中红外空心布拉格光纤及其痕量气体传感应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
中红外空心布拉格光纤在光纤结构、导光机制、材料体系和传输特性上与传统光纤的巨大差异,为其突破传统光纤的性能局限,拓展光纤光学的应用领域提供了可能。它的中红外空心导光特性使其适合作为高效率气体样品室提升光与气体的相互作用距离,在痕量气体传感领域有重要的应用价值。
     本论文面向中红外空心布拉格光纤在痕量气体传感中的应用,结合国家973项目“新型光电子器件中的异质兼容集成与功能微结构体系基础研究”和北京市自然科学基金项目“用于高灵敏度气体检测的中红外空心布拉格光纤”,系统地研究了中红外空心布拉格光纤的传输特性、制备工艺、气体传感应用以及光纤功能拓展。
     建立了空心布拉格光纤的理论分析方法并研究了其一维光子晶体包层的带隙特性和光纤模式特性;建立了中红外空心布拉格光纤直径波动影响光纤传输特性的理论模型,定量研究了光纤导波模式最大有效光纤长度与直径波动大小的关系,得出了中红外空心布拉格光纤的波动容限为6.5%的仿真结果,为光纤的工艺制备提供了理论指导
     在国内率先开展了中红外空心布拉格光纤的制备工艺研究。自主设计和建立了完整的中红外空心布拉格光纤的制备工艺平台和相关工艺规范。提出了预制棒参量与光纤拉丝比配合的中红外空心布拉格光纤传输波段控制方案。在国内首次制备出中红外空心布拉格光纤样品,其中10.6μm波段光纤样品传输损耗为2.35dB/m,3.3μm波段光纤样品传输损耗为4.55dB/m。
     理论研究并提出了使用中红外空心布拉格光纤作为样品室的痕量气体传感系统探测极限的计算公式。以甲烷为待测气体,利用传输波段在3.3μm附近的中红外空心布拉格光纤样品实验实现了痕量气体传感,并用指数稀释法测量了不同光纤长度下气体浓度探测极限,实验结果与计算公式相符。在空心布拉格光纤样品长度为0.86m时系统的探测极限最小,达到7.41ppm。
     提出并实验实现了采用一个周期内含两个高低折射率双层的一维光子晶体作为包层的空心布拉格光纤新结构,理论和实验论证了它的中红外波段多波长传输特性。利用2阶和3阶传输峰在3-7μm波长范围的光纤样品实验实现了对甲烷和一氧化碳气体的同时检测,论证了它在多组分气体传感中应用的可行性。
Mid-infrared hollow-core Bragg fiber (HC-BF) is completely different from thetraditional optical fiber on fiber structure, guiding mechanism, material selection andtransmission characteristics. Hence it is possible to break the performance limitation ofthe traditional optical fiber and explore new application areas of optical fibers. Thanksto its ability of mid-infrared light transmission in a hollow-core, mid-infrared HC-BFhas great potential on the application of trace gas sensing, which is very important inenvironment protections and medical applications.
     Aiming at the application in the trace gas sensing, this dissertation, which issupported by the National Basic Research Program (973Program) project of China andthe Science Foundation of Beijing, has comprehensively investigated the mid-infraredHC-BF’s transmission characteristics, fabrication techniques, gas sensing applicationsand new fiber designs for specific requirement of the gas sensing applicaiton.
     Theoretical methods of the HC-BF and its one dimensional photonic crystal (1DPC)cladding were established to investigate the bandgap characteristics of its1DPCcladding and the fiber modal characteristics. The impact of the fiber outer diametervariations on the transmission characteristics of the mid-infrared HC-BF was alsoinvestigated theoretically. Based on the analysis of the relation between the maximumeffective fiber length and the fiber outer diameter variation, the tolerance of the fiberouter diameter variation for the mid-infrared HC-BF was found to be6.5%, whichprovides a useful theoretical guidance for the fiber fabrication.
     The fabrication process of the mid-infrared HC-BF was studied firstly in China.The fabrication platform and related techniques were established. Combining thedesigns of the fiber preform and fiber drawing parameters, mid-infrared HC-BFs withtransmission wavelengths in the whole mid-infrared band could be fabricatedsuccessfully. The mid-infrared HC-BF samples were fabricated at the first time in China.The transmission losses are2.35dB/m for the fiber sample with a transmission bandaround10.6μm and4.55dB/m for the fiber sample with a transmission band around3.3μm.
