化学镀Ni-P基纳米复合镀层及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着纳米科学的不断发展,复合镀技术迎来了新的契机。纳米粒子具有小尺寸效应、表面效应以及宏观量子隧道效应等,使其表现出独特的物理化学性能。将纳米粒子引入化学镀Ni-P合金镀液制备的Ni-P基纳米复合镀层,显示出优越的机械性能、电催化性能等,正日益成为科技工作者研究的重点。
     本论文通过向化学镀Ni-P合金镀液中加入纳米α-Al_2O_3粒子和纳米SiC粒子,利用化学沉积的方法,制备出Ni-P-纳米Al_2O_3复合镀层和Ni-P-纳米SiC复合镀层,考察了镀液中纳米粒子添加量、镀液温度、pH值等工艺参数对微粒复合量和镀速的影响。采用扫描电镜(SEM)和X射线衍射(XRD)对镀层表面形貌及结构进行了表征,同时研究了热处理前后镀层的耐磨性、显微硬度以及耐蚀性。实验结果表明:随着镀液中纳米微粒添加量的增大,镀层中纳米微粒的复合量先增大后减小,纳米Al_2O_3的复合量最高可达到10.1%(wt),纳米SiC的复合量最高可达到13.1%(wt)。Ni-P-纳米Al_2O_3复合镀层和Ni-P-纳米SiC复合镀层的硬度、耐磨性以及耐蚀性均高于Ni-P合金镀层,而且随着纳米微粒复合量的增大,镀层硬度、耐磨性以及耐蚀性增大。当纳米Al_2O_3复合量为10.1%(wt)时,Ni-P-纳米Al_2O_3复合镀层的硬度达到627Hv,较Ni-P合金镀层增大28%,磨损失重减少20%以上。当纳米SiC复合量为13.1%(wt)时,Ni-P-纳米SiC复合镀层的硬度达到788Hv,较Ni-P合金镀层增大59%,磨损失重减少23%,在3.5% NaCl溶液中的耐蚀性也较Ni-P合金镀层有较大提高。400℃热处理后,复合镀层结构由非晶态转变为晶态,镀层硬度和耐磨性提高,但耐蚀性下降。
With the development of nano science, the composite deposition receives a new opportunity. Nano particles have particular physical and chemical characterizations because of small dimension effect, surface effect, and macroscopical quanta tunnel effect etc. The Ni-P matrix nano composites that are obtained by incorporating nano particles into Ni-P bath show superior mechanism performance, electrical catalysis performance etc and are increasingly causing more and more attention of researchers.
     In this paper, nano-α-Al_2O_3 and nano-SiC powders were incorporated into Ni-P alloy matrix by electroless deposition to obtain nano Ni-P/Al_2O_3 and Ni-P/SiC composite coatings. The influence of concentration of particles in bath, temperature, pH and other technique parameters on nano particles content in coatings and rate of deposition was investigated. Scanning Electron Microscope (SEM) and X-ray diffraction (XRD) were used to figure the surface and microstructure of coatings. The wear resistance, micro-hardness and corrosion resistance of coatings before and after heat treatment were also studied. The results showed that with the increase of nano particle content in the electroless plating solution, the nano particle content in deposits increased first and then decreased, the nano-Al_2O_3 particle content in deposits can reached the maxium value in 10.1%(wt), and the nano-SiC particle content in deposits can reached the maxium value in 13.1%(wt). With the increase of nano particle content in deposits, the wear resistance, micro-hardness and corrosion resistance were developed and better than Ni-P alloy. Compared with Ni-P coatings, the hardness of Ni-P/nano-Al_2O_3 composite coating increased by 28%, while the wear loss decreased by over 20% when the nano-Al_2O_3 particle content in deposits reached 10wt.%, and the hardness of Ni-P/nano-SiC composite coating increased by 59%, while the wear loss decreased by over 23% when the nano-SiC particle content in deposits reached 13wt.%. Compared with Ni-P coatings, the corrosion resistance of Ni-P/nano-SiC composite was enhanced obviously. After 400℃heat treatment, the amorphous composite coating transforms to crystalline structure , the wear resistance and micro-hardness were increased, but corrosion resistance was decreased.
