复杂应力条件下饱和钙质砂动力特性的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
钙质砂是海洋生物成因富含碳酸钙或其它难溶碳酸盐类物质的特殊岩土介质,具有与普通陆源砂迥异的工程力学性质,在我国南海海域有着广泛的分布。处于海洋环境并作为海工建筑物地基的钙质砂不仅处于复杂的初始固结应力状态,而且承受着风、浪、流、地震等复杂动应力作用,其动力稳定性直接影响着上部结构物的安全。但目前国内外对复杂应力条件下饱和钙质砂动力特性的研究相对较少,因此进行复杂应力条件下钙质砂动力特性的研究,对于进一步发展与完善钙质土力学性质的研究、指导海洋荷载作用下钙质砂海域海床稳定性分析以及实际工程的设计和施工,对于南海诸岛丰富石油资源及岛礁旅游业的开发和保卫,都具有重要的理论价值和实际工程意义。
     本文采用先进的土工静力-动力液压三轴-扭剪多功能剪切仪较好地模拟了海洋环境复杂的初始固结应力状态和复杂的动应力条件,对我国南沙群岛的钙质砂进行了大量的大应变幅值和微幅应变条件下的竖向-扭向循环耦合剪切试验、扭剪试验,竖向拉-压剪切试验、动三轴试验等系列试验,对复杂应力条件下饱和钙质砂动力特性做了较为系统地研究,主要研究内容和研究成果如下:
     1、进行大应变幅值条件下的动强度试验,研究复杂应力条件下钙质砂的动应变特性,分析初始偏应力比、初始平均有效固结压力、初始主应力方向角、中主应力系数等因素和循环荷载的施加方式对钙质砂的动应变发展的影响,提出饱和钙质砂动应变的发展模式:Boltzmann曲线或双曲线。
     2、分析孔隙水压力发展的时程曲线,研究钙质砂的动孔隙水压力增长特性,分析各种因素对动孔隙水压力增长特性的影响,建立了复杂应力条件下钙质砂峰值孔隙水压力的发展模式;探讨复杂应力状态下钙质砂峰值孔隙水压力与累积广义剪应变之间的联系,建立峰值孔隙水压力随累积广义剪应变的发展模式。
     3、分析钙质砂的液化特性,获得复杂应力条件下饱和钙质砂的液化机理。均压固结与非均压固结条件下的液化机理不同:均压固结条件下,液化机理为流滑或循环活动性;偏压固结时各种试验条件下均不液化。
     4、在动应变和动孔隙水压力增长特性及液化特性分析基础上,研究饱和钙质砂的动强度特性,建立动强度方程,并对各种循环荷载条件下的动强度进行了比较。
     5、开展微幅应变条件下的动力试验,研究钙质砂的动应力~动应变特性以及动模量和动阻尼比特性,获得动应力~动应变关系的骨干曲线模式,并分析各种因素对骨干曲线的影响;研究复杂应力条件下钙质砂动弹性模量和动剪切模量特性,并建立了动弹性模量和动剪切模量的计算模式;探讨复杂应力条件下钙质砂轴向阻尼比和扭向阻尼比特性,并比较各种因素对轴向阻尼比和扭向阻尼比的影响。
Calcareous sand is a special geotechnical medium which composes much carbonate and has obvious different mechanical properties from the general sand. It is generated in marine environment and widely distributed in South China Sea. In the ocean conditions and as the foundation of marine structures, calcareous sand is not only under complex initial consolidated stress state, but also subjects complicated dynamic load induced by wind, ocean wave and earthquake shaking, so its dynamic stability directly influenced the safety of the above building. Since the dynamic behavior of calcareous sand under complex stress condition is seldom researched, so it has very significant academic meanings and engineering value to study the calcareous sand’s dynamic behavior under complex stress condition, which can develop and perfect the mechanical behavior investigation of calcareous soils, guide design, construction and assessing the stability of practical projects in marine condition, it can also exploit and defend the rich petroleum resource and reef island tourism in our South Sea.