     The relation between the performance of the mid-infrared HC-BF and the limit of gas concentration detection has been deduced theoretically. The trace gas sensing ofmethane using the mid-infrared HC-BF was demonstrated experimentally with a fibersample with a transmission band around3.3μm. The limits of gas concentrationdetections under different fiber lengths were measured by the exponential dilutionmethod, which were consistent with the theoretical analysis. The optimized fiber lengthwas found to be0.86m for our experiment setup, with an optimized limit of gasconcentration detection of7.41ppm.
     The multi-wavelength transmission mid-infrared HC-BF was proposed bymodifying the1DPC structure and extending the characteristics of the higher-orderphtonic band gaps. Its multi-wavelength transmission within one-octave was confirmedtheoretically and experimentally. The trace level multi-gas sensing of methane andcarbon monoxide was performed experimentally with a multi-wavelengthtransmissionHC-BF sample, of which the2ndand3rdtransmission bands are within thewavelength range of3μm~7μm, demonstrating its great potential on the applicationof multi-gas sensing.
引文
[1] Knight J C. Photonic crystal fibres. Nature,2003,424(6950):847~851
    [2] Russell P. Photonic Crystal Fibers. Science,2003,299(5605):358~362
    [3] Russell P S J. Photonic-Crystal Fibers. Journal of Lightwave Technology,2006,24(12):4729~4749
    [4] Knight J C, Birks T A, Russell P S J, et al. All-silica single-mode optical fiber with photoniccrystal cladding. Optics Letters,1996,21(19):1547~1549
    [5] Birks T A, Knight J C, Russell P S J. Endlessly single-mode photonic crystal fiber. OpticsLetters,1997,22(13):961~963
    [6] Knight J C, Birks T A, Cregan R F, et al. Large mode area photonic crystal fibre. ElectronicsLetters,1998,34(13):1347~1348
    [7] Ortigosa-Blanch A, Knight J C, Wadsworth W J, et al. Highly birefringent photonic crystalfibers. Optics Letters,2000,25(18):1325~1327
    [8] Knight J C, Arriaga J, Birks T A, et al. Anomalous dispersion in photonic crystal fiber.Photonics Technology Letters, IEEE,2000,12(7):807~809
    [9] Steel M J, Osgood J R M. Elliptical-hole photonic crystal fibers. Optics Letters,2001,26(4):229~231
    [10] Reeves W, Knight J, Russell P, et al. Demonstration of ultra-flattened dispersion in photoniccrystal fibers. Optics Express,2002,10(14):609~613
    [11] Hansen K. Dispersion flattened hybrid-core nonlinear photonic crystal fiber. Optics Express,2003,11(13):1503~1509
    [12] Michie A, Canning J, Lyytiknen K, et al. Temperature independent highly birefringentphotonic crystal fibre. Optics Express,2004,12(21):5160~5165
    [13] Jesper L A A B. Photonic crystal fibres with large nonlinear coefficients. Journal of Optics A:Pure and Applied Optics,2004,6(1):1
    [14] Saitoh K, Koshiba M. Highly nonlinear dispersion-flattened photonic crystal fibers forsupercontinuum generation in a telecommunication window. Optics Express,2004,12(10):2027~2032
    [15] Limpert J, Schmidt O, Rothhardt J, et al. Extended single-mode photonic crystal fiber lasers.Optics Express,2006,14(7):2715~2720
    [16] Dudley J M, Taylor J R. Ten years of nonlinear optics in photonic crystal fibre. NaturePhotonics,2009,3(2):85~90
    [17] Myaing M T, Ye J Y, Norris T B, et al. Enhanced two-photon biosensing with double-cladphotonic crystal fibers. Optics Letters,2003,28(14):1224~1226
    [18] Limpert J, Schreiber T, Nolte S, et al. High-power air-clad large-mode-area photonic crystalfiber laser. Optics Express,2003,11(7):818~823
    [19] Knight J C, Broeng J, Birks T A, et al. Photonic Band Gap Guidance in Optical Fibers.Science,1998,282(5393):1476~1478
