45#钢表面耐磨自润滑复合镀层的制备与机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
化学镀镍方法以其工艺简便、成本低、镀层厚度均匀、可大面积镀覆等优点,已广泛应用于实际生产中,然而,随着技术不断发展与实际生产工程中需要,又逐步发展具有特定功能的复合镀层。利用纳米材料的一些独特的性能,结合传统表面技术制备表面纳米颗粒增强复合镀层的研究成为当今材料表面领域的热点课题之一。本文结合这两项技术的特点,在45#钢表面化学镀层中复合纳米Al2O3粒子和PTFE粒子,研究制备具有高耐磨和自润滑性能的化学复合镀技术,以满足企业实际生产的需要。
     主要运用显微硬度计、金相显微镜、SEM、XRD和摩擦磨损试验机等检测手段对实验样品的组织结构、表面形貌、显微硬度、耐磨性能及其机理进行了系统研究,结果表明:
     实验优化出的化学镀配方为:硫酸镍25g/L,次亚磷酸钠30g/L,乳酸25ml/L,柠檬酸5g/L,乙酸钠15g/L,氨基乙酸3g/L,硫脲3~5mg/L,pH=4.8,温度88±2℃;纳米A1203的加入量为2-3g/L,PTFE乳液的加入量为10ml/L。利用优化了的制备技术,在45#钢表面成功制备出具有纳米A1203增强、PTFE复合减摩的高耐磨和低摩擦系数的Ni-P-Al2O3-PTFE复合镀层。
     实验制备的Ni-P、Ni-P-Al2O3、Ni-P-PTFE和Ni-P-Al2O3-PTFE等镀层镀态时为非晶态结构,Ni-P非晶态镀层硬度为516HV,Ni-P-PTFE非晶态镀层的硬度为380HV,Ni-P-Al2O3非晶态镀层硬度为684HV,Ni-P-Al2O3-PTFE非晶态镀层的硬度为452HV。经过热处理后镀层在300℃时开始晶化,到400℃时其镀层全部转化为晶态;Ni-P合金镀层的硬度经过400℃热处理后达到最大值894HV;Ni-P-Al2O3复合镀层400℃热处理后达到最大值1215HV;因为PTFE的熔点为327℃,Ni-P-Al2O3-PTFE多元复合镀层375℃处理的硬度是894HV,400℃处理的硬度是1187HV,镀层的硬度大幅提高,证明镀层中PTFE的气化逸出,蒸发温度是375℃,使镀层的自润滑性能降低,因此本实验选择350℃热处理一小时,可以得到相对较高的硬度756HV,同时不会破坏镀层中的PTFE。制备的Ni-P-Al2O3-PTFE镀层经过350℃×1h热处理后其磨损量为1.6mg,摩擦系数为0.11,表现出了优良的综合耐磨性能。
     Ni-P-Al2O3-PTFE复合镀层中,高硬度的纳米Al2O3通过复合沉积与镍磷镀层构成复合相,提高了镀层的硬度及耐磨性能;而PTFE粒子由于具有良好的自润滑性能,复合镀层在受到摩擦时,PTFE粒子可通过自身的层状剥始在镀层表面铺展,形成连续的减磨膜,降低了复合镀层摩擦系数;二者协同作用使Ni-P-Al2O3-PTFE复合镀层具有高的耐磨性能和自润滑性能。
Electroless Nickel Plating(ENP) have been widely applied in production with its advantages such as simple processing, low-cost, uniformity, thickness and large-area plating. However, with the technology development and actual production's needs, composite coatings were gradually developed with their specific functions. Using some of the unique performance of nano-materials, combining traditional surface technology so as to prepare nanoparticles reinforced surface coating of composite materials become one of the hot topics in the surface area. This paper studied the preparation of a kind of coating on 45 steel surface with the performance of high wear resistance and self-lubricating that compounded with nano-Al2O3 powder and PTFE, so as to meet the needs of actual production.
