功能梯度复合材料制动盘设计及制备成形工艺、组织与性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
颗粒增强金属基复合材料具有优良的性能,复合材料的制备技术和成形技术的研究已经引起人们的广泛关注,但是基于技术和成本方面考虑一直难以得到大范围的应用。由于颗粒增强金属基复合材料的性能受到具体的制备工艺技术、基体合金成分、增强颗粒的性质以及基体合金与增强颗粒的界面结合状况等诸多因素影响,现有的研究对这方面的认识还十分有限,数据资料也十分缺乏,在一定程度上也影响了颗粒增强金属基复合材料的推广应用。本论文从颗粒增强铝基复合材料新产品开发的需要出发,基于材料组成对产品进行设计,深入研究了颗粒增强复合材料的制备技术和离心铸造成形技术,对加工工艺方法对材料的组织、成分和性能特征影响进行了系统的研究,系统的阐述了复合材料制备和成形过程工艺-组织-性能特征。论文主要包括以下研究内容:
     运用MSC.Patran有限元分析软件对不同材料的车辆用制动盘在同种工况条件下进行了热应力分析,结果表明颗粒增强铝复合材料颗粒体积分数沿径向具有梯度变化的制动盘热应力分布更为均匀,应力变化更为平缓,而且该种材料构成的制动盘具有减重和提高使用寿命的优点,实现了梯度功能复合材料制动盘材料构成的初步设计,提出了构建梯度复合材料制动盘的思想。
     深入研究了重量达到32kg、体积分数为20%、平均粒径为15.8μm的SiC颗粒增强Zl104合金的复合材料制备技术,对搅拌复合过程的工艺参数、增强颗粒的分散过程进行了探讨。结合颗粒润湿机制对颗粒分散的动力学过程进行了研究,结果表明增强颗粒在熔体中的分散过程大致可以分为孕育期、聚集期和分散期三个阶段,加深了对复合铸造法制备颗粒增强复合材料的工艺过程认识。
     对金属型铸造成形的20%SiCp/Zl104复合材料试样的微观组织结构、界面结合状况和机械性能进行了研究,表明复合材料界面结合良好,复合材料中增强颗粒聚集、孔隙率较高是造成材料力学性能较基体合金有所下降的主要原因。
     对运用离心铸造成形方法制备的颗粒增强复合材料筒状件进行了系统的研究,结果表明,离心铸造工艺不仅会引起复合材料浆料中的增强颗粒分布、复合材料性质发生变化,而且由于凝固条件的变化也会使得构成复合材料的基体合金成分、微观组织结构在离心力方向产生变化,在对离心铸造成形过程中复合材料的凝固过程进行系统、深入探讨的基础上得出了离心铸造过程溶质传输、合金凝固过程的经验模型。
     系统的研究了离心铸造成形的筒状件增强层和非增强层材料热处理工艺,探讨在热处理过程中材料的组织结构和力学性能特征,结果表明增强颗粒的添加是造成增强层材料热处理动力学加速的主要因素,非增强层的化学成分和组织结构变化提高了元素的扩散速度,起到了加速时效动力学的作用。
     对基体合金材料、离心铸造成形的筒状件复合材料热处理前后的力学性能进行了深入探讨,结果表明增强颗粒的添加改变了材料的断裂模式,材料的断裂特征主要为增强颗粒引起的脆性断裂和基体合金的韧性断裂,复合材料整体表现为脆性断裂,由于基体合金与增强颗粒的界面处的位错密度较高、空位较多,在该处位错容易堆积形成裂纹断裂,铸态试样的力学性能不高,通过热处理方式可以有效的改善基体合金中的微观组织结构、降低界面处的位错密度和减少空位缺陷,其断裂主要表现为颗粒的脆性断裂,极大的提高了复合材料的布氏硬度和抗拉强度。
     对基体合金材料、离心铸造成形的筒状件增强层材料热处理前后的磨损机制和耐磨损性能进行了深入研究,磨损试验是块体-GCr15轴承钢环试验机上无润滑的条件下进行的。结果表明材料的磨损主要表现为磨粒磨损、黏着磨损和疲劳磨损三种机制,这几种磨损机制经常伴生出现。铸态SiCp/Zl104复合材料试样的磨损主要表现为黏着磨损和疲劳磨损引起的块体剥落,此时SiC增强颗粒不是主要的载荷承受体,通过固溶处理之后,作为传递载荷的基体合金的塑性改善,主要表现为磨粒磨损,SiCp/Zl104复合材料试样耐磨损性能有极大的增加,而在进行了时效处理之后,主要表现为疲劳磨损。
     采用立式离心铸造法完成了具有梯度变化复合材料盘状零件的试制备,结果表明合理的调整铸造工艺参数,调整复合材料的凝固时间和成形零件的凝固顺序,可以制备出SiC颗粒沿制动盘径向具有梯度分布的盘状零件,其硬度在径向方向也呈现梯度分布。
     通过对复合材料设计、材料制备与成形的基础研究研究表明,实现梯度复合材料制动盘制备是可行的。通过该研究表明掌握材料制备与成形过程的规律,深入探讨材料制备与成形过程材料的组织-性能关系,将可有效的指导实际产品的开发。
The particle-reinforced metal matrix composites (PMMCs) has specific strength and stiffness and superior wear resistance, so many researchers and engineeres have focused on the fabrication and forming process of composites, but the widespread use of composite was limited for the consideration of technology and cast in the past. The mechanical properties of PMMCs are influenced by the fabrication process parameters, the properties of metal matrix and reinforced particles and interface structure between reinforced particles and metal matrix. But the connection between the properties and structure has not understood completely, and available data is so scarce that the application of composites is limited on a large scale. In this paper, the finite elements analysis (FEA) was applied to develop new product of PMMCs based on the constitutes in composites, the fabrication and centrifugal casting forming of particle-reinforced composites was researched deeply, and the effects of process parameters on the microstructure, composition and properties of composites is also researched systemically, and the characteristic of processing, microstructure and mechanical properties is illustrated widely. The main results are as following:
     The temperature field and thermal stress field of brake disc with functional graded material (FGM) composites are researched under emergency braking by the finite element analysis (FEA) comparably, Attempts have been made to develop a novel brake disc, which can optimize brake’s working conditions. The results show that the temperature and thermal stress of FGM brake disc are the lowest among the three types of brake disc, and the distribution of temperature and thermal stress is also more uniform than the others. Furthermore, the FGM composite brake disc can decrease mass and increase life cycle. The primary design of FGM brake disc was carried out and refered to a new idea for the preparing of FGM brake disc.
     The fabrication of SiC particle reinforced Zl104 composites is researched deeply, in which the volume fraction of SiC particles is 20 percent, and the average diameter is 15.8μm, and the mass of composites arrive to 32Kg in one cycle. The fabrication parameters and the mechanism of dispersing and wetting of SiC particles in aluminum alloy melt were discussed. The results showed that the dispersing of SiC particles in melt involves three stages, which are the incubation stage, the incorporation stage and the uniform stage based on the wettability of SiC particles. It is helpful for the further understood of the fabrication processing.
     The microstructure, interface microstructure and mechanical properties of SiCp 20Vol.%/Zl104 composite samples were analyzed in detail. It is observed that there is no deleterious reaction in the interface between matrix alloy and SiC particle, and a little conglomeration of SiC particles and porosity are the main reasons for the decreasing of mechanical properties comparing to the matrix alloy.
     The centrifugal casting processing of PMMCs cylinder (internal diameter is 70mm, outer diameter is 130mm and the height is 110mm) researched in detail. The results show that the distribution of SiC particles and constitution of composite material located in different location changed in the process of centrifugal casting, and the properties and microstructure were also influenced. And an experimental mode about solute transfer and alloy solidification under centrifugal force has been received.
