微反应器在芳烃硝化中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
芳烃硝化一直存在强放热、安全性差、环境污染等问题,利用新兴的微反应器技术,以其极大的比表面积、微小的反应体积和优良的传热传质性能,实现对芳烃硝化的精确控制。本文以特殊的微玻璃反应器为核心,完成微反应系统的建立,应用于芳烃硝化研究。
     (1)在微反应系统内,重点探索以硝酸为硝化剂甲苯硝化工艺研究。在优化工艺条件下对比常规反应器,反应时间缩短至原来的1/100,甲苯转化率提高到94.8%,一硝化选择性在99.4%以上,而邻/对比(o/p值)控制在1.29-1.34。在此基础上将其应用于其他芳烃的硝化,得到优于常规反应器的芳烃转化率和硝化选择性,证明了该系统的普适性,并从工艺评价的角度总结微反应系统应用于芳烃硝化的优势。
     (2)将均相催化体系与微反应系统结合,重点从反应转化率、异构体选择性和体系的循环催化等角度研究简单芳烃的绿色硝化。在离子液体催化体系下,甲苯转化率达到94%,o/p值降为1.25;经五次循环利用,转化率仍在88%以上,o/p值小于1.30;对比常规反应器,烷基苯转化率提高到90%以上,卤代苯转化率提高10%以上。在三氟乙酸镧系盐催化体系下,甲苯转化率达到90%左右,o/p值降为1.27;经五次回收,催化剂的质量损失小于5%,转化率始终大于88%,o/p值控制在1.30以下;对比常规反应器,烷基苯和卤代苯转化率分别提高15%和10%以上,同时烷基苯对位产物和卤代苯邻位产物分别提高5%左右。从NO2+理论出发,探讨了上述催化硝化反应机理,完成微反应器内芳烃绿色硝化与选择性硝化研究,具有理论和工程实践指导意义。
Aromatic nitration has always been a highly exothermic reation, poor safety and environment pollution. Using the novel microreactor technology, with its great specific surface area, small volume and excellent heat and mass transfer performance, we realized the precise control of aromatic nitration. The article based on the special microglass reactor as the core, established the microreaction system, which used in the aromatic nitration research.
     (1)Using nitric acid as nitrating agents, we detailedly studied on the nitration process of toluene in the microreactor system. By compared with the date obtained from the conventional reactor, in the optimization of conditions, the reaction time was shortened to 1/100, the conversion of toluene came up to 94.8%, the selectivity of mono-nitration was improved to 99.4%, the ortho-/para-(o/p) ratio was controlled in 1.29~1.34. Its applications in nitration of other simple aromatics showed that conversion and selectivity were superior to the conventional reactor, which proved the universality of the system. From the perspective of process evalution, we summarized the advantages of microreactor system applied in the aromatic nitration.
     (2)Introducing the homogeneous catalysts into the microreactor system, from the perspectives of conversion, reaction selectivity and the cycle catalytic system, we emphasised on the nitration of simple aromatics. In ionic liquids catalytic system, the conversion of toluene reached 94%, o/p ratio reduced to 1.25. After five recycling, the conversion of toluene was still above 88% and o/p ratio was less than 1.30. By compared to conventional reactor, the conversion of alkyl-benzenes increased to 90%, the conversion of halogenated-benzenes increased by more than 10%. In Lanthanide(iii) trifluoroacetate catalytic system, the conversion of toluene kept to 90%, o/p ratio reduced to 1.27. The conversion of alkyl-benzenes and halogenated-benzenes were increased about 15% and 10% versus batch reactor, while the para-selectivity of alkyl-benzenes and the ortho-selectivity of halogenated-benzenes were improved about 5% versus without catalysts. Finally, based on NO2+ theory, the article simply discussed the catalytic mechanism of nitration, completed the green nitration and regioselective mono-nitration of aromatics in the microreactor system, had theoretical and engineering practical significance.
引文
[1]Olah G. A., Malhotea R., Narang S. C. Nitration:Methods and Mechanisms[M]. New York:VCH,1989.
    [2]韩俊奇,孟子晖,孟文君,陈光文,王伯周,葛忠学.微反应器中合成硝酸酯炸药[J].含能材料,2010,18(1):34-36.
    [3]Suzuki H., Murashima T., Kozai I.. Ortho enhancement in the ozone-mediated nitration of aromatic carbonyl compouds with nitrogen dioxide[J]. Chem. Lett.,1993,22(8): 1421-1424.
