63-67.
    [108]刘强,尹忠科,王建英.利用FFT实现语音信号稀疏分解的改进算法.计算机工程与应用, 2007. 43(26): 74-75,78.
    [109]王建英,尹忠科.基于稀疏分解的微弱信号检测方法.铁道学报, 2007. 29(2): 114-117.
    [110]魏橦,李瑛,彭平,等.使用ε-Svr求解稀疏分解的单混合信号BSS.信息工程大学学报, 2006. 7(2): 163-166.
    [111]吴秋荣杨万磷.基于NMFs-LDA的雷达目标距离像识别.现代电子技术, 2007. 30(19): 63-65.
    [112]徐鹏,陈华富,刘祖祥,等.一种基于稀疏分解去除EEG信号中MRI伪迹的新方法.生物医学工程学杂志, 2007. 24(2): 439-443.
    [113]尹忠科.稀疏分解及其在图像压缩中的应用研究.
    [114]尹忠科,解梅,王建英.基于原子能量特性的快速图像匹配追踪.电子科技大学学报, 2005. 34(2): 156-159.
    [115]尹忠科,解梅,王建英.基于稀疏分解的图像去噪.电子科技大学学报, 2006. 35(6): 876-878.
    [116]尹忠科,王建英, Pierre V.一种新的图像稀疏分解快速算法.计算机应用, 2004. 24(10): 92-93,96.
    [117]尹忠科,王建英, Pierre V.在低维空间实现的基于MP的图像稀疏分解.电讯技术, 2004. 44(3): 12-15.
    [118]尹忠科,王建英, Pierre V.由图像的稀疏分解重建图像的快速算法.电子科技大学学报, 2006. 35(4): 447-449.
    [119]尹忠科,王英,张跃飞,等.图像稀疏分解中原子形成的快速算法.电讯技术, 2005. 45(6): 12-16.
    [120] Elad M, Matalon B, Zibulevsky M. Image denoising with shrinkage and redundant representations. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition–CVPR’2006, 2006.
    [121] Elad M, Aharon M. Image denoising via sparse and redundant representations over learned dictionaries. IEEE Transactions on Image Processing, 2006. 15(12): 3736-3745.
    [122] Candès E J, Tao T. Decoding by linear programming. 2005. p. 4203-4215.
    [123] Sallee P, Olshausen B A. Image denoising using learned overcomplete representations. Image Processing, 2003. Proceedings. 2003 InternationalConference on, 2003. 3.
    [124] Pece A E C. The problem of sparse image coding. Journal of Mathematical Imaging and Vision, 2002. 17(2): 89-108.
    [125] Elad M, Aharon M. Image denoising via learned dictionaries and sparse representation. Proc. IEEE Computer Vision and Pattern Recognition (CVPR).
    [126]张跃飞,姜玉亭,王建英,等.基于稀疏分解的图像压缩.系统工程与电子技术, 2006. 28(4): 513-515,537.
    [127]王春光,刘金江,孙即祥.基于稀疏分解的心电数据压缩算法.中国生物医学工程学报, 2008. 27(1): 13-17.
    [128]徐鹏,尧德中,陈华富.基于BFGS优化的LP模约束稀疏分解去噪方法.计算机工程与应用, 2005. 41(30): 16-17.
    [129] Donoho D L, Tsaig Y, Drori I, et al. Sparse solution of underdetermined linear equations by stagewise orthogonal matching pursuit. 2006.
    [130] Tropp J A, Gilbert A C. Signal recovery from random measurements via Orthogonal Matching Pursuit. 2005.
    [131] Tropp J, Gilbert A C. Signal recovery from partial information via orthogonal matching pursuit. 2005.
    [132] Jost P, Vandergheynst P, Frossard P. Tree-based pursuit. 2004.
    [133] Jost P, Vandergheynst P, Frossard P. Tree-based pursuit: Algorithm and properties. IEEE Transactions on Signal Processing, 2006. 54(12): 4685–4697.
    [134] Guigue V, Rakotomamonjy A, Canu S. Kernel basis pursuit. Proceedings of the 16th European Conference on Machine Learning, Porto, 2005.
    [135] Arthur P L, Philipos C L. Voiced/unvoiced speech discrimination in noise using gabor atomic decomposition. Proc. Of IEEE ICASSP, 2003: 820-828.
    [136]姜玉亭.基于稀疏分解的图像去噪, in信号与信息处理. 2005,西南交通大学:西安.
    [137] Peotta L, Granai L, Vandergheynst P. Image compression using an edge adapted redundant dictionary and wavelets. Signal Processing, 2006. 86(3): 444-456.