     The heat treatment processing of Zl104 alloy and the SiCp/Zl104 composites located in the reinforced zone and particle free zone of cylinder has been also researched based on the aging dynamics, and the microstructure and mechanical properties has been also discussed during heat treatment, results show that the adding of SiC particles has great effect on the heat treatment dynamics, the evolution of chemical composites and microstructure enhance the solute diffusion rate, so the the aging dynamic was shorted.
     The mechanical properties and microstructure of Zl104 alloy and SiCp/Zl104 composites located in the reinforced zone of cylinder have been discussed before and after heat treatment. It is observed that the fracture of composites includes brittle fracture of SiC particles and tough fracture of matrix alloy, and the fracture of SiCp/Zl104 composites in whole is characterized as brittleness, the micro-void and dislocation density located in the interface lead to the fracture of matrix alloy ahead the fracture of SiC particles for the as casting samples, so the mechanical properties of samples decreases greatly comparing with the matrix alloy. After heat treatment processing, the microstructure of the matrix alloy in composites can be modified, and the local stress concentration and micro-void in alloy also can be reduced too, therefore, the fracture mode of samples is characterized as brittle facture of SiC particles, and the Brinell hardness and tensile strength of composites increase greatly compared with as casting sampes.
     The wear behaviour and microstructural characterization of the wear surface of Zl104 alloy SiCp/Zl104 composites located in the reinforced zone of cylinder before and after heat treatment against GCr15 steel under unlubricated conditions using block-on-ring wear sliding wear tester.Results showed that the wear is charactered as grain abrasion, adhering abrasion and fatigue abrasion, and all of the wear mechanisms occurred at the same time. The wear behavior of as casting composites samples was mainly governed by the adhering abrasion and fatigue abrasion, in which the majority of SiC particles or precipitation of hard particles were fragmented and no longer acted as major load-bearing components. After solution treatment, the plastic of matrix alloy increase greatly, and the loading can transfer from SiC particles to the matrix, the wear behaviour of samples is charactered as grain abrasion. After aging treatment, the wear behaviour of samples is charactered as fatigue abrasion.
     Composites discal part, in which the SiC particles have graded change along the diameter of the ring, has been accompleted. It is analyzed that the process parameters during centrifugal casting can be controlled by the adjustment of the solidification times and the solidification modes of SiCp/Al-Si composites, plated specimen with ideal distribution of SiC particles along the diameter of the plated part can be fabricated successfully, and the hardness along the diameter of the plated part is also change fuctionally.
     The research on the constitution design, material fabrication and forming processing showed that it is feasible to preparing FGM’s production. The grasp of the fabrication of SiC 20%wt/Zl104 composites and the forming processing of FGM cylinder as well as plated part and the understanding of microstructure and mechanical properties will be an instruction for the development of FGM brake disc.
引文
[1] T. S. Srivatsan, T. S. Sudarshan and E. J. Lavernia. Processing of discontinuously-reinforced metal matrix composites by rapid solidification[J]. Progress in Materials Science, 1995,39(4-5):317-409.
    [2] T. W. Chou, A. Kelly and A. Okura. Fibre-reinforced metal-matrix composites[J]. Composites, 1985,16(3):187-206.
    [3] Ronald F. Gibson. Principles of composite material mechanics[M]. New York McGraw-Hill. Inc.,1994,1-2.
    [4] Y. -L. Shen, J. J. Williams, G. Piotrowski, N. Chawla and Y. L. Guo. Correlation between tensile and indentation behavior of particle-reinforced metal matrix composites: an experimental and numerical study[J]. Acta Materialia, 2001,49(16):3219-3229.
    [5] J.C. Walker, W.M. Rainforth and H. Jones. Lubricated sliding wear behaviour of aluminium alloy composites[J]. Wear, 2005,259(1-6):577-589.
    [6] A. Rabiei, M. Enoki and T. Kishi. A study on fracture behavior of particle reinforced metal matrix composites by using acoustic emission source characterization[J]. Materials Science and Engineering A, 2000,293(1-2):81-87.
    [7] T.S. Srivatsan, Meslet Al-Hajri, W. Hannon and V.K. Vasudevan. The strain amplitude-controlled cyclic fatigue, defomation and fracture behavior of 7034 aluminum alloy reinforced with silicon carbide particulates[J]. Materials Science and Engineering A, 2004,379(1-2):181-196.
    [8] A. Miserez, A. Rossoll and A. Mortensen. Investigation of crack-tip plasticity in high volume fraction particulate metal matrix composites[J]. Engineering Fracture Mechanics, 2004,71(16-17):2385-2406.
    [9] W.S. Dai, M. Ma and J.H. Chen. The thermal fatigue behavior and cracking characteristics of hot-rolling material[J]. Materials Science and Engineering A, 2007,448(1-2):25-32.
    [10] Olivier Beffort, Siyuan Long, Cyril Cayron, Jakob Kuebler and Philippe-AndréBuffat. Alloying effects on microstructure and mechanical properties of high volume fraction SiC-particle reinforced Al-MMCs made by squeeze casting infiltration[J]. Composites Science and Technology, 2007,67(3-4):737-745.
    [11] T. Huber, H.P. Degischer, G. Lefranc and T. Schmitt. Thermal expansion studies on aluminium-matrix composites with different reinforcement architecture of SiC particles[J]. Composites Science and Technology, 2006,66:2206-2217.
    [12] J. Hu W. G. Chu, W. D. Fei, C. K. Yao, L. Liu. . Microstructures evaluation of isothermally forged SiCw/Al composites[J]. Journary material science, 1999,34:565-569.
    [13] S. C. Tjong and Z. Y. Ma. Microstructural and mechanical characteristics of in situ metal matrix composites[J]. Materials Science and Engineering: R: Reports, 2000,29(3-4):49-113.
    [14] Shimoo T., Okamura K., Ito M. and Takeda M. High-temperature stability of low-oxygen silicon carbide fiber heat-treated under different atmosphere [J]. Journal of Materials Science, 2000,35(15):3733-3739.
    [15] J. Rodríguez, P. Poza, M.A. Garrido and A. Rico. Dry sliding wear behaviour of aluminium–lithium alloys reinforced with SiC particles[J]. Wear, 2007,262(3-4):292-300.
    [16] Tamer Ozben, Erol Kilickap and Orhan ?ak?r. Investigation of mechanical and machinability properties of SiC particle reinforced Al-MMC[J]. Journal of Materials Processing Technology, 2008,198(1-3):220-225.
    [17] Mahagundappa M. Benal and H.K. Shivanand. Influence of heat treatment on the coefficient of thermal expansion of Al (6061) based hybrid composites[J]. Materials Science and Engineering A, 2006,435-436:745-749.
    [18] J. Hashim, L. Looney and M. S. J. Hashmi. The enhancement of wettability of SiC particles in cast aluminium matrix composites[J]. Journal of Materials Processing Technology, 2001,119(1-3):329-335.
    [19] Meslet H. Al-Hajri.Understanding the mechanical behavior of particulate reinforced metal matrix composites[dissertation].Akron:The University of Akron,2003:25-28.
    [20] J. W. Kaczmar, K. Pietrzak and W. WIosinski. The production and application of metal matrix composite materials[J]. Journal of Materials processing Technology, 2000,106(1-3):58-67.
    [21] Mortensen A, Michaud VJ and Flemings MC. Pressure infiltration processing of reinforced aluminium[J]. Journal of metallurgy, 1993,45(1):36-43.
    [22] Cooke PS and Werner PS. Pressure infiltration casting of metal matrix composites[J]. Materials Science and Engineering A, 1991,144:189-194.
    [23] X.N. Zhang, L. Geng and G.S. Wang. Fabrication of Al-based hybrid composites reinforced with SiC whiskers and SiC nanoparticles by squeeze casting[J]. Journal of Materials Processing Technology, 2006,176(1-3):146-151.