     The dynamic behavior of calcareous sand under complex stress condition is studied systematically by performing a large number of tests such as vertical-and-torsional coupling cyclic shear test, simple trosional shear test, simple cyclic vertical shear test and simple triaxial shear test, using an advanced universal triaxial and torsional shear apparatus which can perfectly simulate the complex initial consolidated stress state and complicated dynamic stress. The main work and research findings are listed below.
     1、The dynamic strength experiment under high strain conditions is carried out to study the dynamic strain character of calcareous sand in complex stress state. Some factors influenced the development of dynamic strain are analysed such as initial deviator stress ratio, initial mean effective consolidated stress, initial direction angle of principal stress, parameter of intermediate principal stress and application way of cyclic load. The development model of dynamic strain has been put forward, that is Boltzmann curve or hyperbola.
     2、The development character of dynamic pore water pressure is investigated by analyzing the pore water pressure test curves and various effected factors. Then the development model of dynamic peak pore water pressure has been suggested. The determination method of peak pore water pressure with the accumulative generalized strain is proposed based on the relationship of peak pore water pressure and the accumulative generalized strain.
     3、The liquefaction nature of calcareous sand is studied and the liquefaction mechanics in complex stress condition is obtained. Mechanics of liquefaction under isotropic consolidation is different from under anisotropic. The liquefaction mechanics under isotropic consolidation is cyclic mobility or flow slide, while under anisotropic it isn’t liquefyied in all test condition.
     4、Based on the analysis of dynamic strain, pore water pressure and liquefaction nature, the dynamic strength character is researched and the strength equation is suggested. Then the dynamic strength under various cyclic load is compared.
     5、The character of dynamic stress-dynamic strain combat combined with dynamic modulus and damping ratio are studied by dynamic tests of low strain. The skeletal curves model of dynamic stress-dynamic strain is achieved and all the factors affected it are analysed. Then features of dynamic elastic modulus and dynamic shear modulus are researched and the calculational methods of then are proposed. At last, the axial damping ratio and torsional damping ratio are studied.
引文
[1] 中国科学院南沙综合科学考察队著.南沙群岛及其邻近海区地质地球物理及岛礁研究论文集(二).北京:科学出版社,1994
    [2] 郑维民. 中国海洋工程地质研究. 工程地质学报, 1994,2(1):90-96
    [3] 顾小云. 海洋工程地质的回顾与展望. 工程地质学报, 2000,8(1):40-45
    [4] 刘崇权,杨志强,汪稔.钙质土力学性质研究现状与发展.岩土力学,1995,16(4):74-83
    [5] 刘崇权,汪稔.钙质砂物理力学性质初探.岩土力学,1998,19(3):32-37
    [6] 刘崇权.钙质土土力学理论及其工程应用[博士学位论文].武汉:中国科学院武汉岩土力学研究所,1999
    [7] 刘崇权,单华刚,汪稔.钙质土工程特性及其桩基工程.岩土力学与工程学报,1999,18(3):331-335
    [8] 刘崇权,汪稔,吴新生.钙质砂物理力学性质试验中的几个问题.岩土力学与工程学报,1999,18(2):209-212