引文
[1] 徐滨士,朱绍华,表面工程的理论与技术,防工业出版社,1999:315~317
    [2] 郭鹤桐,张三元,复合镀层,天津大学出版社,1991
    [3] 王为,郭鹤桐,纳米复合镀技术,化学通报,2003,66(3):178~183
    [4] Musiani M., Electrodeposition of composites: an expanding subject in electrochemical materials science, Electrochimica Acra, 2000, 45:3397~3402
    [5] Sun Kyu Kim, Hong Jae Yoo, Formation of bilayer Ni-SiC composite coatings by electrodeposition, Surface and Coatings Technology,1998,108-109:564~569
    [6] Pierre-Antoine Gay, Patrice Bercot, Jaques Pagetti, Electrodeposition and characterization of Ag-ZrO2 elecroplated coatings, Surface and Coatings Technology, 2001, 140:147~154
    [7] Patrick R W, Neil L R, Eletrolytic codeposition of Ni-Al2O3 thin films, Journal of the Electrochemical Society,1994,141(3):669~673
    [8] Nowak P, Socha R P, Kaisheva M, Electrochemical investigation of the codeposition of SiC and SiO2 particles with nickel, Journal of Applied Electrochemistry,2000,30:429~437
    [9] 郭会清,方红,禹建鹰,复合镀中分散微粒共沉积的若干问题探讨,中原工学院学报,2002,13(1):29~31
    [10] Erler F, Jakob C, Romanus H, Interface behaviors in nickel composite coatings with nano-particles of oxidic ceramic, Electrochimica Acta, 2003, 48:3063~3070
    [11] Moller A, Hahn H, Sythesis and characterization of nanocrystallin Ni/ZrO2 Composite coatings, Nanostructured Materials, 1999, 12: 259~263
    [12] Ferkel H, Müller B, Riehemanm W, Electrodeposition of particle-strengthened nickel films. Materials Science and Engineering, 1991, A234-236: 474~476
    [13] Benea L, Bonora P L, Borello A, Wear corrosion properties of nano-structured SiC-nickel composite coatings obtained by electroplating, Wear, 2001, 249: 995~1003
    [14] Benea L, Bonora P L, Borello A, Martelli S, Composite electrodeposition to obtain nanostructured coating, Journal of The Electrochemical Socirty, 2001, 148: C461~C465
    [15] Müller B, Ferkel H., Al2O3-nanoparticles distribution in plated nickel composite films, NanoStructured Materials, 1998, 10:1285~1288
    [16] Wang S C, Wei W C J, Kinetics of electroplating process of nano-sized ceramic particle/Ni composite, Materials Chemistry and Physics, 2003, 78: 574~580
    [17] Chen X H, Cheng F Q, Li S L, Electrodeposited nickel composite containing carbom nanotubes, Surface and Coatings Technology, 2002, 155:274-278
    [18] 李明,牟季美等,纳米材料和纳米结构,科学出版社,2001:1~3
    [19] Franser J. Mechanism of composite electroplating, Metal Finishing, 1993, 43(6):97~102
    [20] Guglielmi N. Kinetics of the deposition of inertparticles from celectrolytic baths, J. Electrochem. Soc., 1972, 119(8):1009~1012
    [21] Celis J P, Roos J R, Buelens C. Analysis of the electrolytic codeposition of non-brownian particles with a metals, J Electrochem Soc, 1987,134(6):1402~1408
    [22] Valdes J L. Electrodeposition of colloidal particles, J. Electrochem. Soc., 1987, 134(4):223~225
    [23] Fransaer J, Celis J P, Ross J R. A mathematical model for the electrolytic codeposition of particles with ametallic matrix, J. Electrochem Soc., 1992, 139(2):413~425
    [24] Hwang B J, Hwang C S. Mechanism of codeposition of silicon carbide with electrolytic cobalt, J. Electrochem. Soc., 1993, 140(4):979~984.