    [24] Zamzam M, Ros D and Grosch J. Fabrication of P/M in situ fibre composite materials part-Ⅰ: formation of fibrous structure[J]. Key Engineering Materials, 1993,79-80:234-246.
    [25] Watanabe R and Kawasaki A.Overall view of the P/M fabrication of functionally gradient materials[C].Proc First Int Symposium on Functionally Gradient Materials.Sendai, Japan.1990.107-113.
    [26] Wenquan Zhang, Jianxin Xie and Congzeng Wang. Properties of 316L/PSZ composites fabricated by means of extrusion forming and gas-pressure sintering[J]. Materials Science and Engineering A, 2004,382(1-2):387-394.
    [27] Youngman Kim and Jae-Chul Lee. Processing and interfacial bonding strength of 2014 Al matrix composites reinforced with oxidized SiC particles[J]. Materials Science and Engineering A, 2006,420(1-2):8-12.
    [28] S.M. Seyed Reihani. Processing of squeeze cast Al6061–30vol% SiC composites and their characterization[J]. Materials & Design, 2006,27(3):216-222.
    [29] M. Gupta, M. O. Lai and C. Y. Soo. Effect of type of processing on the microstructural features and mechanical properties of Al-Cu/SiC metal matrix composites[J]. Materials and Design, 1996,210(1-2):114-122.
    [30] Y. Sahin. Preparation and some properties of SiC particle reinforced aluminium alloy composites[J]. Materials & Design, 2003,24(8):671-679.
    [31]王倩,高建国,马伟民;.金属基复合材料的发展与应用[J].沈阳大学学报, 2007,19(2):10-16.
    [32] Chong Y, Atkins HV and Jones H. Effect of ceramic particle size, melt superheat, impurities and alloy conditions on threshold pressure for infiltration of SiC powder compacts by Al-based melts[J]. Journal of Science and Engineering A, 1993,173:232-237.
    [33] Llyod DJ. Particle-reinforced aluminium and magnesium matrix composites[J]. International Materials Reviews, 1994,39(1):1-23.
    [34] Zhang Z, Long S and Flower HM. Light alloy composite production by liquid metal infiltration[J]. Composites, 1994,25(5):380-392.
    [35] Kanada H and Choh T. Fabrication of particle-reinforced magnesium composites by applying a spontanous infiltration pressure[J]. Jounal of Materials science, 1997,32:47-56.
    [36] Mansur LJ, Mortensen A, Cornic JA and Flemings MC. Infiltration of fibrous preforms by a pure metal: part II-experiment[J]. Metallurgy Transaction A, 1998,20:2547-2553.
    [37] K. Pericleous, V. Bojarevics, G. Djambazov, R.A. Harding and M. Wickins. Effect of stirring on solidification pattern and alloy distribution during semi-solid-metal casting[J]. Materials Science and Engineering A, 2006,423(1-2):71-83.
    [38] Sui Xiandong, Luo Chengping, Luo Zhuoxuan and Ouyang Liuzhang. The fabrication and properties of particle reinforced cast metal matrix composites[J]. Journal of Materials Processing Technology, 1997,63(1-3):426-431.
    [39] W. Zhou and Z. M. Xu. Casting of SiC reinforced metal matrix composites[J]. Journal of Materials Processing Technology, 1997,63(1-3):358-363.
    [40] M. K. Surappa. Microstructure evolution during solidification of DRMMCs (Discontinuously reinforced metal matrix composites): State of art[J]. Journal of Materials Processing Technology, 1997,63(1-3):325-333.
    [41] P. K. Rohatgi, J. Sobczak, R. Asthana and J. K. Kim. Inhomogeneities in silicon carbide distribution in stirred liquids—a water model study for synthesis of composites[J]. Materials Science and Engineering A, 1998,252(1):98-108.
    [42]谭锐,唐冀.铸造法制备SiCp/Al复合材料的研究进展[J].铸造, 2005,54(7):642-647.
    [43] J. Hashim, L. Looney and M. S. J. Hashmi. Metal matrix composites: production by the stir casting method[J]. Journal of Materials Processing Technology, 1999,92-93:1-7.
    [44] R. Mehrabian, R. G. Riek and M. Flemings. Preparation and casting of metal-particulate non-metal composites [J]. Metallurgical and Materials Transactions B, 1974,5(8):1899-1905.
    [45] M. Ferrante and E. de Freitas. Rheology and microstructural development of a Al–4wt%Cu alloy in the semi-solid state[J]. Materials Science and Engineering A, 1999,271(1-2):172-180.
    [46]王开,刘昌明,邹茂华,韩兆堂. ZL112Y铝合金半固态压铸过程微观组织的演变[J].中国有色金属学报, 2003,13(4):956-962.
    [47] Kai Wang, Changming Liu, Zhaotang Han, Jianyong Cao and Zonghe Zhang. Research on semi-solid thixoforming process of AZ91D magnesium alloy brackets for generators in JH70-type motorbikes[J]. Rare Metals, 2005,24(4):381-391.
    [48] N. J. Fei, L. Katgerman and W. H. Kool. Production of SiC particulate reinforced aluminium composites by melt spinning [J]. Journal of Materials Science, 1994,29(24):6439-6444.
    [49] Miros?aw Cholewa, Józef Gawroski and Zenon Ignaszak. Technological aspects of particle-reinforced composites production[J]. Materials and Design, 1997,18(4-6):401-405.
    [50] Rong Chen and Guoding Zhang. Casting defects and properties of cast A356 aluminium alloy reinforced with SiC particles[J]. Composites Science and Technology, 1993,47(1):51-56.
    [51]陈培生,孙扬善,蒋建清.工艺因素对SiCp/Mg复合材料中颗粒分布的影响[J].东南大学学报(自然科学版) 1997,27(5):17-23.
    [52]张鹏,杜云慧,曾大本,崔建忠.铝-7石墨复合材料的半固态加工[J].特种铸造及有色合金, 2001,(S1):251-253.
    [53] S. M. L. Nai and M. Gupta. Synthesis and characterization of free standing, bulk Al/SiCp functionally gradient materials: effects of different stirrer geometries[J]. Materials Research Bulletin, 2003,38(11-12):1573-1589.
    [54] P. A. Karnezis, G. Durrant and B. Cantor. Characterization of Reinforcement Distribution in Cast Al-Alloy/SiCp Composites[J]. Materials Characterization, 1998,40(2):97-109.
    [55] S. Naher, D. Brabazon and L. Looney. Computational and experimental analysis of particulatedistribution during Al-SiC MMC fabrication[J]. Composites Part A, 2007,38(3):719-729.
    [56] R.T. Bui, R. Oulette and D. Kocaefe. A two-phase flow model of the stirring of Al - SiC composite melt[J]. Metallurgical and Materials Transactions B 1994,25(4):607-618.
    [57] K.R. Ravi, V.M. Sreekumar, R.M. Pillai, Chandan Mahato, K.R. Amaranathan, R. Arul kumar and B.C. Pai. Optimization of mixing parameters through a water model for metal matrix composites synthesis[J]. Materials & Design, 2007,28(3):871-881.
    [58] Piero M. Armenante and Ernesto Uehara Nagamine. Effect of low off-bottom impeller clearance on the minimum agitation speed for complete suspension of solids in stirred tanks[J]. Chemical Engineering Science, 1998,53(9):1757-1775.
    [59] D.J. Lloyd. Particle reinforced aluminium and magnesium metal matrix composites[J]. Int. Materials Reviews, 1994,39(1):1-45.
    [60] S. Naher, D. Brabazon and L. Looney. Simulation of the stir casting process[J]. Journal of Materials Processing Technology, 2003,143-144:567-571.
    [61] J. Hashim, L. Looney and M. S. J. Hashmi. Particle distribution in cast metal matrix composites—Part I[J]. Journal of Materials Processing Technology, 2002,123(2):251-257.