    [9] 虞海珍. 循环荷载作用下钙质砂动力特性的试验研究[硕士学位论文]. 武汉:中国科学院武汉岩土力学研究所,1999
    [10] 虞海珍,汪稔. 钙质砂动强度试验研究. 岩土力学,1999,20(4):6-11
    [11] 吕海波,汪稔,孔令伟.钙质土破碎原因的细观分析初探.岩土力学与工程学报,2001,20(增Ⅰ):890-982
    [12] 张家铭.钙质砂基本力学性质及颗粒破碎影响研究[博士学位论文].武汉:中国科学院武汉岩土力学研究所,2004
    [13] 陈海洋.钙质砂的内孔隙研究[硕士学位论文].武汉:中国科学院武汉岩土力学研究所,2005
    [14] 单华刚. 珊瑚礁钙质土中桩基工程承载性状研究[博士学位论文].武汉:中国科学院武汉岩土力学研究所,2000
    [15] 汪稔.南沙群岛珊瑚礁工程地质调查研究.中国科学院武汉岩土力学研究所地基室,1995
    [16] 汪稔,宋朝景,赵焕庭等.南沙群岛珊瑚礁工程地质.北京:科学出版社,1997
    [17] 吴京平,楼志刚.海洋桩基工程中的钙质土.海洋工程,1996,14(3):74-81
    [18] 吴京平,褚瑶,楼志刚.颗粒破碎对钙质砂变形及强度特性的影响.岩土工程学报,1997,19(5):49-55
    [19] Dolwin J, Khorshid M S. Evaluation of drive pile capacity-methods and results. In Proceedings of International Conference on Calcareous Sediments,Perth,1988:409-428
    [20] Nyland G. Detailed engineering geological investigation of North Rankin “A” platform site. In Proceedings of International Conference on Calcareous Sediments,Perth,1988:503-512
    [21] Poulos H G, Randolph M F, Semple R M J. Evaluation of pile friction from conductor tests. In Proceedings of International Conference on Calcareous Sediments,Perth,1988:599-605
    [22] King R, Lodge M. North West shelf development - The foundation engineering challege. In Proceedings of International Conference on Calcareous Sediments,Perth,1988: 333-341
    [23] Wiltsie E A , Hulelt J M , Murff J D et al . Foundation design for external strut strengthening system for Bass Strait first generation platforms. In Proceedings of International Conference on Calcareous Sediments,Perth,1988:321-330
    [24] Raines R D, Siciliano R J, Hyden A M. Pile driving experience in Bass Strait calcareous soils. In Proceedings of International Conference on Calcareous Sediments,Perth,1988: 173-181
    [25] Bock H, Mckean S B, Enever J R. Instrumented rotary drilling and heavy dynamic probing as predictive tools for the construction performance of piles in coralline material. In Proceedings of International Conference on Calcareous Sediments,Perth,1988:147-154
    [26] Morrison M J, Machado C F.Generalized soil conditions encountered in the Canpos and Sergipe Basins, Offshore Brazil. In the 18th Annual OTC in Houston, 1986: 233-244
    [27] Dutt R N, Doyle E H, Nandlal S et al. Frictional characteristic of calcareous sands from offshore Florida. In the 18th Annual OTC in Houston, 1986:589-600
    [28] Dutt R N, Ingram W B. Bearing capacity of jack-up footings in carbonate granular sediments.In Proceedings of International Conference on Calcareous Sediments,Perth,1988:291-296
    [29] Hagenaar J. The use and interpretation of SPT result for the determination of axial bearing capacities of piles driven into carbonate soils and coral. In Proceedings of the Second European Symposium on Penetration Testing,Amsterdam,1982:51-55
    [30] Agarwal S L, Malhitra A K, Banerjee R. Engineering properties of calcareous soils attecting the design of deep penetration piles for offshore structures. In the 9thAnnual OTC in Houston, 1977:503-512