    [25] Yeh S H, Wan C C, A Study of Ni/SiC composite plating in the Watts bath, Plating and Surface Finishing, 1997, 84(3):54~57
    [26] 陈小华,李德意,碳纳米管增强镍基复合镀层的形貌及摩擦磨损行为研究,摩擦学学报,2002,22(1):6~9
    [27] 黄新民,谢跃勤,吴玉程,Ni-P-纳米 TiO2 微粒化学复合镀层的摩擦特性,电镀与精饰,2001,23(5):1~4
    [28] 黄新民,谢跃勤,Ni-P-纳米 TiO2 化学复合镀层,中国表面工程,2001
    [29] 马亚军,朱张校,丁莲珍,镍基纳米 Al2O3 粉末复合电刷镀镀层的耐磨性,清华大学学报(自然科学版),2002,42(4):498~500
    [30] 徐龙堂,徐滨士,周美玲,电刷镀镍镍包纳米 Al2O3 颗粒复合镀层微动磨损性能研究,摩擦学学报,2001,21(1):24~27.
    [31] 徐龙堂,徐滨士,马士宁,电刷镀含纳米 SiC 粉复合镀层 EPMA 分析,材料工程,2000,6:34~36
    [32] 张伟,徐滨士,梁志杰,电刷镀含纳米粉复合镀层结构和磨损性能,装甲兵工程学院学报,2000,14(3):30~33
    [33] 郭忠诚,郭淑仙,朱晓云,电沉积多元复合镀层的研究现状,电镀与环保,2001,21(2):4~11
    [34] 黄新民,吴玉程,郑玉春,纳米颗粒对复合镀层性能的影响,兵器材料与工程,1999,22(6):11~13
    [35] 黄新民,吴玉程,郑玉春,纳米功能复合涂层,功能材料,2000,31(4):419~420
    [36] 欧忠文,纳米材料在表面工程中应用的研究进展,中国表面工程,2000,(2):5~8
    [37] Ferkel H, Müller B, Electrodeposition of particle strengthened nickel film, Materials Science and Engineering A, 1997, A234-236: 474~476
    [38] Zhou M, N R de Tacconi, Metal/semiconductor electrocomposite Photoelectrodes, Journal of Materials Science, 2001, 36:4723~4729
    [39] Deguchi T, Imai K, Iwasaki M, Photocatalytically highly active nanocomposite films consisting of TiO2 particles, Journal of the Electrochemical Society, 2000, 147(6):2263~2267
    [40] Deguchi T, Imai K, Matsui H, Rapid electroplating of photocatalytically active TiO2-Zn nanocomposite, Journal of Electroanalytical Chemistry, 1996 402:21-224
    [41] Takenori Deguchi, Kiyohisa Imai, Mitsunobu Iwasaki, etc. Photocatalytically highly active nanocomposite films consisting of TiO2 particles. Journal of the Electrochemical Society, 2000, 147(6):2263~2267
    [42] 蒋斌,徐滨士,董士运等,纳米复合镀层的研究现状,材料保护,2002,35(6):2
    [43] 吴元康,金刚石纳米晶在材料保护中的作用,材料保护,1995,28(4):15~17
    [44] 王健雄,陈小华,彭景翠,碳纳米管镍基复合镀层材料耐腐蚀性的初步研究,腐蚀与防护,2002,23 (1):6~9
    [45] 马美华,李峰,李小华,等,镍-磷-锌盐纳米复合化学镀层抗腐蚀性能的研究,应用化学,2001,18 (7):509~512
    [46] 高濂,孙静,刘阳桥,纳米粉体的分散及表面改性,北京:化学工业出版社,2003
    [47] 郑筱梅,李自林,镍基纳米氧化铝化学复合镀研究,表面技术,2003,32(5):23~25
    [48] 宿辉,曹茂盛,王正平,纳米离子化学复合镀的研究进展,电镀与精饰,2004,26(2):12~15
    [49] Steinhauser S, Wielage L M, Zschunke A, Galvanotechnik, 2001, 92:78~82
