Cu_2O/Cu纳米复合材料的控制合成及其光催化性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
半导体光催化技术,通过在室温下以光为驱动力活化催化剂,利用氧化-还原反应来分解有机物、还原金属离子,在分解水制备氢气、除臭、防腐、杀菌、污水处理等多方面获得应用。但是目前研究比较成熟的催化剂二氧化钛(TiO_2)由于其禁带宽度较大,仅能利用不到5%的太阳能源。高效的可见光催化剂的研究制备已成为环境污染控制和可持续发展能源开发利用的重大课题。对于窄禁带p型半导体氧化亚铜(Cu_2O,Eg=2.0 eV),能够直接吸收和利用可见光,对太阳光具有较强的吸收效率,被认为是继TiO_2之后,最有应用潜力的半导体光催化剂之一。基于单相半导体较高的量子复合效率不利于光催化反应的进行,本文以金属Cu作为添加剂对Cu_2O进行修饰,研究了Cu_2O/Cu复合材料的制备、光催化降解偶氮染料和苯酚,并对其催化机制进行了探讨。
     本文的工作分为以下三个方面:
     1.采用溶剂热方法以硝酸铜为原料,氮,氮-二甲基甲酰胺(DMF)和乙醇作为溶剂,通过改变反应条件,制备出了具有不同自组装结构的Cu_2O/Cu复合材料,例如,三维纳米花状结构、空心纳米球、纳米正八面体和微米空心立方体等。分析了前驱体浓度、反应步骤、反应时间、反应温度、溶剂成分比例等因素对产物形貌、相组成的影响。结果表明,以DMF为溶剂,通过两步反应(150,180℃),低浓度时形成Cu_2O/Cu纳米花状结构,高浓度形成刺球状聚集体;溶剂中加入乙醇(DMF:乙醇=1:2),提高反应温度(180,200℃),降低反应时间,形成八面体形貌Cu_2O/Cu纳米材料,前驱体浓度增加导致粒子变大;如果溶剂中再加入少量水,则得到微米级空心立方体,浓度增大时空心结构消失;若使用DMF:乙醇=1:1的溶剂,采用高温(200℃)一步反应,并快速降温,形貌为空心的纳米球状,高浓度时变为实心球。随着反应时间的延长,复合材料中Cu的含量增加。
     2.以常见的难降解的酸性染料普施安红、甲基橙、亚甲基蓝、罗丹明B和酚类有机物苯酚作为目标降解物,利用Cu_2O/Cu催化剂进行光催化降解处理。考察了各种因素,包括形貌、Cu含量、溶液pH值、染料初始浓度、催化剂初始浓度、过氧化氢的添加、循环次数等对Cu_2O/Cu复合催化剂催化活性的影响。并运用L-H反应动力学模型研究了苯酚的光催化降解过程,求解出降解动力学参数。结果表明,Cu_2O/Cu复合催化剂的催化活性明显高于单相Cu_2O;纳米花状、空心球状和正八面体状结构Cu_2O/Cu复合催化剂要比立方体状催化剂的催化活性高出20%;过高的催化剂浓度和染料浓度都不利于催化反应的进行;溶液pH值对催化剂的活性影响很大;Cu_2O/Cu复合催化剂对罗丹明B的吸附和降解最差;过氧化氢对催化过程的降解速度和催化剂的活性都有促进的作用;经多次循环使用,催化剂对普施安红、苯酚的降解率仍然可以达到80%以上;针对失活部分,采用超声清洗和溶剂热还原技术,可以使催化剂的活性得到有效的恢复。
     3.对Cu_2O/Cu复合催化剂的催化机制做了初步探讨。在Cu_2O/Cu复合材料中,存在着大量由Cu_2O和Cu组成的异质结,光生载流子在异质结界面的分离,促进了催化剂的量子效率,提高了催化活性。溶剂热技术合成的Cu_2O/Cu复合材料,是由Cu_2O原位还原制得的,Cu和Cu_2O纳米粒子间的紧密接触促进了电荷的输运过程,有效的提高了催化活性。
     本文不采用任何模板和添加剂,利用溶剂热方法一次性合成不同形貌,不同Cu_2O/Cu比例的复合纳米材料,方法简单可行,制备成本低。合成的催化剂对有机染料和苯酚的降解具有很高的催化活性,且可以回收利用,有望在污水处理等方面获得应用。
Smiconductor-based photocatalysts, activated by illumination at room temperature, are used for degradation of organic pollutants by redox reaction. They have been applied for decomposition of water into O_2 and H_2, deodorization, antisepsis, sterilization and polluted water processing as well. However, TiO_2-based photocatalysts can only be activated by ultraviolet (UV) light because of their broad band gap, hence only less than 5% solar energy can be utilized. Recently, the exploration of novel, highly efficient photocatalysts under visible light (VL) has become one of the most important research areas for environmental pollution control and renewable energy sources. As p-type semiconductor with small band gap (Eg = 2.0 eV), cuprous oxide (Cu_2O) has been considered as the most promising photocatalysts besides TiO_2, for it can be easily activated by VL, hence can sufficiently utilize solar energy. Due to the easy recombination of photoelectrons and holes, pure semiconductor exhibits very low quantum efficiency. Therefore, Cu_2O/Cu nanocomposites (NCs)were synthesized. The photocatalytic properties on decomposition of organic materials, and the mechanism of catalytic reaction were studied.