    [62] J. Hashim, L. Looney and M. S. J. Hashmi. Particle distribution in cast metal matrix composites—Part II[J]. Journal of Materials Processing Technology, 2002,123(2):258-263.
    [63] Sukumaran K., Pillais S. G. K., Pillair R. M., Kelukutty V. S., Pai B. C., Satyanarayana K. G. and Ravikumar K. K. The effects of magnesium additions on the structure and properties of Al-7 Si-10SiCp composites[J]. Journal of Materials Science, 1995,30(6):1469-1472.
    [64]陈建,潘复生.氧化铝膜对铝基复合材料润湿行为的影响[J].材料科学与工程, 1999,17(2):85-90.
    [65]孟宪云,张峻巍,陈彦博,温景林.半固态复合熔铸过程中SiC与2A11合金的润湿性[J].中国有色金属学报, 2001,11(s2):77-81.
    [66]刘政,周彼德,彭德林,安阁英.氧化铝短纤维增强铝合金材料界面的研究[J].复合材料学报, 1991,8(4):1-6.
    [67] A. Ure?a, E. E. Martínez, P. Rodrigo and L. Gil. Oxidation treatments for SiC particles used as reinforcement in aluminium matrix composites[J]. Composites Science and Technology, 2004,64(12):1843-1854.
    [68] K.M. Shorowordi, T. Laoui, A.S.M.A. Haseeb, J.P. Celis and L. Froyen. Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study[J]. Journal of Materials Processing Technology, 2003,142:738-742.
    [69]王蕾,杨申涛,徐智谋,陈大凯. SiCp增强A l基复合材料浸润性的研究[J].武汉冶金科技大学学报, 1998,21(1):27-30.
    [70]王日初,毕豫,黄伯云,张传福. SiC颗粒表面处理对6066Al基复合材料力学性能的影响[J].中南大学学报, 2005,36(3):369-374.
    [71] Y.M. Youssef, R.J. Dashwood and P.D. Lee. Effect of clustering on particle pushing and solidification behaviour in TiB2 reinforced aluminium PMMCs[J]. Composites Part A: Applied Science and Manufacturing, 2005,36(6):747-763.
    [72] Quenisset J M Rocher J P , Naslain R. Wetting improvement of carbon or silicon carbide by aluminium alloys based on a K2ZrF6 surface treatment : application to composite material casting[J]. Journal of Materials Science, 1989,24:2697-2703.
    [73]李丽波,安茂忠,武高辉. SiCp/Al复合材料与化学镀镍层结合机理研究[J].无机化学学报, 2005,21(7):982-986.
    [74] Kyung KUL, Chang S and DOHJ L. wetting Behavior of Metal Coated SiC/Al Composite[J]. Japan. Inst.Metals., 2000,66(1):27-33.
    [75] SHIRAISHI O, YOSHIDA K and KAMA TTU K.Proceedings of the 76th conference of Japan institute of light metals[C].Japan Institute of Light Metal.TOKYO.1989.185.
    [76]谭锐,唐冀.铸造法制备SiCp/Al复合材料的研究进展[J].铸造, 2005,54(7):642-647.
    [77]马立群,陈峰,舒光冀.超声在制备SiC/Al-Mg颗粒增强复合材料中的应用[J].东南大学学报, 1995,25(3):50-54.
    [78] S. Balasivanandha Prabu, L. Karunamoorthy, S. Kathiresan and B. Mohan. Influence of stirring speed and stirring time on distribution of particles in cast metal matrix composite[J]. Journal of Materials Processing Technology, 2006,171(2):268-273.
    [79] S. Ray. Synthesis of Cast Metal Matrix Particulate Composites[J]. Jounal of Materials science, 1993,28(20):5397–5413.
    [80] A. M. Samuel and F. H. Samuel. Influence of casting and heat treatment parameters in controlling the properties of an Al-10 wt% Si-0.6 wt% Mg/SiC/20p composite [J]. Journal of Materials Science, 1994,29(14):3591-3600.
    [81]张秋明,曹志强,金俊泽,郭志芳.电磁搅拌法制备复合材料过程的工艺优化[J].中国有色金属学报, 2002,12(S1):142-147.
    [82] Ghosh P. K. and Ray S. Particle Dispersion and Fluid-Particle Interaction in a Slurry of Liquid Al--Mg Alloy and Al2O3 Particles[J]. Transactions of the Japan Institute of Metals, 1988,29(6):509-519.
    [83]黄大千,童华.金属基复合材料的界面分析[J].分析测试学报, 1997,16(2):57-60.
    [84]范同祥,施忠良,张荻,吴人洁. SiC/Al复合材料界面反应程度的测定[J].材料导报, 1999,13(4):65-67.
    [85] J.C. Romero, L.Wang and R.J.Arsenault. Interfacial structure of a SiC/Al composite[J].Materials Science and Engineering, 1996,(A212):1-5.
    [86]王文明,潘复生,孙旭炜,曾苏民, Lu Yun. SiCp/Al复合材料界面反应研究现状[J].重庆大学学报, 2004,27(3):108-113.
    [87] Jae-Chul Lee, Sung-Bae Park, Hyun-Kwang Seok, Chang-Seok Oh and Ho-In Lee. Prediction of Si contents to suppress the interfacial reaction in the SiCp/2014 Al composites[J]. Acta Materialia, 1997,46(8):2635-2643.
    [88]柴跃生,梁建民.制备温度与时间对复合材料界面反应的影响[J].太原重型机械学院学报, 1999,20(3):207-211.
    [89] M. Koizumi. FGM activities in Japan[J]. Composites Part B, 1997,28B:1-4.
    [90] Nairobi B. Duque, Z. Humberto Melgarejo and O. Marcelo Suárez. Functionally graded aluminum matrix composites produced by centrifugal casting[J]. Materials Characterization, 2005,55(2):167-171.
    [91]郑子樵,梁叔全.梯度功能材料的研究与展望[J].材料科学与工程学报, 1992,10(1):1-6.
    [92]李智慧,何小凤,李运刚.功能梯度材料的研究现状[J].河北理工大学学报, 2007,29(1):45-51.
    [93]张雷,周科朝,李志友,张晓泳.功能梯度材料的制备技术[J].粉末冶金材料科学与工程, 2003,8(1):48-56.
    [94]郑慧雯,茹克也木·沙吾提,章娴君.功能梯度材料的研究进展[J].西南师范大学学报, 2002,27(5):788-794.
    [95] Alan J. Markworth and James H. Saunders. A model of structure optimization for a functionally graded material[J]. Materials Letters, 1995,22(1-2):103-107.
    [96] Bao-Lin Wang, Yiu-Wing Mai and Xing-Hong Zhang. Thermal shock resistance of functionally graded materials[J]. Acta Materialia,, 2004,52(17):4961-4972.
    [97] Mahmoud Nemat-Alla. Reduction of thermal stresses by developing two-dimensional functionally graded materials[J]. International Journal of Solids and Structures 2003,40(26):7339-7356.
    [98] Jin Zhi-He and Noda Naotake. Transient thermal stress intensity factors for a crack in a semi-infinite plate of a functionally gradient material[J]. International Journal of Solids and Structures, Volume 31, Issue 2, January 1994, Pages 203-218, 1994,31(2):203-218.
    [99] J. C. Nadeau and M. Ferrari. Microstructural optimization of a functionally graded transversely isotropic layer[J]. Mechanics of Materials, 1999,31(10):637-651.
    [100] Takashi Fuchiyama and Naotake Noda. Analysis of thermal stress in a plate of functionally gradient material[J]. JSAE Review, 1995,16(3):263-268.
    [101] Jacob Aboudi, Marek-Jerzy Pindera and Steven M. Arnold. Microstructural optimization offunctionally graded composites subjected to a thermal gradient via the coupled higher-order theory[J]. Composites Part B: Engineering, 1997,28(1-2 ):93-108.