    [20] Cregan R F, Mangan B J, Knight J C, et al. Single-Mode Photonic Band Gap Guidance ofLight in Air. Science,1999,285(5433):1537~1539
    [21] Barkou S E, Broeng J, Bjarklev A. Silica-air photonic crystal fiber design that permitswaveguiding by a true photonic bandgap effect. Optics Letters,1999,24(1):46~48
    [22] Saitoh K, Koshiba M. Leakage loss and group velocity dispersion in air-core photonicbandgap fibers. Optics Express,2003,11(23):3100~3109
    [23] West J, Smith C, Borrelli N, et al. Surface modes in air-core photonic band-gap fibers. OpticsExpress,2004,12(8):1485~1496
    [24] Saitoh K, Mortensen N, Koshiba M. Air-core photonic band-gap fibers: the impact of surfacemodes. Optics Express,2004,12(3):394~400
    [25] Roberts P, Couny F, Sabert H, et al. Ultimate low loss of hollow-core photonic crystal fibres.Optics Express,2005,13(1):236~244
    [26] Bouwmans G, Bigot L, Quiquempois Y, et al. Fabrication and characterization of an all-solid2D photonic bandgap fiber with a low-loss region (20dB/km) around1550nm. OpticsExpress,2005,13(21):8452~8459
    [27] Shephard J D, Roberts P J, Jones J D C, et al. Measuring beam quality of hollow corephotonic crystal fibers. Lightwave Technology, Journal of,2006,24(10):3761~3769
    [28] Amezcua-Correa R, Broderick N G, Petrovich M N, et al. Optimizing the usable bandwidthand loss through core design in realistic hollow-core photonic bandgap fibers. Optics Express,2006,14(17):7974~7985
    [29] Fevrier S, Jamier R, Blondy J M, et al. Low-loss singlemode large mode area all-silicaphotonic bandgap fiber. Optics Express,2006,14(2):562~569
    [30] Murao T, Saitoh K, Koshiba M. Structural Optimization of Air-Guiding Photonic BandgapFibers for Realizing Ultimate Low Loss Waveguides. Journal of Lightwave Technology,2008,26(12):1602~1612
    [31] Mangan B, Lyngs J K, Roberts P J. Realization of Low Loss and Polarization MaintainingHollow Core Photonic Crystal Fibers. Optical Society of America,2008
    [32] Petrovich M N, Poletti F, van Brakel A, et al. Robustly single mode hollow core photonicbandgap fiber. Optics Express,2008,16(6):4337~4346
    [33] Temelkuran B, Hart S D, Benoit G, et al. Wavelength-scalable hollow optical fibres withlarge photonic bandgaps for CO2laser transmission. Nature,2002,420(6916):650~653
    [34] Yeh P, Yariv A, Marom E. Theory of Bragg fiber. Journal of the Optical Society of America,1978,68(9):1196~1201
    [35] Yablonovitch E. Inhibited Spontaneous Emission in Solid-State Physics and Electronics.Physical Review Letters,1987,58(20):2059~2062
    [36] John S. Strong localization of photons in certain disordered dielectric superlattices. PhysicalReview Letters,1987,58(23):2486~2489
    [37] Fink Y, Winn J N, Fan S, et al. A Dielectric Omnidirectional Reflector. Science,1998,282(5394):1679~1682
    [38] Vienne G, Xu Y, Jakobsen C, et al. First demonstration of air-silica Bragg fiber: Optical FiberCommunication Conference. Optical Society of America,2004D25
    [39] Vienne G, Xu Y, Jakobsen C, et al. Ultra-large bandwidth hollow-core guiding in all-silicaBragg fibers with nano-supports. Optics Express,2004,12(15):3500~3508
    [40] Poli F, Foroni M, Giovanelli D, et al. Silica bridge impact on hollow-core Bragg fibertransmission properties: Optical Fiber Communication and the National Fiber Optic EngineersConference,2007. OFC/NFOEC2007. Conference on.20071~3
    [41] Foroni M, Passaro D, Poli F, et al. Tailoring of the Transmission Window in RealisticHollow-Core Bragg Fibers: Optical Fiber Communication Conference and Exposition andThe National Fiber Optic Engineers Conference. Optical Society of America,2008A7