    [50] 王为,李克锋,Ni-P 及纳米化学复合镀研究现状,电镀与涂饰,2003,22(5):34~38
    [51] 仵亚婷,沈彬,刘磊等,化学复合镀的研究现状及镀层的应用,电镀与涂饰,2005,24(1):58~64
    [52] 李义和,傅圣利,王本根等.Ni-P-SiC 化学复合镀,国防科技大学学报,2000,22(5):33~36
    [53] 盖雅宏,张文武,孙茂凌,等,Ni-P-Cr2O3 化学复合镀工艺及稀土的影响,吉林化工学院学报,2002,19(3):68~71
    [54] 刘铁虎,朱洪汀,化学复合镀 Ni-P-Cr2O3 工艺及镀层性能研究,化工机械,2002,29(5):262~265
    [55] 卿华,江合甫.纤维增强金属基复合材料及其在航空发动机上的应用,燃气涡轮试验与研究,2001,14(1):33~37
    [56] 王柏春,朱永伟,许向阳,等,Ni-P 基化学复合镀的研究与应用,材料导报,2005,19(6):71~74
    [57] 林文松,李培耀,钱士强,纳米涂层的研究现状与展望,材料保护,2003,369(7):1~3
    [58] 周志朝,无机材料显微结构分析,浙江大学出版社,200,162~165
    [59] 王晓刚,刘永胜,李晓池,Sic 纳米材料制备及应用,西安科技学院学报,2001,22 (4):440~444
    [60] 徐红娣,邹群.电镀溶液分析技术,北京:化学工业出版社,2003,94
    [61] 舒余德,谢勤.分光光度法测定 Zn-Ni-P 合金镀层及镀液中的磷,电镀与精饰,2001(23):38~40
    [62] 郭鹤桐,张 元.复合镀层[M].天津:天津大学出版社,1991:274-278.
    [63] 陈 丽,王立平,曾志翔等,Ni-SiC 脉冲电镀工艺对 SiC 共沉积量及镀层耐磨性的影响,材料保护,2005,38(9):22~24
    [64] 靳广虎,吴映雪,于敏等,铬基陶瓷复合镀层活塞环的摩擦磨损实验研究[J].润滑与密封,2004,2:23~24
    [65] 刘铁虎,Ni-P-Cr2O3 化学复合镀层耐磨性的研究,润滑与密封,2002,(6):45~46
    [66] 蒋斌,丁培道,徐滨士等,电刷镀纳米复合镀层的接触疲劳性能研究,表面技术,2002,31(5):16~18
    [67] 程森,王昆林,赵高敏,镍基纳米 SiC 复合镀层的摩擦学性能,清华大学学报,2002,42(4):516~519
    [68] 天津大学无机化学教研室.无机化学(下),北京:高等教育出版社,2001:467
    [69] 徐红娣,邹群,电镀溶液分析技术,北京,化学工业出版社,2003:94
    [70] 舒余德,谢勤,分光光度法测定 Zn-Ni-P 合金镀层及镀液中的磷,电镀与精饰,2001,23(1):38~40
    [71] 邓联文,江建军,何华辉,酸性化学镀机理探讨及高磷含量镍磷合金镀层制备,腐蚀与防护,2002,23(11):479~481
    [72] 周广宏,丁红燕,章跃,Ni-P-Nano-Al2O3 化学复合镀层的磨损机理,金属热处理,2004,29(7):38~40
    [73] Mallory G O, Haidu J R., Electroless Plating, Florida, AESF, 1990:269~276
    [74] 吴向清,谢发勤.铝合金基电沉积 Ni-SiC 复合镀层的结构及耐蚀性的研究,表面技术,2003,32(2):23~25
    [75] 俞世俊,宋力昕,黄银松,化学镀 Ni-P-SiC 复合镀层的研究,无机材料学报,2004,19(3):647~652
    [76] 蔡莲淑,程秀,揭晓华等,Ni-P-SiC(纳米)化学复合镀工艺的研究,表面技术,2003,32(5):38~45
    [77] 程森,王昆林,赵高敏.纳米 SiC 复合镀层制备工艺的研究,材料保护,2002,35(8):18~20
    [78] 迟毅,许光辉,范会玉,化学复合镀 Ni-P-SiC 镀层耐磨性的研究,应用科技,2000,27(12):25~27
    [79] 刘秀晨,安成强等,金属腐蚀学,北京:国防工业出版社,2002:160~164
    [80] P.Gyftou, M.Stroumbouli, E.A.Pavlatou,P.Asimidis, N.Spyrellis., Tribological study of Ni matrix composite coatings containing nano and micro SiC particals, Electrochimica Acta, 2005(50):4544~4550

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700