    [102]李云凯,王勇,李树奎,韩文波. PSZ/Mo功能梯度材料[J].复合材料学报, 2003,20(6):42-47.
    [103] J. R. Cho and D. Y. Ha. Volume fraction optimization for minimizing thermal stress in Ni–Al2O3 functionally graded materials[J]. Materials Science and Engineering A, 2002,334(1-2):147-155.
    [104] Liu GR, Tani J and Ohyoshi T. Lamb waves in a functionally gradient material plates and its transient response, part 1:theory[J]. Trans Japan Soc Mech Eng, 1991,57(A)(535):603-611.
    [105] Liu GR and Tani J. Characteristics of wave propagation in functionally gradient piezoelectric material plates and its response analysis,part 2: calculation results[J]. Trans Japan Soc Mech Eng Japan, 1991,57(A)(541):2122-2133.
    [106] Fukui Y and Yamanaka N. Elastic analysis for thick-walled tubes of functionally graded material subjected to internal pressure[J]. Int J Japan Soc Mech Eng Ser A, 1992,35:379-385.
    [107] Obata Y, Nosa N and Tsuji T. Steady thermal stresses in a functionally gradient material plate[J]. Trans JSME, 1992,58(553):1689-1695.
    [108] Obata Y and Nosa N. Transient thermal stresses in a plate of functionally gradient material[J]. Ceramic Trans, Funct Grad Mater, 1993,34:403-410. [109 Obata Y and Nosa N. Optimum material design for functionally gradient material plate[J]. Arch Appl Mech, 1996,66:581-589.
    [110] Praveen GN and Reddy JN. Nonlinear transient thermoelastic analysis of functionally graded ceramic-metal plates[J]. Int J Solids Struct, 1998,35:4457-4476.
    [111] Reddy JN. Analysis of functionally graded plates[J]. Int J Numer Meth Engng, 2000,47:663-684.
    [112] Han X, Liu GR, Xi ZC and Lam KY. Transient waves in a functionally graded cylinder[J]. Int J Solids Struct, 2001,38(17):3021-3037.
    [113] Sasaki M, wang Y and Hirano T. Design of SiC/C functionally gradient material and its propagation by chemical vapor deposition[J]. Journal of Japan Ceram Soc., 1989,97(5):539-543.
    [114] S. Surech.李守新.功能梯度材料基础:制备及热机械行为[M].北京:国防工业出版社,2000年8月,12.
    [115] A. Mortensen and S. Suresh. Functionally Graded Metals and Metal-Ceramic Composites Part I. Processing[J]. International Materials Reviews, 1995,40(6):239-265.
    [116]刘文川,王作明,孙守金,魏永良,刘敏.用CVI工艺制备碳纤维增强C-SiC梯度热结构材料[J].高技术通讯, 1994,(9):21-24.
    [117]张幸红,韩杰才,董世运,杜善义.梯度功能材料制备技术及其发展趋势[J].宇航材料工艺, 1999,(2):1-5.
    [118] Cengiz Kaya. Al2O3-Y-TZP/Al2O3 functionally graded composites of tubular shape from nano-sols using double-step electrophoretic deposition[J]. Journal of the European Ceramic Society, 2003,23(10):1655-1660.
    [119] Akira Kawasaki and Ryuzo Watanabe. Concept and P/M fabrication of functionally gradient materials[J]. Ceramics International, 1997,23(1):73-83.
    [120] S. M. L. Nai, M. Gupta and C. Y. H. Lim. Synthesis and wear characterization of Al based, free standing functionally graded materials: effects of different matrix compositions[J]. Composites Science and Technology, Volume 63, Issue 13, October 2003, Pages 1895-1909, 2003,63(13):1895-1909.
    [121] A. Velhinho, P. D. Sequeira, Rui Martins, G. Vignoles, F. Braz Fernandes, J. D. Botas and L. A. Rocha. X-ray tomographic imaging of Al/SiCp functionally graded composites fabricated by centrifugal casting[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2003,200:295-302.
    [122] M. Koizumi and N. Niino. Overview of FGM research activities in Japan[J]. Material Research Society Bulletin, 1995,20:19-21.
    [123] Yoshimi Watanabe, Akihiro Kawamoto and Koichi Matsuda. Particle size distributions in functionally graded materials fabricated by the centrifugal solid-particle method[J]. Composites Science and Technology, 2002,62(6):881-888.
    [124] Z. Humberto Melgarejo, O. Marcelo Suárezb and Kumar Sridharan. Wear resistance of a functionally-graded aluminum matrix composite[J]. Scripta Materialia, 2006,55:95-98.
    [125] Takamichi Iida and Roderick I. L. Guthrie. The Physical Properties of Liquid Metals [M]. USA Oxford University Press,1993,73.
    [126] R. F. Brooks, B. Monaghan, A. J. Barnicoat, A. McCabe, K. C. Mills and P. N. Quested. The physical properties of alloys in the liquid and“mushy”states [J]. International Journal of Thermophysics, 2005,17(5):1151-1161.
    [127] R. Rodriguez-Castro and M. H. Kelestemur. Processing and microstructural characterization of functionally gradient Al A359/SiCp composite [J]. Journal of Materials Science, 2002,37(9):1813-1821.
    [128] Velhinho A, Sequeira PD, Fernandes FB, Botas JD and Rocha LA. Al/SiCp functionally graded metal-matrix composites produced by centrifugal casting: Effect of particle grain size on reinforcement distribution [J]. MATERIALS SCIENCE FORUM, 2003,423-424:257-262
    [129] Y. Fukui, H. Okada, N. Kumazawa and Y. Watanabe. Near-net-shape forming of Al-Al3Ni functionally graded material over eutectic melting temperature[J]. Metallurgical and Materials Transactions A, 2000,31A(10):2627-2636.
    [130]谭银元.离心铸造过共晶Al-Si合金自生梯度复合材料及其阻尼性能[J].中国有色金属学报, 2002,12(2):353-358.
    [131]周馨我.功能材料学[M].北京:北京理工大学出版社,2002,305.
    [132] Krishnan B P and Shetty H R. Centrifugally Cast Graphitic Aluminum with Segregated Graphite Particles. AFS Trans , 1976 , 66 : 73~80[J]. AFS Transaction, 1976,66:73-80.
    [133] Andrea Bonitoa, Marco Picassoa and Manuel Laso. Numerical simulation of 3D viscoelastic flows with free surfaces [J]. Journal of Computational Physics 2006,215(2):691-716
    [134]张新平,于思荣,何镇明.离心力场中外加颗粒分布模型[J].中国有色金属学报, 2000,10(6):832-836.
    [135]章明宇,陈义良,杜卓林,黄庆.不同冷却条件下Al-Si/SiC颗粒系统二维凝固过程数值模拟[J].复合材料学报, 2003,20(5):114-122.
    [136] T. S. Srivatsan, Meslet Al-Hajri, C. Smith and M. Petraroli. The tensile response and fracture behavior of 2009 aluminum alloy metal matrix composite[J]. Materials Science and Engineering A, 2003,346(1-2):91-100.
    [137] T. W. Lee and C. H. Lee. Statistical evaluation of strength for die-cast SiCp/Al alloy composites[J]. Materials Letters, 2000,46(2-3):93-97.
    [138] M. P. Thomas and J. E. King. Improvement of the mechanical properties of 2124 Al/SiCp MMC plate by optimisation of the solution treatment[J]. Composites Science and Technology, 1996,56(10):1141-1149.
    [139] C. A. Lewis and P. J. Withers. Weibull modelling of particle cracking in metal matrix composites[J]. Acta Metallurgica et Materialia, 1995,43(10):3685-3699.