     The microstructure, surface morphology, hardness, wear resistance and also formation mechanism of the test samples were systematic studied by Micro-hardness tester, Optical Microscope, Scanning Electron Microscope, X-ray diffraction and Friction-Wear tester. The results show as follow:
     The optimized dispensation of electroless plating of nikel through the experiments are showed as follows:NiSO4 25g/L, NaH2PO2 30g/L, CH3CH(OH)COOH 25ml/L, CH3COONa 15g/L, C2H5NO2 3g/L, CH4N2S 3-5mg/L; pH=4.8, the temperature is 88±2℃; The addition of nano-Al2O3 was 2-3g/L, the addition of PTFE emulsion was 10ml/L. Using the optimized technology, the Ni-P-Al2O3-PTFE composite coating with nano-Al2O3 enhanced, PTFE antifriction of high wear-resistant and low coefficient on the 45 steel surface was successfully prepared.
     The prepared coating of Ni-P、Ni-P-Al2O3、Ni-P-PTFE and Ni-P-Al2O3-PTFE after plating was non-crystalline, the hardness were followed by 516HV,684HV,380HV and 452HV. The plating coating became crystalline after heat treatment temperature at 300℃, and totally crystalline at temperature 400℃. The maximum hardness of Ni-P coating achieved to 894 HV after 400℃heat treatment; Ni-P-Al2O3 composite coating achieved up to 1215 HV also after heat treatment at 400℃. Because the melting point of PTFE is 327℃, the hardness of Ni-P-Al2O3-PTFE multiple composite coatings after heat treatment at 375℃was 894 HV and 1187 HV at 400℃, which illuminated PTFE in coating had gasified and escaped at evaporation temperature 375℃, so the self-lubricating properties reduced. Thus this paper choose the heat treatment temperature at 350℃for one hour, then the hardness can be relatively achieved up to 756 HV and will not damage PTFE in the coating. The wear performance showed that, the wear rate of Ni-P-Al2O3-PTFE multiple composite coatings was reduced evidently, and had lower friction coefficient. The wear resistance of Ni-P-Al2O3-PTFE multiple composite coating was the best after heat treatment of 350℃for 1h, the wear losses was 1.6mg and the friction coefficient 0.11.
     In the Ni-P-Al2O3-PTFE multiple composite coatings, as a kind of hard particle, Al2O3 particles and nickel-phosphorus coating form a complex phase through composite deposition. The hard particles greatly enhance the property of the coating hardness and wear-resistance. The PTFE particles have nice property of self-lubricating, when they were rubbed, they enabled to form a spreading layer by the lamellar delamination in the coating containing PTFE, so the uniform thickness anti-resistance layer was formed on the samples surface to reduce the friction coefficient and wear losses. The co-action of both particles enabled the Ni-P-Al2O3-PTFE coating with properties of high wear resistance and self-lubricating.
引文
[1]全永听.工程摩擦学[M].杭州:浙江大学出版社,1994.3-108.
    [2]郭鹤桐,张三元.复合镀层[M].天津:天津大学出版社,1991.1-4,8-11.
    [3]阎洪.金属表面处理新技术[M].北京:冶金工业出版社,1996.1-6.
    [4]曹茂盛,曹传宝,徐甲强.纳米材料学[M].哈尔滨:哈尔滨工程大学出版社,2002.1-3.
    [5]居毅.20#碳钢表面室温电解渗硫层的减摩性能[J].摩擦学学报,2001,21(2):98-101.
    [6]王海斗,庄大明,王昆林,等.高速钢离子渗硫层的摩擦磨损性能研究[J].摩擦学学报,2002,22(4):250-253.
    [7]应丽霞,王黎钦,古乐.激光重熔等离子喷涂自润滑复合涂层研究[J].光电子激光,2005,16(1):106-111.
    [8]罗燕,彭玉娟,张伟强.激光熔覆涂层与粉末火焰喷焊涂层组织性能比较[J].热加工工艺,2005,(6):63-64.
    [9]冯秋元,李廷举,张忠涛,等.强磁场下Ni/Al2O3纳米复合镀层制备及性能[J].纳米技术与精密工程,2007,5(3):215-219.
    [10]李卫红,周细应,徐洲,等.电刷镀Ni-PTFE纳米复合镀层的摩擦特性研究[J].摩擦学学报,2005,25(6):521-525.
    [11]马亚军,朱张校,丁莲珍.镍基纳米Al2O3粉末复合电刷镀镀层的耐磨性[J].清华大学学报,2002,42(4):498-500.
    [12]Ger M D, Sung Y, Ou J L. A novel process of electroless Ni-P plating by nonisothermal method[J]. Materials Chemistry and Physics,2005,89:383-389.