    [42] Passaro D, Foroni M, Poli F, et al. All-Silica Hollow-Core Microstructured Bragg Fibers forBiosensor Application. Sensors Journal, IEEE,2008,8(7):1280~1286
    [43] Rowland K J, Afshar S V, Monro T M. Novel Low-Loss Bandgaps in All-Silica Bragg Fibers.Lightwave Technology, Journal of,2008,26(1):43~51
    [44] Pone E, Dubois C, Gu N, et al. Drawing of the hollow all-polymer Bragg fibers. OpticsExpress,2006,14(13):5838~5852
    [45] Dupuis A, Guo N, Gauvreau B, et al. Guiding in the visible with "colorful" solid-core Braggfibers. Optics Letters,2007,32(19):2882~2884
    [46] Dupuis A, Guo N, Gauvreau B, et al. All-Fiber Spectral Filtering with Solid Core PhotonicBand Gap Bragg Fibers: Optical Fiber Communication Conference and Exposition and TheNational Fiber Optic Engineers Conference. Optical Society of America,2008M3
    [47] Gauvreau B, Guo N, Schicker K, et al. Color-changing and color-tunable photonic bandgapfiber textiles. Optics Express,2008,16(20):15677~15693
    [48] Qu H, Skorobogatiy M. Liquid-core low-refractive-index-contrast Bragg fiber sensor. AppliedPhysics Letters,2011,98(20):201113~201114
    [49] Fink Y, Ripin D J, Fan S, et al. Guiding Optical Light in Air Using an All-DielectricStructure. Journal of Lightwave Technology,1999,17(11):2039
    [50] Kuriki K, Shapira O, Hart S, et al. Hollow multilayer photonic bandgap fibers for NIRapplications. Optics Express,2004,12(8):1510~1517
    [51] Ruff Z, Shemuly D, Peng X, et al. Polymer-composite fibers for transmitting high peak powerpulses at1.55microns. Optics Express,2010,18(15):15697~15703
    [52] Visser J H, Soltis R E. Automotive exhaust gas sensing systems. Instrumentation andMeasurement, IEEE Transactions on,2001,50(6):1543~1550
    [53] Besson J P, Schilt S, Rochat E, et al. Ammonia trace measurements at ppb level based onnear-IR photoacoustic spectroscopy. Applied Physics B: Lasers and Optics,2006,85(2):323~328
    [54] Seong-Soo K, Young C, Vidakovic B, et al. Potential and Challenges for Mid-InfraredSensors in Breath Diagnostics. Sensors Journal, IEEE,2010,10(1):145~158
    [55] George S A K A. An investigation of an optical fibre amplifier loop for intra-cavity andring-down cavity loss measurements. Measurement Science and Technology,2001,12(7):843
    [56] Li R, Loock H, Oleschuk R D. Capillary Electrophoresis Absorption Detection UsingFiber-Loop Ring-Down Spectroscopy. Analytical Chemistry,2006,78(16):5685~5692
    [57]余贶琭.基于吸收光谱法的光纤气体传感器及传感网络:[博士学位论文].北京:北京交通大学,2011
    [58] Sudo S, Yokohama I, Yasaka H, et al. Optical fiber with sharp optical absorptions byvibrational-rotational absorption of C2H2molecules. Photonics Technology Letters, IEEE,1990,2(2):128~131
    [59] Culshaw B, Muhammad F, Stewart G, et al. Evanescent wave methane detection using opticalfibres. Electronics Letters,1992,28(24):2232~2234
    [60] Muhammad F A, Stewart G. D-shaped optical fibre design for methane gas sensing.Electronics Letters,1992,28(13):1205~1206
    [61] Hoo Y L, Jin W, Ho H L, et al. Evanescent-wave gas sensing using microstructure fiber.Optical Engineering,2002,41(1):8~9
    [62] Hoo Y L, Jin W, Shi C, et al. Design and Modeling of a Photonic Crystal Fiber Gas Sensor.Applied Optics,2003,42(18):3509~3515
    [63] Pickrell G, Peng W, Wang A. Random-hole optical fiber evanescent-wave gas sensing. OpticsLetters,2004,29(13):1476~1478
    [64] John M F. Microstructure fibres for optical sensing in gases and liquids. MeasurementScience and Technology,2004,15(6):1120