    [140] V.S. Aigbodion and S.B. Hassan. Effects of silicon carbide reinforcement on microstructure and properties of cast Al–Si–Fe/SiC particulate composites[J]. Materials Science and Engineering A, 2007,447:355-360.
    [141] Hayrettin Ahlatci, Tolga Ko?er, Ercan Candan and Huseyin ?imeno?lu. Wear behaviour of Al/(Al2O3p+SiCp) hybrid composites[J]. Tribology International, 2006,39(3):213-220.
    [142] Stefanos Skolianos. Mechanical behavior of cast SiCp-reinforced Al-4.5%Cu-1.5%Mg alloy[J]. Materials Science and Engineering A, 1996,210(1-2):76-82.
    [143] P. Cavaliere. Isothermal forging of AA2618 reinforced with 20% of alumina particles[J]. Composites Part A: Applied Science and Manufacturing, 2004,36(6):619-629.
    [144] Uhlmann D R and Chalmers D R. Interaction between particles and a solid–liquid interface[J].Journal of Applied Physics, 1964,35(10):2986-2993.
    [145] A. Ayyar and N. Chawla. Microstructure-based modeling of the influence of particle spatial distribution and fracture on crack growth in particle-reinforced composites[J]. Acta Materialia, 2007,55(18):6064-6073.
    [146] N. Axén, I. M. Hutchings and S. Jacobson. A model for the friction of multiphase materials in abrasion[J]. Tribology International, 1996,29(6):467-475.
    [147] Y. Fukui, H. Okada, N. Kumazawa, Y. Watanabe, N. Yamanaka and Y. Oya-Seimiya. Manufacturing of Al-Al3Fe functionally graded material using the vacuum centrifugal method and measurements of its mechanical properties [J]. Journal of Japan Institute of Light Metals, 1999,49(1):35-40.
    [148] Y. -L. Shen, A. Needleman and S. Suresh. Coefficients of thermal expansion of metal-matrix composites for electronic packaging [J]. Metallurgical and Materials Transactions A, 1994,25(4):839-850.
    [149]徐自立,林汉同.离心铸造铝基自生梯度功能材料的热物性能[J].特种铸造及有色合金, 2001,(4):16-20.
    [150] L.Z. Zhao, M.J. Zhao, X.M. Cao, C. Tian, W.P. Hu and J.S. Zhang. Thermal expansion of a novel hybrid SiC foam–SiC particles–Al composites[J]. Composites Science and Technology, 2007,67(15-16):3404-3408.
    [151]谢贤清,张荻,蔡建国,刘金水. TiCp/ZA43复合材料的热膨胀行为研究[J].材料工程, 2001,(8):3-7.
    [152]秦孝华,韩维新,范存淦,戎利建,李依依.离心铸造法制备陶瓷颗粒增强Al合金基功能梯度复合管[J].金属学报, 2001,37(10):1117-1120.
    [153] M.K. Surappa, S.V. Prasad and P.K. Rohatgi. Wear and abrasion of cast Al–alumina particle composites[J]. Wear, 1982,(77):295-302.
    [154]滕杰,陈振华,陈鼎,傅定发.喷射沉积Al-Si/SiCp复合材料干滑动磨损机理的研究[J].矿冶工程, 2007,27(2):64-67.
    [155]于思荣,任露泉,佟金,张新平,刘耀辉,何镇明. SiCp/Al-Si合金梯度材料的磨损特性[J].摩擦学学报, 2001,21(2):151-153.
    [156]许崇海,孙德明,冯衍霞,黄传真,艾兴.多相复合陶瓷刀具材料残余热应力的有限元模拟[J].复合材料学报, 2001,18(3):91-96.
    [157] Z.S. Shao and G.W. Ma. Thermo-mechanical stresses in functionally graded circular hollow cylinder with linearly increasing boundary temperature[J]. Composite Structures, 2008,83(3):259-265.
    [158] Z.S. Shao, T.J. Wang and K.K. Ang. Transient thermo-mechanical analysis of functionallygraded hollow circular cylinders[J]. Journal of Thermal Stresses 2007,30(1):81-104.
    [159] Z.S. Shao and T.J. Wang. Three-dimensional solutions for the stress fields in functionally graded cylindrical panel with finite length and subjected to thermal/mechanical loads [J]. International Journal of Solids and Structures 2006,43(13):3856-3874
    [160] K.-S. Kim and N. Noda. Green's function approach to unsteady thermal stresses in an infinite hollow cylinder of functionally graded material[J]. Acta Mechanica, 2002,156(3-4 ):145-161
    [161] J.N. Reddy and C.D. Chin. Thermomechanical analysis of functionally graded cylinders and plates[J]. Journal of Thermal Stresses 1998,21(6):593-626.
    [162] Y. Ootao and Y. Tanigawa. Three-dimensional transient thermal stresses of functionally graded rectangular plate due to partial heating[J]. Journal of Thermal Stresses, 1999,22(1):35-55.
    [163] K. M. Liew, S. Kitipornchaic, X. Z. Zhangd and C. W. Limc. Analysis of the thermal stress behaviour of functionally graded hollow circular cylinders [J]. International Journal of Solids and Structures 2003,40(10):2355-2380.
    [164] H. Okada, Y. Fukui, N. Kumuzawa and Y. Nakagawa. An Inverse Analysis Approach to Identify the Elastic-Plastic Material Properties of Al-Based Functionally Graded Materials[J]. Key Engineering Materials 1998,145-149:913-948.
    [165]赵军,艾兴,张建华.功能梯度材料的发展及展望[J].材料导报, 1997,11(4):57-60.
    [166] G. Qian, T. Nakamura, C. C. Berndt and S. H. Leigh. Tensile toughness test and high temperature fracture analysis of thermal barrier coatings[J]. Acta Materialia, 1997,45(4):1767-1784.
    [167] P.R. Marur and H.V. Tippur. Evaluation of mechanical properties of functionally graded materials[J]. Journal of Testing and Evaluation Volume: 26 Issue: 6 Pages: 539-45 Published: November 1998 1998,26(6):539-45.
    [168] P. E. Hodge, R. A. Miller and M. A. Gedwill. Evaluation of the hot corrosion behavior of thermal barrier coatings[J]. Thin Solid Films, 1980, 73(2):447-453.
    [169]王玉林,赵乃勤,董刚,曹阳,姜恩永,李国俊,王筑兰. Al2O3颗粒粒径和含量对α-Al2O3/Cu复合镀层性能的影响[J].复合材料学报, 1998,15(1):78-82.
    [170] S. Kumar, V. Subramanya Sarma and B.S. Murty. A statistical analysis on erosion wear behaviour of A356 alloy reinforced with in situ formed TiB2 particles[J]. Materials Science and Engineering: A, 2008,476(1-2):333-340.
    [171] Y. Sahin and K. ?zdin. A model for the abrasive wear behaviour of aluminium based composites[J]. Materials & Design, 2008,29(3):728-733.
    [172]李斌,许庆彦,李旭东,柳百成.颗粒增强金属基复合材料凝固过程的数值模拟研究进展[J].特种铸造及有色合金, 2005,25(6):339-344.
    [173] Daniel Delfosse, Nabih Cherradi and Bernard Ilschner. Numerical and experimental determination of residual stresses in graded materials[J]. Composites Part B: Engineering, 1997,28(1-2, ):127-141.
    [174] T. L. Becker, R. M. Cannon and R. O. Ritchie. An approximate method for residual stress calculation in functionally graded materials[J]. Mechanics of Materials, 2000,32(2):85-97.
    [175] J. W. Gao and C. Y. Wang. Modeling the solidification of functionally graded materials by centrifugal casting[J]. Materials Science and Engineering A, 2000,292(2):207-215.
    [176] Z. H. Xia and W. A. Curtin. Multiscale modeling of damage and failure in aluminum-matrix composites[J]. Composites Science and Technology, 2001,61(15):2247-2257.