    [4]Mori T., Suzuki H.. Aromatic compounds with lower oxides of nitrogen[J]. Synlett.,1995, 5:383-392.
    [5]刘丽荣.固体酸和酸性离子液体催化甲苯选择性硝化反应的研究[D].南京:南京理工大学,2009.
    [6]彭新华,吕春绪,陈天云.甲苯的固体酸催化选择性一硝化[J].精细化工,2000,12(6):41-42.
    [7]Molczak T., Jacniacki J., Zawadzki J.. Nitration of aromatic compounds on solid catalysts[J], Syn. Comm.,2001,31(2):173-181.
    [8]Smith K., Musson A., Deboos G. A.. A novel method for the nitration for the simple aromatic compounds[J]. J Org. Chem.,1998,63:8448-8454.
    [9]李斌.连续化微通道反应器在染料颜料合成中的应用[J].染料与颜料,2006,43(3):33-36.
    [10]Klaus J., Volker H., Holger L., Manfred B.. Chemistry in microstructured reactors[J]. Angew. Chem. Int. Ed.,2004,43(18):406-446.
    [11]刘冠颖,方玉诚,郭辉进,顾临,况青江.微反应器发展概况[J].当代化工,2010,39(3):315-318.
    [12]Volker H., Holger L., Andreas M., Gunther K..Chemical micro process engineering: processing and plants[M].1st ed. Weinheim:Viley-VCH,2005
    [13]Thomas R. D.. Microchemical Engineering in Practice[M].1st ed. New Jersey: Viley-VCH,2009
    [14]Munawwer R., Thomas W.. Intelligent Microflow:Development of Self-Optimizing Reaction Systems[J]. Angew. Chem. Int. Ed.,2011,50:357-358.
    [15]陈光文,袁权.微化工技术[J].化工学报,2003,54(4):427-439.
    [16]穆金霞,殷学锋.微通道反应器在合成反应中的应用[J].化学进展,2008,20(1): 60-75.
    [17]陈桂子.金属套管式反应器气液传质性能研究[D].北京:北京化工大学,2010.
    [18]Schsnfield H., Hunger K., Cecilia R.. Enhanced mass transfer using a novel polymer/carrier microreactor[J]. Chem. Eng. J,2004,101(1-3):455-463.
    [19]张先锋.微尺寸流动及强化混合技术的研究[D].合肥:中国科学技术大学,2007.
    [20]李金鹰,王勋章,赵英翠,陆书来,刘长清.微化工技术的研究与应用[J].化工科技,2011,19(1):72-76.
    [21]Brian P. M., Kristin E. P., Jeremy L. S.. Greener approaches to organic synthesis using microreactor technology [J]. Chem. Rev.,2007,107(6):2300-2318.
    [22]钟平,黄南平.微反应器技术在有机合成中的应用[J].化学试剂,2007,29(6):339-344.
    [23]Harry K., Armin L., Wolfgang S., Ferdi S.,Silver-Catalyzed Oxidation of Ethylene to Ethylene Oxide in a microreaction system[J]. Ind&Eng. Chem. Res.2002,41:710-719.
    [24]Rouge A., Spoetzl B., Gebauer K., Schenk R., Renken A.. Microchannel reactors for fast periodic operation the catalytic dehydration of isopropanol[J]. Chem. Eng. Sci.,2001,56: 1419-1427.
    [25]Herweck T., Hardt S., Hessel V., Lowe H., Hofmann C., Weise F., Dietrich T., Freitag A. Microreaction Technology-IMRET 5:Proceedings of the 5th International Conference on Microreaction Technology[M]. Berlin:Springer,2001.
    [26]Nhnisch K. J., Baerns M., Hessel V., Ehrfeld W., Haverkamp W., Lowe H., Wille C., Guber A.. Direct fluorination of toluene using elemental fluorine in gas/liquid microreactors[J]. J Fluorine. Chem.,2000,105:117-128.
    [27]Miryam F. S., Stephanie Y. F. S., Brian H. W.. Synthesis of a three-member array of cycloadducts in a glass microchip under pressure driven flow[J]. Lab Chip,2002,2: 170-174.
    [28]Pysall D., Wachsen O., Bayer T., Wulf S.. Continuous polymerization, especially solution polymerization of acrylic monomer with or without styrene[P]. DE19816886, 1998.