    [65] Konorov S, Zheltikov A, Scalora M. Photonic-crystal fiber as a multifunctional optical sensorand sample collector. Optics Express,2005,13(9):3454~3459
    [66] Cordeiro C M B, Franco M A R, Chesini G, et al. Microstructured-core optical fibre forevanescent sensing applications. Optics Express,2006,14(26):13056~13066
    [67] Li S, Liu S, Song Z, et al. Study of the sensitivity of gas sensing by use of index-guidingphotonic crystal fibers. Applied Optics,2007,46(22):5183~5188
    [68] Ritari T, Tuominen J, Ludvigsen H, et al. Gas sensing using air-guiding photonic bandgapfibers. Optics Express,2004,12(17):4080~4087
    [69] Konorov S, Zheltikov A, Scalora M. Photonic-crystal fiber as a multifunctional optical sensorand sample collector. Optics Express,2005,13(9):3454~3459
    [70] Cubillas A M, Lazaro J M, Silvo-Lopez M, et al. High sensitive methane sensor based on aphotonic bandgap fiber: Third European Workshop on Optical Fibre Sensors.2007
    [71] Paw at J, Sugiyama T, Matsuo T, et al. PBG Fibers for Gas Concentration Measurement.Plasma Processes and Polymers,2007,4(7-8):743~752
    [72] Cubillas A M, Silva-Lopez M, Lazaro J M, et al. Methane detection at1670-nm band using ahollow-core photonic bandgap fiber and a multiline algorithm. Optics Express,2007,15(26):17570~17576
    [73] Xuefeng L, Pawlat J, Jinxing L, et al. A novel low-loss splice for photonic bandgap fiber gassensor.2008
    [74] Cubillas A M, Lazaro J M, Silva-Lopez M, et al. Methane sensing at1300nm band withhollow-core photonic bandgap fibre as gas cell. Electronics Letters,2008,44(6):403~405
    [75] Cubillas A, Lazaro J, Conde O, et al. Gas Sensor Based on Photonic Crystal Fibres in the2ν3and ν2+2ν3Vibrational Bands of Methane. Sensors,2009,9(8):6261~6272
    [76] Xuefeng L, Joanna P A, Jinxing L, et al. Fabrication of Photonic Bandgap Fiber Gas CellUsing Focused Ion Beam Cutting. Jpn J Appl Phys,2009,48(6):5F~6F
    [77] Cubillas A, Lazaro J, Conde O, et al. Multi-Line Fit Model for the Detection of Methane atν2+2ν3Band using Hollow-Core Photonic Bandgap Fibres. Sensors,2009,9(1):490~502
    [78] Wynne R M, Barabadi B, Creedon K J, et al. Sub-Minute Response Time of a Hollow-CorePhotonic Bandgap Fiber Gas Sensor. Journal of Lightwave Technology,2009,27(11):1590~1596
    [79]吴希军,王玉田,赵兴涛,等.空芯光子带隙光纤在甲烷检测中的应用.激光与红外,2010,(04):410~413
    [80] Pawlat J, Li X, Sugiyama T, et al. Sensing of Carbon Dioxide and Hydrocarbons UsingPhotonic Bandgap Fiber.2010
    [81]崔俊红,丁晖,李仙丽,等.基于空芯光子晶体光纤气体吸收腔的乙炔检测系统.光学学报,2010,(08):2262~2266
    [82] Xuefeng L, Pawlat J, Jinxing L, et al. Measurement of Low Gas Concentrations UsingPhotonic Bandgap Fiber Cell. Sensors Journal, IEEE,2010,10(6):1156~1161
    [83] Kyung S L, Yoon K L, Si H J. A Novel Grating Modulation Technique for Photonic BandgapFiber Gas Sensors. Photonics Technology Letters, IEEE,2011,23(10):624~626
    [84] Shephard J, Macpherson W, Maier R, et al. Single-mode mid-IR guidance in a hollow-corephotonic crystal fiber. Optics Express,2005,13(18):7139~7144
    [85] Kornaszewski L W, Gayraud N, Stone J M, et al. Mid-infrared methane detection in aphotonic bandgap fiber using a broadband optical parametric oscillator. Optics Express,2007,15(18):11219~11224
    [86] Henningsen J, Hald J. Dynamics of gas flow in hollow core photonic bandgap fibers. AppliedOptics,2008,47(15):2790~2797
    [87] Dicaire I, Beugnot J, Thenaz L. Analytical modeling of the gas-filling dynamics in photoniccrystal fibers. Applied Optics,2010,49(24):4604~4609
    [88] Hensley C, Broaddus D H, Schaffer C B, et al. Photonic band-gap fiber gas cell fabricatedusing femtosecond micromachining. Optics Express,2007,15(11):6690~6695