    [177] S. Murali, K. T. Kashyap, K. S. Raman and K. S. S. Murthy. Inhibition of delayed ageing by trace additions in Al---7Si---0.3Mg cast alloy[J]. Scripta Metallurgica et Materialia, 1993,29(11):1421-1426.
    [178] J. Guo, H. Zhu and J. Jia. Mechanical properties of Al-7Si-Mg casting alloy under various aging conditions[J]. Materials Science and Technology 1998,14(5):476-478.
    [179] R.A. Siddiqui, S.A. Abdul-Wahab and T. Pervez. Effect of aging time and aging temperature on fatigue and fracture behavior of 6063 aluminum alloy under seawater influence[J]. Materials & Design, 2008,29(1):70-79.
    [180] M. Arshad Choudhry and Muhammad Ashraf. Effect of heat treatment and stress relaxation in 7075 aluminum alloy[J]. Journal of Alloys and Compounds, 2007,437(1-2):113-116.
    [181] Chandan Mondal, A.K. Mukhopadhyay, T. Raghu and V.K. Varma. Tensile properties of peak aged 7055 aluminum alloy extrusions[J]. Materials Science and Engineering: A, 2007,454-455:673-678.
    [182] Vijay K, Varma, Y.R. Mahajan and V.V. Kutumbarao. AGEING BEHAVIOUR OF Al-Cu-Mg ALLOY MATRIX COMPOSITES WITH SiCp of VARYING SIZES[J]. Scripta Materialia, 1997,37(4):485-489.
    [183] Jun-shan Lin, Peng-xing Li and Ren-jie Wu. Aging evaluation of cast particulate-reinforced SiC/Al(2024) composit[J]. Scripta Metallurgica et Materialia, 1993,28(3):281-286.
    [184]ümit C?cen, Kazim ?nel and Ismail ?zdemir. Microstructures and age hardenability of AL-5%si-0.2%Mg based composites reinforced with particulate SiC[J]. Composites Science and Technology, 1997,57(7):801-808.
    [185] BK Prasad. Structure and property related changes in a hypoeutectic Al–Si alloys induced by solutionizing[J]. Mater Trans JIM, 1994,34(12):873-878.
    [186] R.J. Arsenault and N. Shi. Dislocation generation due to differences between the coefficients of thermal expansion[J]. Materials Science and Engineering: A 1986,81:175-187.
    [187] Vijay K. Varma, Y.R. Mahajan and V.V. Kutumbarao. Agening behaviour of AL-Cu-Mg alloy matrix composites with SiCp of varying sizes[J]. Scripta Materialia, 1997,37(4):485-489.
    [188] S. Michelland-Abbe, M. Coster, J. L. Chermant and B. L. Mordike. Some relationships between morphology and mechanical properties of microcrystalline sintered steels[J]. Scripta Metallurgica et Materialia, 1991,25(6):1309-1314.
    [189] S. Suresh, T. Christman and Y. Sugimura. Accelerated aging in cast Al alloy-SiC particulate composites[J]. Scripta Metallurgica, 1989,23(9):1599-1602
    [190] Jun-shan Lin, Peng-xing Li and Ren-jie Wu. Aging evaluation of cast particulate-reinforced SiC/Al(2024) composites[J]. Scripta Metallurgica et Materialia, 1993,28(3):281-286.
    [191] JANOWSKI G. M. and PLETKA B. J. The effect of particle size and volume fraction on the aging behavior of a liquid-phase sintered SiC/aluminum composite[J]. Metallurgical and materials transactions. A, 1995,26(11):3027-3035
    [192]胡保全,牛晋川.先进复合材料[M].北京:国防工业出版社,2006年6月,1-13.
    [193]益小苏,杜善义,张立同.中国材料工程大典第10卷(复合材料工程)[M].北京:化学工业出版社,2006年3月,485-550.
    [194]黄金昌.铝基复合材料的新应用[J].稀有金属快报, 1999,(5):24-25.
    [195]李晓宾,陈跃.金属基复合材料的性能和应用[J].热加工工艺(热处理版), 2006,(8):71-75.
    [196]吴树森.日本金属基复合材料的研究与应用[J].兵器材料科学与工程, 1999,(2):56-60.
    [197] M. Gupta C.W. Wong, L. Lu. Effect of variation in physical properties of the mtallic matrix on the microstructural characteristics and aging behavior of Al-Cu/SiC metal matix composites[J]. Journary material science, 1999,340:1681-1689.
    [198]田大垒,王杏,关荣锋.电子封装用SiCp/Al复合材料的研究现状及展望[J].电子与封装, 2007,7(3):11-16.
    [199]叶斌,何新波,任淑彬,曲选辉.无压浸渗法制备高体分比SiCp/Al[J].北京科技大学学报, 2006,28(3):269-274.
    [200] Kyung Ho Min, Baek-Hee Lee, Si-Young Chang and Young Do Kim. Mechanical properties of sintered 7xxx series AI/SiCp composites[J]. Materials Letters, 2007,61:2544-2546.
    [201]吕一中.铝基复合材料在交通运输工具中的应用[J].北京工业职业技术学院学报, 2006,5(1):4-7.
    [202]胡宇铎,刘少军,陈国胜,杨莺. 200km/h高速机车制动盘及联接件温度场、应力场数值模拟[J].电力机车与城轨车辆, 2006,29(4):18--21.
    [203] N. L. Han, Z. G. Wang, W. L. Wang, G. D. Zhang and C. X. Shi. Low-cycle fatigue behavior of a particulate SiC/2024Al composite at ambient and elevated temperature[J]. Composites Science and Technology, 1999,59(1):147-155.
    [204] Junichiro Yamabe, Masami Takagi, Toshiharu Matsui, Takashige Kimura and Masanori Sasaki. Development of disc brake rotors for trucks with high thermal fatigue strength[J]. JSAE Review, 2002,23(1):105-112.
    [205] Masahiro Kubota, Tsutomu Hamabe, Yasunori Nakazono, Masayuki Fukuda and Kazuhiro Doi. Development of a lightweight brake disc rotor: a design approach for achieving an optimum thermal, vibration and weight balance[J]. JSAE Review, 2000,21(3):349-355.
    [206]曾建谋,曾焕浪,陈志明,谈健青,李锐泉.轿车制动器的制动盘开发研究[J].机床与液压, 2005,(8):38-39.
    [207]赵海燕,张海泉,汤晓华,林健,蔡志鹏.快速列车盘型制动热过程有限元分析[J].清华大学学报(自然科学版), 2005,45(5):589-592.
    [208]肖代红,陈康华,黄伯云. SiC颗粒增强铝基复合材料的显微组织与力学性能[J].特种铸造及有色合金, 2007,27(7):508-511.
    [209]王豫,姚凯伦.功能梯度材料研究的现状与将来发展[J].物理, 2000,29(4):206-211.
    [210] K. Fujita, H. Furukawa, M. Yamanaka and M. Niino. Solar excited laser using FGM concept for space energy network[J]. Materials Science Forum, 2003,423-425:807-812.
    [211] Obata Y, Takeuchi K, Kawazoe M and Kanayama K. Design of functionally graded wood-based board for floor heating system with higher energy efficiency[J]. MATERIALS SCIENCE FORUM, 2003,423-424:819-824.
    [212]孙志远,李艳琳.功能梯度材料的发展及其在内燃机上的应用[J].小型内燃机与摩托车, 2001,30(1):45-47.
    [213]韩杰才,徐丽,王保林,张幸红.梯度功能材料的研究进展及展望[J].固体火箭技术, 2004,27(3):207-215.
    [214] Jae-Chul Lee, Ji-Young Byun, Sung-Bae Park and Ho-In Lee. Prediction of Si contents to suppress the formation of Al4C3 in the SiCp/Al composite[J]. Acta Materialia, 1998,46(5):1771-1780.