    [31] Tsuchida T, Kobayashi M. Engineering properties of calcareous soils in Japanese South Western islands. In Proceedings of International Conference on Calcareous Sediments,Perth,1988: 137-144
    [32] Morrison M J, Mcintyre P D, Sauls P D et al. Laboratory test results for carbonate from offshore Africa. In Proceedings of International Conference on Calcareous Sediments,Perth,1988: 109-118
    [33] Dutt R N, Ingram W B. Significance of In-Situ and laboratory test result for design of foundations in granular carbonate soils. In the 23th Annual OTC in Houston, 1991:155-163
    [34] Coop M R. The mechanics of uncommented carbonate sands. Geotechnique,1990,40(4):607-626
    [35] Fahey M. The response of calcareous soils in static and cyclic triaxial test. In Proceedings of International Conference on Calcareous Sediments,Perth ,1988:61-68
    [36] Manoj D G, Venkatappn Rao, Shashik Gulhati. Development of pore water in a dense calcareous sand under repeated compressive stress cycles. In Proceedings of International Symposium on Soils Under cyclic and Transient Loading. Swansea, 1980:13-47
    [37] Knight K. Contribution to the performance of calcareous sands under cyclic loading. In Proceedings of International Conference on Calcareous Sediments,Perth,1988: 877-880
    [38] Kaggwa W S, Poulos H G, Cater J P. Response of carbonate sediments under cyclic triaxial test condition. In Proceedings of International Conference on Calcareous Sediments, Perth,1988:97-107
    [39] Kaggwa W S, Poulos H G. Comparison of the behavior of dense carbonate sediments and silica in cyclic triaxial tests. In The University of Sydney Research Report No.R611,1990:331-346
    [40] Kaggwa W S,Booker J R. Analysis of behavior of calcareous sand under uniform cyclic loading. Engineering properties of calcareous sediments research report,University of Sydney,Australia,1990:223-259
    [41] Kaggwa W S, Booker J R,Cater J P. Residual strains in calcareous sand due to irregular cyclic loading. Engineering properties of calcareous sediments research report,University of Sydney,Australia,1990:364-387
    [42] Airey D W, Fahey M. Cyclic response of calcareous soil from the North-West Shelf of Australia. Geotechnique,1991,41(1):101-121
    [43] Al-Douri R H, Poulos H G. Static and cyclic direct shear tests on carbonate sands. Geotech Test ,1992,15(2):138-157
    [44] 李建国. 波浪荷载作用下饱和钙质砂动力特性的试验研究[博士学位论文].武汉:中国科学院武汉岩土力学研究所,2005
    [45] 李建国,汪稔,虞海珍等. 初始主应力方向对钙质砂动力特性影响的试验研究. 岩土力学,2005,26(5):723-727
    [46] 刘艳华. 复杂应力条件下饱和松砂振动孔隙水压力的能量模式研究[硕士学位论文].大连:大连理工大学,2005
    [47] 王栋. 波浪作用下海床动力响应与液化的数值分析[博士学位论文].大连:大连理工大学,2002
    [48] Ishihara K, Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations,1983,23(4):11-26
    [49] 沈瑞福,王洪瑾. 动主应力旋转下砂土孔隙水压力发展及海床稳定性判断. 岩土工程学报,1994,16(3):70-78
    [50] 沈瑞福,王洪瑾,周景星. 动主应力轴连续旋转下砂土的动强度. 水利学报,1996(1):27-33
    [51] Wong R K S, Arthor J R F. Sand sheared by stresses with cyclic variations in direction. Geotechnique, 1986, 36(2): 215-226
    [52] Symes M T, Gens A, Hight D W. Drained principal stress rotation in saturated sand. Geotechnique, 1988, 38(1): 59-81