    [138] Augustyniak P. Physiological ECG Compression Based on Integer Time-Frequency Pattern Matching.
    [139]张跃飞.基于稀疏分解的图像压缩, in信号与信息处理. 2006,西南交通大学:西安.
    [140]常子楠.基于匹配追踪的正弦建模语音编码研究, in计算数学(计算机应用). 2006,南京师范大学:南京.
    [141]吕雪.基于MP分解的宽带LFM信号参数估计, in信号与信息处理. 2006,西南交通大学:西安.
    [142]王峰.基于稀疏分解的宽带信号波达方向估计, in通信与信息系统. 2007,
    
    [143]陈磊.信号稀疏分解在空间谱估计中的应用, in信号与信息处理. 2006,西南交通大学:西安.
    [144]汤清信.高距离分辨雷达目标识别特征提取研究, in计算机应用技术. 2004,郑州大学:郑州.
    [145]马建华.雷达自动目标识别的理论与应用研究, in信号与信息处理. 2005,西安电子科技大学:西安.
    [146] Thakor N V, Webster J G, Tompkins W J. Estimation of QRS complex power spectra for design of a QRS filter. Ieee Transactions on Biomedical Engineering, 1984. 31(11): 702-706.
    [147] Bazett H C. An analysis of the time-relations of electrocardiograms. Heart, 1920. 7: 353-370.
    [148] physionet. The PTB Diagnostic ECG Database. [cited; Available from: http://www.physionet.org/physiobank/database/ptbdb/.
    [149] physionet. European ST-T Database. 07-Nov-2008 [cited; Available from: http://www.physionet.org/physiobank/database/edb/.
    [150] physionet. MIT-BIH Arrhythmia Database. 07-Nov-2008 [cited; Available from: http://www.physionet.org/physiobank/database/mitdb/.
    [151] Hyvarinen A. Survey on independent component analysis. Neural Computing Surveys, 1999. 2(94-128): 3.1.
    [152] Girosi F. An equivalence between sparse approximation and support vector machines. Neural Computation, 1998. 10(6): 1455-1480.
    [153] Vincent P, Bengio Y. Kernel matching pursuit. Machine Learning, 2002. 48(1): 165-187.
    [154] Mallat S, Zhang Z. Matching pursuit with time-frequency dictionary. IEEE Transactions on Signal Processing, 1993. 41(12): 3397–3415.
    [155] Olshausen B A. Emergence of simple-cell receptive field properties by learning a sparse code for natural images. Nature, 1996. 381(6583): 607-609.
    [156] Lewicki M S, Sejnowski T J. Learning overcomplete representations. 2000, MIT Press. p. 337-365.
    [157]杜小勇.稀疏成份分析及在雷达成像处理中的应用, in信息与通信工程. 2005,国防科技大学:长沙.
    [158] Rockafellar R T. Lagrange multipliers and optimality. SIAM Review, 1993. 35(2): 183-238.
    [159] Boyd S, Vandenberghe L. Convex optimization. 2004, Cambridge: Cambridge University Press.
    [160] Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition.Information Theory, IEEE Transactions on, 2001. 47(7): 2845-2862.
    [161] Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases. Information Theory, IEEE Transactions on, 2002. 48(9): 2558-2567.
    [162] Donoho D L, Elad M. Optimally sparse representation in general (non-orthogonal) dictionaries via l 1 minimization. Proc. Nat. Aca. Sci, 2003. 100(5): 2197–2202.
    [163] Tropp J A, Dhillon I S, Gilbert A C. Topics in Sparse Approximation. 2004, University of Texas at Austin.
    [164] Chunguang W, Jinjiang L, Jixiang S. The Compression Algorithm for Electrocardiogram Based on Sparse Decomposition. Frontiers of Electrical and Electronic Engineering in China.
    [165]王春光,黄河涛,孙即祥,等.基于稀疏分解的心电信号波形检测及形状识别.中国生物医学工程学报, 2008. 27(2): 224-228.
    [166]王春光,刘金江,孙即祥.基于粒子群优化的稀疏分解最优匹配原子搜索算法.国防科技大学学报, 2008. 30(2): 83-87.
    [167]王春光,刘金江,孙即祥,等.基于粒子群优化的最优匹配原子搜索算法在心电信号稀疏分解中的应用.计算机工程与设计, 2008.
    [168]王春光,刘金江,孙即祥.基于稀疏分解和模糊理论的心电信号波形检测及识别.信号处理, 2009.
    [169]黄大显.现代心电图学. Vol. 68. 1998,北京:人民军医出版社.