    [215] D.T. Wan, C.F. Hu, Y.W. Bao and Y.C. Zhou. Effect of SiC particles on the friction and wear behavior of Ti3Si(Al)C2-based composites[J]. wear, 2007,262:826-832.
    [216]德意志联邦共和国工程师协会工艺与化学工程学会.传热手册[M].北京:化学工业出版社,1983,311-317.
    [217] Wang Kai, Liu Changming and Han Zhaotang. Reasearch on semi-solid thixiforing process of AZ91Dmagnesium alloy brackets for generators in JH70-type motorbikes[J]. Rare Metals, 2005,24(4):381-391.
    [218]梁训裕,刘景林.碳化硅耐火材料[M].北京:冶金工业出版社,1981,54.
    [219] Shubin Ren, Xinbo He, Xuanhui Qu, Islam S. Humail and Yan Li. Effect of calcinationprocess on the properties and microstructure of SiC preform and corresponding SiCp/Al composites synthesis by pressureless infiltration[J]. materials Science and Engineering A 2007,444(1-2):112-119.
    [220]胡汉起.金属凝固原理[M].北京:北京工业出版社,1993,66.
    [221] Omid Lashkari and Reza Ghomashchi. The implication of rheology in semi-solid metal processes: An overview[J]. Journal of Materials Processing Technology, 2007,182(1-3):229-240.
    [222] S.M.L. Nai and M. Gupta. Influence of stirring speed on the synthesis of Al/SiC based functionally gradient materials[J]. Composite Structures, 2002,(57):227-233.
    [223] Shubin Ren, Xinbo He, Xuanhui Qu, Islam S. Humail and Yan Li. Effect of Si addition to Al–8Mg alloy on the microstructure and thermo-physical properties of SiCp/Al composites prepared by pressureless infiltration[J]. Materials Science and Engineering B, 2007,138(3):263-270.
    [224] Jae-Chu Lee, Jae-Pyoung Ahn and Jae-Hyeok Shim. Control of the interface in SiC/Al composites[J]. Scripta Materialia, 1999,41(8):895-900.
    [225] Z. Shi, S. Ochiai, M. Gu, M. Hojo and J.C. Lee. The formation and thermostability of MgO and MgAl2O4 nanoparticles in oxidized SiC particle-reinforced Al-Mg composites [J]. Applied Physics A: Materials Science & Processing, 2002,74(1):97-104.
    [226] Jae-Chul Lee, Sung-Bae Park, Hyun-Kwang Seok, Chang-Seok Oh and Ho-In Lee. Prediction of Si contents to suppress the interfacial reaction in the SiCp/2014 Al composite[J]. Acta Materialia, 1998,46(8):2635-2643.
    [227] Shubin Ren, Xinbo He, Xuanhui qu and Yan Li. Effect of controlled interfacial reaction on the microstructure and properties of the SiCp/Al composites prepared by pressureless infiltration[J]. Journal of Alloys and Compounds, 2007:in press.
    [228] F. Ortega-Celaya, M.I. Pech-Canul, J. Lopez-Cuevas, J.C. Rendon-Angeles and M.A. Pech-Canul. Microstructure and impact behavior of Al/SiCp composites fabricated by pressureless infiltration with different types of SiCp[J]. Journal of Materials Processing Technology, 2007, 183:368–373.
    [229] Kon Bae Lee and Hoon Kwon. Interfacial reactions in SiCp/Al composite fabricated by pressureless infiltration[J]. Scripta Materialia, 1997,36(8):847-852.
    [230] M. I. Pech-Canul, R. N. Katz, M. M. Makhlouf and S. Pickard. The role of silicon in wetting and pressureless infiltration of SiCp preforms by aluminum alloys[J]. Journal of Materials Science, 2000,35(9):2167-2173.
    [231] L. Salvo, G. L'Espérance, M. Suéry and J. G. Legoux. Interfacial reactions and age hardeningin Al---Mg---Si metal matrix composites reinforced with SiC particles[J]. Materials Science and Engineering A, 1994,177(1-2):173-183.
    [232] Mingyuan Gu, Yanping Jin, Zhi Mei, Zengan Wu and Renjie Wu. Effects of reinforcement oxidation on the mechanical properties of SiC particulate reinforced aluminum composites[J]. Materials Science and Engineering A, 1998,252(2):188-198.
    [233] Soon-Jik Hong, Hong-Moule Kim, Dae Huh, C. Suryanarayana and Byong Sun Chun. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites[J]. Materials Science and Engineering A, 2003,347(1-2):198-204.
    [234] S. V. Kamat, J. P. Hirth and R. Mehrabian. Mechanical properties of particulate-reinforced aluminum-matrix composites[J]. Acta Metallurgica, 1989,37(9):2395-2402.
    [235] Y. Wu and E. J. Lavernia. Strengthening behavior of particulate reinforced MMCs[J]. Scripta Metallurgica et Materialia, 1992,27(2):173-178.
    [236] Tetsuro Ogawa, Yoshimi Watanabe, Hisashi Sato, Ick-Soo Kim and Yasuyoshi Fukui. Theoretical study on fabrication of functionally graded material with density gradient by a centrifugal solid-particle method[J]. Composites: Part A, 2006,(37):2194-2200.
    [237] S.B. Hassan, O. Aponbiede and V.S. Aigbodion. Precipitation hardening characteristics of Al–Si–Fe/SiC particulate composites[J]. Journal of Alloys and Compounds, 2007:In Press, Available online.
    [238] K.K. Chawla. Ceramic Matrix Composites[M]. London: Chapman and Hall,1993,164.
    [239] Sharmilee Pal, R. Mitra and V.V. Bhanuprasad. Aging behaviour of Al–Cu–Mg alloy–SiC composites[J]. Materials Science and Engineering A, 2007,
    [240] Vijay K. Varma, Y.R. Mahajan and V.V. Kutumbarao. Agening behaviour of AL-Cu-Mg alloy matrix composites with SiCp of varying sizes[J]. Scripta Materialia, 37(4):485-489.
    [241] G. M. Janowski and B. J. Pletka. The effect of particle size and volume fraction on the aging behavior of a liquid-phase sintered SiC/aluminum composite[J]. Metallurgical and Materials Transactions A, 1995,26(11):3027-3035.
    [242] KUO-CHAN CHEN and CHUEN-GUANG CHAO. Effect OfδAlumina Fibers On The Aging Characteristics Of 2024-Based Metal-Matrix Composites[J]. Metallurgical and Materials Transactions A, 1995,26:1035-1043.
    [243] A. Albiter, C. A. León, R. A. L. Drew and E. Bedolla. Microstructure and heat-treatment response of Al-2024/TiC composites[J]. Materials Science and Engineering A, 2000,289(1-2):109-115.
    [244] A. B. Pandey, R. S. Mishra and Y. R. Mahajan. Effect of isothermal heat treatment on the creep behaviour of an Al-TiCp composite[J]. Materials Science and Engineering A,1996,206(2):270-278.
    [245] T. W. Clyne and P. J. Withers. the Metal Matrix Composites in Industry: An Introduction and a Survey [M]. Cambridge,UK: Cambridge University Press,1993,
    [246] Ranjit Bauri and M.K. Surappa. Processing and properties of Al–Li–SiCp composites[J]. Science and Technology of Advanced Materials, 2007,8(6):494-502.
    [247] Zhao Dan and Floyd R. Tuler. Effect of particle size on fracture toughness in metal matrix composites[J]. Engineering Fracture Mechanics, 1994,47(2):303-308.
    [248] Soon-Jik Hong, Hong-Moule Kim, Dae Huh, C. Suryanarayana and Byong Sun Chun. Effect of clustering on the mechanical properties of SiC particulate-reinforced aluminum alloy 2024 metal matrix composites[J]. Materials Science and Engineering A, 2003,347(1-2):198-204.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700