    [53] Madsen O S. Wave-induced pore pressures and effective stresses in a porous bed. Geotechniqe,1978,28(4):377-393
    [54] Broms B B, Casnbarian A O. Effects of rotation of the principal stress axes and of the intermediate principal stress on the shear strength. In Proceeding 6th International Conference on Soil Mechanics and Foundation Engineering, 1965, I: 179-183
    [55] Symes M J,Gens A, Hight D W. Undrained anisotropy and principal stress rotation in saturated sand. Geotechnique,1984,34(1):11-27
    [56] Ishihara K, Yamazaki A. Analysis of wave-induced liquefaction in seabed deposits of sand. Soils and Foundations, 1984, 24(3): 85-100
    [57] Towhata I, Ishihara K. Undrained strength of sand undergoing cyclic rotation of principal stress axes. soils and foundations, 1985, 25(2): 135-147
    [58] Towhata I, Ishihara K. Shear work and pore water pressure in undrained shear. Soils and Foundations, 1985, 25(3): 73-84
    [59] Dakoulas P, Sun Y H. Behavior of fine sand under cyclic rotation of principal using the hollow cylinder apparatus. Proceeding of 2th Int. Conference on Recent Advance in Geotechnical Earthquak Engineering and Soil Dynamics, St. Louis, Missouri, 1991. 535-542
    [60] Ishihara K, Yamazaki A, Haga K. Liquefaction of K0-consolidation sand under cyclic rotation of principal stress direction with lateral constraint. Soils and Foundations, 1985, 25(4): 63-74
    [61] Yamada Y, Ishihara K. Undrained deformation chracteristics of loose sand under three-dimensional stress conditions. Soils and Foundations, 1981, 21(1): 97-107
    [62] Sato K, Yasahara K, Yoshida N. Effect of drainage with pre-shearing on undrained cyclic shear behavior of dense sand. Proceeding of the 8th International Conference on the Behavior of Off Shore Structure, 1997, 1: 85-97
    [63] Sato K, Yoshida N. Effect of principal stress direction on undrained cyclic shear behavior of dense sand. Proceedings of the 9th International Offshore and Polar Engineering Conference, 1999, 1: 542-547
    [64] Yoshimine M, Ishihara K, Vargas W. Effects of principal stress direction and intermediate principal stress on unrained shear behavior of sand. Soils and Foundations, 1998, 38(3): 179-188
    [65] 李万明,周克骥,周景星. 用扭剪仪研究主应力轴偏转的影响. 见: 第三届全国土动力学学术会议,上海,1990. 239-242
    [66] 李万明,周景星.初始主应力轴偏转对粉土动力特性的影响. 见: 第四届全国土动力学学术会议论文集,杭州,1994. 47-50
    [67] 李万明,周景星. 扭剪与三轴试验中孔压不均匀性的研究. 岩土力学,1991, 12(4): 33-39
    [68] 张国平,王洪谨,周克骥. 内外室压力不等的空心圆柱扭剪仪的研制. 见: 第七届土力学及基础工程学术会议论文集. 北京: 中国建筑工业出版社,1994. 65-70
    [69] 王洪瑾,马奇国,周景星等. 土在复杂应力状态下的动力特性研究. 水利学报,1996(4):57-64
    [70] 付磊,王洪瑾,周景星. 主应力偏转角对砂砾料动力特性影响的试验研究. 岩土工程学报,2000,22(4):435-440
    [71] 王洪瑾,沈瑞福,马奇国. 双向振动下土的动强度. 清华大学学报(自然科学版),1996, 36(4): 93-98
    [72] 郭莹. 复杂应力条件下饱和松砂的不排水动力特性试验研究[博士学位论文].大连:大连理工大学,2003
    [73] 栾茂田,郭莹,李木国等. 土工静力-动力液压三轴-扭转多功能剪切仪研发及应用. 大连理工大学学报,2003,43(5):670-675
    [74] 郭莹,栾茂田,许成顺等. 主应力方向变化对松砂不排水动强度特性的影响. 岩土工程学报,2003,25(6):666-670
    [75] Ishihara K,Towhata I. Sand response to cyclic rotation of principal stress directions as induced by wave loads. Soils and Foundations,1983,23(4):11-26