    [29]宋红燕,王鹏,孟广君,韩骏奇,孟子晖,周智明.微反应器在强放热反应中的应用[J].含能材料,2008,16(6):762-765.
    [30]Panke G., Schwalbe T., Stirner W.. A practical approach of continuous processing to high energetic nitration reactions in microreactors[J]. Syn.,2003(18):2827-2830.
    [31]Wiles C., Watts P., Haswell S. J., Pombo-Villar E. The aldol reaction of silyl enol-ethers within a micro reactor[J]. Lab Chip,2001,1:100-101.
    [32]Chambers R. D., Spink R. C. H.. Microreactors for elemental fluorine[J]. Chem. Commun.1999,(10):883-884.
    [33]Kawaguchi T., Miyata H., Ataka K., Mae K., Yoshida J.. Room-Temperature Swern Oxidations by using a microscale flow system[J]. Angew. Chem. Int. Ed.,2005,44: 2413-2416.
    [34]Gerrit D., Ulrich Q., Lothar G., David W. A., Otto W., Konrad M.. The capillary-microreactor:a new reactor concept for the intensification of heat and mass transfer in liquid-liquid reactions[J]. Catal. Today,2003,79-80:433-439.
    [35]Gerhard P., Thomas S., Wolfgang S., Shahriyar T-M., Gregor W.. A practical approach of continuous processing to high energetic nitration reactions in microreactors [J]. Syn., 2003(18):2827-2830.
    [36]Sascha B., Peter P., Raf R., Stefan S., Marc W., Olivier L., Roland G., Pierre W., Celine W.. Selective nitrationin a microreactorfor pharmaceutical production under cGMP conditions[J]. Chem. Today,2009,27(1):26-29.
    [37]Ducry L., Roberge, Dominique M.. Controlled autocatalytic nitration of phenol in a microreactor[J]. Angew Chem. Int. Ed.,2005,44:7972-7975.
    [38]Raghunath H., Adeniyi L., Reddy D.. Nitration of toluene in a microreactor[J]. Catal. Today,2007,125:74-80.
    [39]Amol A. K., Vishwanath S. K., Ramesh A. J.. Continuous flow nitration of benzaldehyde[J]. Org. Process Res.&Dev.,2009,13:999-1002.
    [40]Amol A. K., Vishwanath S. K., Ramesh A. J.. Continuous flow nitration of salicylic acid[J]. Org. Process Res.& Dev.,2008,12:995-1000
    [41]韩非,余武斌,李郁锦,高建荣,贾建洪,陈光文.微通道反应器中催化裂解合成N,N-二甲基丙烯酰胺新工艺研究[J].高校化学工程学报,2009,23(1):166-170.
    [42]余武斌,高建荣,李郁锦,贾建洪,韩非.微通道反应器内氯苯硝化反应研究[J].精细化工,2010,27(1):97-100.
    [43]Kai W., Yangcheng L., Huawei S., Guangsheng L.. Improving Selectivity of Temperature-Sensitive Exothermal Reactions with Microreactor[J]. Ind. Eng. Chem. Res., 2008,47:4683-4688.
    [44]Taghavi-Moghadam S., Kleemann A., Golbig K.G.. Microreaction Technology as a Novel Approach to Drug Design, Process Development and Reliability[J]. Org. Process Res. Dev.,2001,5:652-658.
    [45]Skelton V., Greenway G. M., Haswell S. J., Styring P., Morgan D. O.,Warrington B. H., Wong S. Y. F.. The generation of concentration gradients using electroosmotic flow in microreactors allowing stereoselective chemical synthesis[J]. Analyst,2001,126:11-13.
    [46]夏飞.PDMS微流控芯片的制备工艺研究[D].南京:南京理工大学,2010.
    [47]Zhao H., Yu L. H., Zhang J., Guan Y. F.. Characteristics of TGPGC on Short Micro Packed Capillary Column[J]. Analytical Sci.,2002,18:93-95.
    [48]Charpentier J.. The Triplet "Molecular Process-Product-Process" Engineering:the Future of Chemical Engineering[J]. Chem. Eng. Sci.,2002,57:4667-4690.
    [49]Ehrfeld W., Hessel V., Lowe H.. Microreactors:New Technology for Modern Chemistry[M]. Maniz:Wiley-VCH,2000.