    [13]Palaniappa M, Babu G V, Balasubramanian K. Electroless nickel-phosphorus plating on graphite powder Materials[J]. Science and Engineering A,2007,471:165-168.
    [14]Alirezaei S H, Monirvaghefi S M, Salehi M, et al. Effect of alumina content on surface morphology and hardness of Ni-P-Al2O3(a) electroless composite coating s[J]. Surface and Coatings Technology,2004,184:170-175.
    [15]Matsuda H, Nishira M, Kiyono Y. Effect of Surfactants Addition on the Suspension of PTFE Particles in Electroless Plating Solutions[J]. Tran IMF,1995,73(1):55-57.
    [16]Ger M D, Hwang B J. Effects of Surfactants on Codeposition of PTFE Particles with Electroless Ni-P Coating[J]. Materials Chemistry and Physics,2001,76(5): 38-45.
    [17]Taheri R, Oguocha I N A, Yannacopoulos S. The tribological characteristics of electroless NiP coatings[J]. Wear,2001,249(5-6):389-396.
    [18]姜晓霞,沈伟.化学镀理论及实践[M].北京:国防工业出版社,2000.181-201.
    [19]蒋斌,徐滨士,董世运,等.纳米复合镀层的研究现状[J].材料保护,2002,35(6):1-3.
    [20]闫洪.现代化学镀镍和复合镀新技术[M].北京:国防工业出版社,1999.23.
    [21]Li Yong jun. Investigation of electroless Ni-P-SiC Composite Coatings[J]. Plating Surf. Finish,1997,84(11):77-81.
    [22]Masayoshi Nishira, Osamu Takano. Friction and Characteristics of Electroless Ni-P-PTFE Composite Coatings[J]. Plating and Surface Finishing,1994,81(1):48-50.
    [23]吴玉程.添加聚四氟乙烯对化学沉积复合镀层性能的影响[J].电镀与涂饰,2000,19(1):1-5.
    [24]周啸,杜文义.Ni-P-PTFE化学复合镀层的组成与结构[J].材料保护.1997,30(3):1-3.
    [25]张永忠.化学镀Ni-P/PTFE研究及应用[J].电镀与环保,1996,16(4):13-15.
    [26]LA沃尔.氟聚合物[M].化学工业出版社,1978.398.
    [27]Tulsi S S. Electroless nickel-PTFE composite coatings[J]. Metal Finishing,1997,95(3): 29.
    [28]Tulsi S S. Composite PTFE-Nickel coatings for Low Friction Applications[J]. Materials & Design,1983,4(6):919-923.
    [29]高红霞,商全义.(Ni-P)-SiC-PTFE化学复合镀层摩擦性能研究[J].表面技术,2003,32(2):31-35.
    [30]陈增辉,谢华.Ni-P-PTFE化学复合镀的工艺研究[J].表面技术,2007,36(3):46-48.
    [31]周广宏,丁红燕,章跃.Ni-P-Nano-Al2O3化学复合镀层的磨损机理[J].金属热处理,2004,29(7):38-40.
    [32]王芳,俞宏英,孙冬柏,等.Ni-P-纳米Al2O3复合镀层耐磨性能研究[J].电镀与涂饰,2007,26(3):1-8.
    [33]姚素薇,穆高林,张卫国.化学镀Ni-P/纳米Al2O3复合镀层结构及性能研究[J].材 料保护,2007,40(10):26-28.
    [34]迟毅,范会玉,高金波.化学复合镀Ni-P-PTFE-SiC的研究[J].材料科学与工艺,2003,11(1):77-80.
    [35]高加强,刘磊,沈彬,等.纳米A1203粒子增强化学镀Ni-P复合镀层的组织结构[J].上海交通大学学报,2005,39(2):265-269.
    [36]Nishira, K Yamagishi. Uniform Dispersibility of PTFE Particles in Electroless Composite Plating[J]. Tran IMF,1996,74(2):62-64.
    [37]Ebdon P R. Composite Coatings with Lubricating Properties[J]. Trans IMF,1987, 65(5):80-82.
    [38]Yu L G, Zhang X S. The Friction and Wear Properties of Electroless Ni-Polytetrafluoroethylene Composite Coating[J]. The Solid Film,1993,245(11):98-103.
    [39]Nishira M, Takano O. Friction and Wear Characteristics of Electroless Ni-P-PTFE Composite Coating[J]. Plating and Surface Finishing,1994,81(1):48-50.