    [76] Dakoulas P,Sun Y H. Behavior of the fine sand under cyclic rotation of principal using the hollow cylinder apparatus. In Proceeding of 2th Int. Conference on Recent Advance in Geotechnical Earthquake Engineering and Soil Dynamics,St. Louis,Missouri,1991. 535-542
    [77] Sato K,Yoshida N. Effect of principal stress direction on undrained cyclic shear behavior of dense sand. In Proceedings of 9th International Offshore and Polar Engineering Conference,1999,1: 542-547
    [78] Seed H B, Martin P P, Lysmer J. Pore-pressure changes during soil liquefaction. Journal of the Geotechnical Engineering Division, ASCE, 1976, 102(GT4): 323-346
    [79] 郭莹, 栾茂田, 何杨等. 复杂应力条件下饱和松砂孔隙水压力增长特性的试验研究. 地震工程与工程振动, 2004,24(3):139-144
    [80] 郭莹, 栾茂田, 何杨等. 主应力方向循环变化对饱和松砂不排水动力特性的影响. 岩土工程学报, 2005,27(4):403-409
    [81] Lo K Y. Pore strain relationship for normally consolidated undisturbed clays. Canadian Geotechnical Journal,1969,6(4):436-469
    [82] Yasuhara K et al. Cyclic strength and deformation of normally consolidated clay. Soils and Foundations,1982,22(3):365-382
    [83] 周景星.动荷载下饱和轻亚粘土的残留变形和孔隙水压力.中国土木工程学会第四届年会论文集,1988:234-241
    [84] 汪闻韶. 土的动力强度和液化特性. 北京:中国电力出版社,1996
    [85] 谢定义. 土动力学. 西安: 西安交通大学出版社,1988
    [86] Christian J T , Taylor P K,David R E. Large diameter under water pipeline for nuclear plant designed against soil liquefaction. In Proceedings sixth annual off-shore technology conference,Houston,Texas,May,1974. 597-606
    [87] Finn W D L , Martin G R. Offshore piled foundations in sand under earthquake loading.Applied Ocean research,1980,2(2):81-84
    [88] Finn W D L, Iai S, Ishihara K. Performance of artificial offshore islands under wave and earthquake loading:Field data analyses. In Proceedings,Offshore Technology Conference ,Houston,Tex,May,1982,1:661-672
    [89] Hyodo M,Hyde A F L,Aramaki N. Liquefaction of crushable soils. Geotechnique,48(4):527-543
    [90] The Committee on Soil Dynamics of Geotechnical Engineering Division. ASCE. Definition of Terms Related to liquefaction. Proc. ASCE.J.GED. 1979. (GT9): 1197-1200
    [91] 陈仲颐,周景星,王洪谨. 土力学. 北京:清华大学出版社,1994
    [92] Miura K,Miura S,Toki S. Deformation behavior of anisotropic dense sand under principal stress axes rotation. Soils and Foundations,1986,26(1):36-52
    [93] Oda M,Koishikawa I,Higuchi T. Experimental study of anisotropic shear strength of sand by plane strain test. Soil and Foundations,18(1): 31-36
    [94] 王洪瑾,张国平. 固有和诱发各向异性对击实粘性土强度和变形特性的影响. 岩土工程学报,1996,18(3):1-10
    [95] Hardin B O,Richart F E. Elastic wave velocities in granular soils. Journal of the Soil Mechanics and Foundations Division,ASCE,1963,89: 33-65
    [96] Hardin B O. The nature of damping in sands. Journal of the Soil Mechanics and Foundations Division,ASCE,1965,91: 63-97
    [97] Hardin B O,Black W L. Sand stiffness under various triaxial stresses. Journal of the Soil Mechanics and Foundations Division,ASCE,1966,92: 27-42