    [89] van Brakel A, Grivas C, Petrovich M N, et al. Micro-channels machined in microstructuredoptical fibers by femtosecond laser. Optics Express,2007,15(14):8731~8736
    [90] Hoo Y L, Shujing L, Hoi L H, et al. Fast Response Microstructured Optical Fiber MethaneSensor With Multiple Side-Openings. Photonics Technology Letters, IEEE,2010,22(5):296~298
    [91] Lehmann H, Bartelt H, Willsch R, et al. In-Line Gas Sensor Based on a Photonic BandgapFiber With Laser-Drilled Lateral Microchannels. Sensors Journal, IEEE,2011,11(11):2926~2931
    [92] Parry J P, Griffiths B C, Gayraud N, et al. Towards practical gas sensing withmicro-structured fibres. Measurement Science and Technology,2009,20(7):75301
    [93] Cubillas A M, Lazaro J M, Conde O M, et al. Multi-coupling gap system modeling formethane detection using hollow-core photonic bandgap fibers.2009
    [94] Harrington J A. A Review of IR Transmitting, Hollow Waveguides. Fiber and IntegratedOptics,2000,19(3):211~227
    [95] Sato S, Saito M, Miyagi M. Infrared Hollow Waveguides for Capillary Flow Cells. AppliedSpectroscopy,1993,47(10):1665~1669
    [96] Hvozdara L, Gianordoli S, Strasser G, et al. Spectroscopy in the Gas Phase withGaAs/AlGaAs Quantum-Cascade Lasers. Applied Optics,2000,39(36):6926~6930
    [97] Kim S, Menegazzo N, Young C, et al. Mid-Infrared Trace Gas Analysis with Single-PassFourier Transform Infrared Hollow Waveguide Gas Sensors. Applied Spectroscopy,2009,63(3):331~337
    [98] Chen J, Hangauer A, Strzoda R, et al. Low-level and ultralow-volume hollow waveguidebased carbon monoxide sensor. Optics Letters,2010,35(21):3577~3579
    [99] Charlton C, Temelkuran B, Dellemann G, et al. Midinfrared sensors meet nanotechnology:Trace gas sensing with quantum cascade lasers inside photonic band-gap hollow waveguides.Applied Physics Letters,2005,86(19):194102~194103
    [100] Yildirim A, Vural M, Yaman M, et al. Bioinspired Optoelectronic Nose with NanostructuredWavelength-Scalable Hollow-Core Infrared Fibers. Advanced Materials,2011,23(10):1263~1267
    [101] Yeh P, Yariv A, Hong C. Electromagnetic propagation in periodic stratified media. I. Generaltheory. Journal of the Optical Society of America,1977,67(4):423~438
    [102] Johnson S, Ibanescu M, Skorobogatiy M, et al. Low-loss asymptotically single-modepropagation in large-core OmniGuide fibers. Optics Express,2001,9(13):748~779
    [103] Guo S, Albin S, Rogowski R. Comparative analysis of Bragg fibers. Optics Express,2004,12(1):198~207
    [104] Ibanescu M, Johnson S G, Solja i M, et al. Analysis of mode structure in hollow dielectricwaveguide fibers. Physical Review E,2003,67(4):46608
    [105] Levine J S. Rippled wall mode converters for circular waveguide. International Journal ofInfrared and Millimeter Waves,1984,5(7):937~952
    [106] Photonic Bandgap Fibers&Devices group[EB/OL].(2005-02-13)[2010-04-03].http://mit-pbg.mit.edu/Pages/As2Se3.html
    [107] Photonic Bandgap Fibers&Devices group[EB/OL].(2005-02-13)[2010-04-03].http://mit-pbg.mit.edu/Pages/PEI.html
    [108]卢进军,刘卫国.光学薄膜技术.西安:西北工业大学出版社,2005.
    [109] Visioli A. Practical PID Control. London: Springer-Verlag London Limited,2006.
    [110] Herzberg G.分子光谱与分子结构第一卷:王鼎昌.北京:科学出版社,1983
    [111] Griffiths P R, Haseth J A D. Fourier Transform Infrared Spectrometry. Hoboken, New Jersey:John Wiley&Sons, Inc.,2007.
    [112] Mendez A, Morse T F. Specialty Optical Fibers Handbook. London: Academic Press in animprint of Elsevi,2007.
    [113] Felbacq D, Guizal B, Zolla F. Wave propagation in one-dimensional photonic crystals. OpticsCommunications,1998,152(1–3):119~126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700