    [170]黄宛.临床心电图学. Vol.第五版. 2004:人民卫生出版社.
    [171]袁少英.心电图诊断基础知识.天津科学技术出版社. 1980,天津.
    [172]刘金江,王春光,孙即祥.小波包分析和形态学滤波相结合的心电图qrs波群定位.计算机工程与设计, 2007. 28(11): 2726-2729.
    [173] Hosseinpour M, Ranjbar M N, Mousavinejad M. Speech unit selection based on matching pursuit. 2007 Ieee/Acs International Conference on Computer Systems and Applications, Vols 1 and 2, 2007: 535-538.
    [174] Wolfe P J, Godsill S J, Dorfler M. Multi-Gabor dictionaries for audio time-frequency analysis. Applications of Signal Processing to Audio and Acoustics, 2001 IEEE Workshop on the, 2001: 43-46.
    [175] Bergeaud F, Mallat S. Matching pursuit of images. Image Processing, 1995. Proceedings., International Conference on, 1995. 1.
    [176] Neff R, Zakhor A. Matching pursuit video coding at very low bit rates. Data Compression Conference, 1995: 411-420.
    [177] Neff R, Zakhor A. Very low bit-rate video coding based on matching pursuits. Circuits and Systems for Video Technology, IEEE Transactions on, 1997. 7(1): 158-171.
    [178] Leone A, Distante C, Ancona N, et al. Texture analysis for shadow removing in video-surveillance systems. Systems, Man and Cybernetics, 2004 IEEE International Conference on, 2004. 7.
    [179]刘利雄,贾云得,廖斌.基于Gabor字典的低速率视频编码.北京理工大学学报, 2007: 07.
    [180] Kennedy J, Eberhart R. Particle swarm optimization. Neural Networks, 1995. Proceedings., IEEE International Conference on, 1995. 4: 1942-1948.
    [181] Ratnaweera A, Halgamuge S K, Watson H C. Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients. Evolutionary Computation, IEEE Transactions on, 2004. 8(3): 240-255.
    [182] Peotta L, Granai L, Vandergheynst P. Very low bit rate image coding using redundant dictionaries. Proceedings of SPIE, 2003. 5207: 228-239.
    [183]蔡自兴,徐光佑.人工智能及其应用. 2004,北京:清华大学出版社.
    [184]孙即祥.现代模式识别. Vol.第二版. 2008:高等教育出版社.
    [185] Werbos P J. The roots of backpropagation: From ordered derivatives to neural networks and political forecasting. 1994: Wiley-Interscience.
    [186] Liu J, Chen Y. The application of neural network based on particle swarm optimization in pattern recognition of flatness signal. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, 2006. 2.
    [187] Wu J, Wang L, Zhu B. The meteorological prediction model study of neural ensemble based on PSO algorithms. Intelligent Control and Automation, 2006. WCICA 2006. The Sixth World Congress on, 2006. 1.
    [188] Elad M. Sparse representations and the basis pursuit. 2003 [cited; Available from: http://www.cs.technion.ac.il/~elad/talks/2003/BP_IPAM.ppt.
    [189] Chunguang W, Jinjiang L, Jixiang S. The detection and recognition of electrocardiogram's waveform based on sparse decomposition and neural network. Journal Of Medical Engineering & Technology.
    [190] Lewicki M S, Olshausen B A. Probabilistic framework for the adaptation and comparison of image codes. Journal of the Optical Society of America A, 1999. 16(7): 1587-1601.
    [191] Olshausen B, Field D. Natural image statistics and efficient coding. Network: Computation in Neural Systems, 1996. 7(2): 333-339.
    [192] Olshausen B A, Fteld D J. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vision Research, 1997. 37(23): 3311-3325.
    [193] Engan K, Aase S O, Hakon Husoy J. Method of optimal directions for frame design. Acoustics, Speech, and Signal Processing, 1999. ICASSP'99. Proceedings., 1999 IEEE International Conference on, 1999. 5: 2443-2446.
    [194] Mairal J, Sapiro G, Elad M. Learning multiscale sparse representations for imageand video restoration. Multiscale Modeling & Simulation, 2008. 7(1): 214-241.
    [195] Mairal J, Sapiro G, Elad M. Multiscale sparse image representation with learned dictionaries. 2007 Ieee International Conference on Image Processing, Vols 1-7, 2007: 1233-1236.
    [196] Mairal J, Elad M, Sapiro G. Sparse representation for color image restoration. IEEE Transactions on Image Processing, 2008. 17: 53-69.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700