    [40]Ger M D, Hwang B J. Effects of Surfactants on Codeposition of PTFE Particles with Electroless Ni-P Coating[J]. Materials Chemistry and Physics,2001,76(5):38-45.
    [41]仵亚婷,刘磊,高加强.自润滑Ni-P-PTFE化学复合镀工艺及镀层性能[J].上海交通大学学报,2005,39(2):206-210.
    [42]Ramalho A, Miranda J C. Friction and wear of electroless NiP and NiP+PTFE coatings[J]. Wear,2005,259(7-12):828-834.
    [43]黄新民,钱利华,徐金霞.镍-磷-纳米颗粒化学复合镀的研究现状及发展[J].电镀与涂饰,2002,21(6):12-16.
    [44]王为,郭鹤桐.纳米复合镀技术[J].化学通报,2003,(3):178-183.
    [45]马美华,陈金喜,李小华,等.Ni-P-Zn3(PO4)-(ZnSnO3、ZnSiO3)纳米复合化学镀层性质和组成的研究[J].无机化学学报,2001,17(1):101-106.
    [46]曹茂盛,杨会静,王彪.Ni-P-Si纳米粒子化学复合镀工艺及力学性能研究[J].中国表面工程,2000,48(3):42-45.
    [47]钱丽华.化学沉积合金/纳米粒子化学复合涂层[D].合肥工业大学,2003,9-10.
    [48]迟毅,范玉会,高金波.化学复合镀Ni-P-PTFE-SiC的研究[J].材料科学与工艺,2003,11(1):77-80.
    [49]Wu Ya ting, Shen Bin, Liu Lei, et al. The tribological behaviour of electroless Ni-P-Cr-SiC composite[J]. Wear,2006,261(2):201-207.
    [50]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M].哈尔滨:哈尔滨工业大学出版,2000.142.
    [51]Zhao Q, Liu Y. Electroless Ni-Cu-P-PTFE composite coatings and their anti-corrosion properties[J]. Materials Chemistry and Physics,2004,87(2-3):332-335.
    [52]陈建军,杨建红.化学复合镀制备高活性节能NiCo2O4电极[J].中国有色金属学报,2000,10(4):564-568.
    [53]Garcia I, Fransaer J, Celis J P. Electro deposition and sliding wear resistance of nickel composite coatings containing micron and submicron SiC particles[J]. Surface and Coatings Technology,2001,148(7):171-178.
    [54]蔡晓兰,黄鑫,刘志坚.化学镀镍溶液中络合剂对镀速影响的研究[J].吉林化工学院学报,2000,17(4):21-23.
    [55]王孝镕,顾慰中.化学镀镍磷合金工艺研究[J].电镀与涂饰,1999,18(2):43-46.
    [56]于升学.复合化学镀(Ni-P)-PTFE工艺研究[J].Plating and Finishing,2000,22(1): 12-15.
    [57]天津大学物理化学教研室.物理化学[M].北京:高等教育出版社,1993.263.
    [58]李宁,袁国伟,黎德育.化学镀镍基合金理论与技术[M].化学工业出版社,2000.5.
    [59]庄楚强,吴亚森.应用数理统计基础[M].广州:华南理工大学出版社,2002.4.
    [60]金莹,孙冬柏,俞宏英,等.络合剂种类对化学镍磷沉积层的影响[A].第四界全国化学镀会议论文集[C].中国腐蚀与防护学会及合金耐蚀理论专业委员会,1998:105-110.
    [61]渡边澈.非晶态电镀方法及应用[M].北京:北京航空航天大学出版社,1992.16-66.
    [62]李宁.化学镀实用技术[M].北京:化学工业出版社,2004.176.
    [63]王迎春,马壮,吕广庶,等.化学镀Ni-P合金的耐磨性研究[J].材料工程,2000,(8):25-27.
    [64]徐波.化学镀Ni-P合金的性能研究[J].云南冶金,2000,29(3):36-38.
    [65]牛振江,沈吉军,李则林,等.原位XRD研究热处理Ni-P化学镀合金的结构[J].材料保护,2003,36(7):45-47.
    [66]李建明.磨损金属学[M].北京:冶金工业出版社,2000.175-184.
    [67]邵红红,纪嘉明.发动机用铝合金化学复合镀研究[J].农业机械学报,2002,1(29):100-102.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700