    [98] Martin P P,Seed H B. One-Dimensional dynamic ground response analysis. Journal of the Geotechnique Engineering Division ASCE,1982,108: 935-954
    [99] Seed H B,Idriss L M. Soil moduli and damping factors for dynamic response analysis. In Report Earthquake Engineering Research Center. University of California. Berkeley,Calif,. 1970. 10-70
    [100] Hardin B 0, Black W L. Vibration Modulus of Normally Consolidated Clay. Journal of the Soil Mechanics and Foundations Division. ASCE, 1969, 95: 1531-1537
    [101] Hardin B 0, Drnevich V P. Shear Modulus and Damping in Soits: Design Equation and Curves. Journal of the Soil Mechanics and Foundations Division. ASCE, 1972, 198: 667-692
    [102] 祝龙根,吴晓峰. 低幅应变条件下砂土动力特性的研究. 大坝观测与土工测试,1988,12(1):27-33
    [103] 包承纲,钱胜国. 风化砂、淤积砂的动力特性. 长江科学院院报,1997,14(4):74-78
    [104] 朱腾明,张万昌. 塔中油田沙漠砂动力特性试验研究. 岩土工程学报,1998,20(3):97-101
    [105] 徐存森,吴俊壁. 用扭转单剪/共振柱仪测定某核电站饱和原状砂的动剪切模量. 大坝观测与土工测试,1996,20(5):36-39
    [106] 郭莹,栾茂田,何扬等. 不同应力条件下砂土动模量特性的试验对比研究. 水利学报,2003(5):41-45
    [107] 郭莹,史旦达,栾茂田等. 初始主应力方向对松砂动力变形特性影响的试验研究. 见中国土木工程学会第九届土力学及岩土工程学术会议论文集. 北京:清华大学出版社,2003:1069-1072
    [108] 王权民,李刚,陈正汉等. 厦门砂土的动力特性研究. 岩土力学, 2005, 26(10):1628-1632
    [109] 黄博,陈云敏. 粉土和粉砂的动力特性试验研究. 浙江大学学报(工学版),2002,36(2):143-147
    [110] 黄博,陈云敏等. 粉土的动力特性及液化势研究. 工程勘察,2001,(2):7-17
    [111] 费涵昌,吴一伟. 黄浦江大桥桥址土层的动力特性研究. 第三届全国土动力学学术会议. 上海:同济大学出版社,1990. 303-308
    [112] 童华炜,朱博鸿. 增湿对黄土动剪切模量及阻尼比的影响. 见第三届全国土动力学学术会议. 上海:同济大学出版社,1990. 117-120
    [113] 陈国兴, 刘雪珠. 南京及邻近地区新近沉积土的动剪切模量和阻尼比的试验研究. 岩石力学与工程学报,2004,23(8):1403-1410
    [114] 何昌荣. 动模量和阻尼的动三轴试验研究. 岩土工程学报,1997,19(2):39-48
    [115] 蒋寿田,王幸辛. 郑州地区地基原状土动模量和阻尼比. 见第三届全国土动力学学术会议. 上海:同济大学出版社,1990. 151-155
    [116] 袁晓铭,孙悦. 常规土类动剪切模量和阻尼比试验研究. 地震工程与工程振动,2000,20(4):133-139
    [117] 徐学燕,冲丛利. 冻土的动力特性研究及其参数确定. 岩土工程学报,1998,20(5):77-81
    [118] 赵淑萍,朱元林,何平等. 冻土动力学参数测试研究. 岩石力学与工程学报,2003,22(增 2):2677-2681
    [119] 郭佩玖,胡成. 粉煤灰的动力特性及动力分析. 岩土工程学报,1988,10(5):80-83
    [120] 刘垂远,何昌荣. 粉煤灰筑坝的动力特性试验研究. 东北水利水电,2004,22(234):29-32
    [121] 李喜安,彭建兵,范文等. 公路黄土路基动力学参数的影响因素及其规律研究. 公路交通科技,2005,22(6):87-91
    [122] 毛成,邱延峻. 膨胀土与改性膨胀土的动力特性试验研究. 岩石力学与工程学报,2005,24(10):1783-1788
    [123] 毛成,邱延峻. 膨胀土与改性膨胀土累积塑性应变及动力特性. 公路交通科技,2004,21(9):5-8
    [124] 孔宪京, 娄树莲, 邹德高等. 筑坝堆石料的等效动剪切模量与等效阻尼比. 水利学报,2001(8):32-37
    [125] 孔宪京,贾革续. 微小应变堆石料的变形特性. 岩土工程学报,2002,23(1):32-37
    [126] 陈云敏,冯世进,孔宪京等. 城市固体废弃物的动力特性及参数确定. 土木工程学报,2006,39(5):90-95
    [127] 冯世进,陈云敏,孔宪京等. 城市固体废弃物动力特性试验研究. 岩土工程学报,2005,27(7):750-754
    [128] 周健,池毓尉. 垃圾土动模量和残余应变试验研究. 见第八届土力学及岩土工程学术会议论文集. 北京:万国学术出版社,1999. 593-596
    [129] 张超,杨春和,白世伟. 尾矿料的动力特性试验研究. 岩土力学,2006,27(1):35-40
    [130] 孙静,袁晓铭. 土的动模量和阻尼比研究述评. 世界地震工程,2003,19(1):88-95
    [131] 孙静.岩土动剪切模量阻尼试验及应用研究[博士学位论文].哈尔滨: 中国地震局工程力学研究所, 2004
    [132] Burland J B, Small is beautiful-the stiffness of soils at small strain. Canadian Geotechnical,1989,26:499-516
    [133] Puzrin A M,Burland J B. Non-liner model of small-strain behavior of soils. Geotechnique,1988,48(2):217-233
    [134] 尚守平,刘方成,杜运兴等. 应变累积对黏土动剪模量和阻尼比影响的试验研究. 岩土力学,2006,27(5):683-688
    [135] 张克绪. 土力学. 中国科学院工程力学研究所,1983

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700