    [50]Gavriilidis A., Angeli P., Cao E., Yeong K. K., Wan Y. S. S.. Technology and Application of Microengineered Reactors[J]. Chem. Eng. Res. Des.,2002,80(1):3-30.
    [51]Madou M. J., Fundamentals of Microfarication:The Science of miniaturization[M].2nd ed. London:CRC Press,2002.
    [52]Ueno K., Kitagawa F., Kitamura N.. Photocyanation of pyrene across on oil/water interface in a polymer microchannel chip[J]. Lab on a Chip,2002,2:231-234.
    [53]Brivio M., Verboom W., Reinhoudt D. N.. Miniaturized continuous flow reaction vessels: influence on chemical reactions[J]. Lab on a Chip,2006,6:329-344.
    [54]吕春绪.硝酰阳离子理论[M].第1版.北京:兵器工业出版社,2006.
    [55]Coombes R. G., Crout D. H. G., Hoggett J. G., Moodie R. B., Schofield K.. Electrophilic aromatic substitution.Part Ⅵ. Kinetics and mechanism of nitration of halogenbenzenes[J]. J. Chem. Soc. B,1970,347-357.
    [56]Kurz M. E., Yang L. T. A., Zahora E. P., Adams R. C.. Nitration by aroyl nitrates[J]. J. Org. Chem.,1973,38(13):2271-2277.
    [57]Dominique M. R., Laurent D., Nikolaus B.. Microreactor technology:a revolution for the fine chemical and pharmaceutical industries[J]. Chem. Eng. Technol.,2005,28:318-323.
    [58]魏运洋.芳烃亲电硝化机理研究进展[J].火炸药,1988,2:26-31.
    [59]Zhao D. B.. Wu M., Kou Y.. Ionic liquids:applications in catalysis[J]. Catal. Today, 2002,74(1-2):157-189.
    [60]Wolfson A., Wuyts S.. Aerobic Oxidation of Alcohols with Ruthenium Catalysts in Ionic Liquids[J]. Tetrahedron lett.,2002,43(45):8107-8110.
    [61]Howerth J., Hanlon K., Fayne D., Cormac P. M.. Moisture Stable Dialkylimidazolium Salts as Heterogeneous and Homogeneous Lewis Acids in The Diel-alder Reaction[J]. Tetrahedron lett.,1997,38:3097-3100.
    [62]Mathews C. J., Smith P. J., Welton T.. Palladium catalysed Suzuki cross-coupling reactions in ambient temperature ionic liquids[J]. Chem. Commun..2000,14: 1249-1250.
    [63]Earl M. J., Katdare S. P., Seddon K. R.. Paradigm confirmed:the first use of ionic liquids to dramatically influence the outcome of chemical reactions[J]. Org. Lett.,2004,6(5): 707-710.
    [64]Qiao K., Yokoyama C.. Nitration of aromatic compounds with nitric acid catalyzed by ionic liquids[J]. Chem. Lett.,2004,33(7):808-809.
    [65]方东.离子液体的制备及其在精细有机合成中的应用研究[D].南京:南京理工大学.2008.
    [66]齐秀芳.Bronsted酸性离子液体存在下的硝化(解)反应研究[D].南京:南京理工大学,2008.
    [67]Waller F. J., Barrett A. G. M., Braddock D. C., Ramprasad D.. Lanthanide (ⅲ) triflates as recyclable catalysts for atom economic aromatic nitration[J]. Chem. Commun.,1997,6: 613-614.
    [68]李小青,杜晓华,徐振元.三氟甲磺酸盐催化甲苯硝化反应的研究[J].有机化学,2006,26(8):1111-1114.
    [69]刘春生,罗根祥.三氟乙酸镧催化合成环己酮1,2-丙二醇缩酮[J].当代化工,2010,39(5):506-508.
    [70]Wang P. C., Lu M.. Regioselectivity nitration of aromatics with N2O5 in PEG-based dicationic ionic liquid[J]. Tetrahedron Lett.,2011,52:1452-1455.
    [71]Waller F. J., Barrett A. G. M., Braddock D. C., Ramprasad D.. Lanthanide (ⅲ) triflates and Group ⅳ metal triflate catalysed electrophilic nitration:'nitrate capture'and the role of the metal centre[J]. J. Chem. Soc.,Perkin Trans.1 1999,867-872.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700