     The main contents of this dissertation are as the following:
     1. Cu_2O/Cu NCs with different self-assembly nano-architecture, e.g., 3D nanoflowers, hollow spheres, octahedra and hollow microcubes, were prepared using hydrothermal technique with Cu(NO3)2·3H2O as a precursor, and N,N-dimethylformamide (DMF)/ethanol (Et) as solvents, under different experimental conditions. The effect of the concentration of precursor, reaction time, temperature, and volumn ratio of solvent on have strong on the microstructure and phase composition of Cu_2O/Cu NCs were analyzed. The flowerlike structure was formed by a two-step reaction (150,180°C) with DMF as solvent. At higher precursor concentration, bur-like assembly was obtained. Cu_2O/Cu octahedra were formed by introducing Et into DMF (1:2), increasing reaction temperature (180,200°C), and decreasing reaction time. The size of particles increases with higher precursor concentration. If little amount of water was added further, hollow cubes were formed, and hollow structure disappears at higher precursor concentration. By using DMF/Et (1:1) as solvent, one-step reaction at 200°C, at high rate of decreasing temperature, hollow spheres were obtained, while solid spheres were formed at higher concentration of precursor. The content of Cu in composites increases with longer reaction time.
     2. The photocatalytic performance of Cu_2O/Cu NCs was evaluated by the degradation of Procion Red MX-5B (PR), methyl orange (MO), methylene blue (MB), Rhodamine B (RB) and phenol. The influence of morphology, concentration of Cu, pH value, original concentration of organic materials, concentration of catalyst, addition of H_2O_2 and recycling use on the photocatalytic activity of NCs was investigated. L-H model was adopted to analyze the degradation of phenol and dynamic parameters were obtained. Experimental results indicate that Cu_2O/Cu NCs exhibit much higher photocatalytic activity than pure Cu_2O; the photodegradation rate of NCs with flower, hollow sphere and octahedron structure are 20% higher than that with microcube structure. Very high initial concentration of catalysts and organic materials can reduce the reaction rate. The pH value of reaction solution show strong influence on the photocatalytic activity. Introduction of H2O_2 enhances the performance. The degradation rate on PR and phenol remains over 80% after cycles of use. By washing under ultrasonic vibration or hydrothermal reduction routes, the photocatalysts can be recovered.
     3. The photocatalytic mechanism of Cu_2O/Cu NCs catalysts is analyzed. The catalysts were synthesized by partially reducing Cu_2O. It was found that many heterostructures exist in Cu_2O/Cu NCs. The dense packing of Cu_2O and Cu particles enhances charge transportation, which separates the photogenerated electron-hole pairs happens at the interfaces of heterostructures, improves the quantum efficiency, and increases the catalytic activity effectively.
     Cu_2O/Cu NCs were synthesized using a facile, low-cost, template-free hydrothermal route without any additive. The morphology, mass ratio of Cu/Cu_2O can be easily controlled. The catalysts show very high performance on the degradation of organic dyes and phenol. Moreover, they can be recycled for further use, making them promising catalysts on the processing of polluted water.
引文
1余刚,杨志华,祝万鹏,蒋展鹏.染料废水物理化学脱色技术的现状与进展.环境科学. 1994, 15(4): 75~79
    2 A. Fujishima, K. Honda. Electrochemical Photolysis of Water at A Semi-conductor Electrode. Nature. 1972, 37: 238~245
    3 J. H. Carey, J. Lawrence, H. M. Tosine. Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspensions. Bull. Environ. Contam. Toxicol. 1976, 16(6): 697-701
    4 M. Hara, T. Kondo, M. Komoda, S. Ikeda, K. Shinohara, A. Tanaka, J. N. Kondo, K. Domen. Cu_2O as a Photocatalyst for Overall Water Splitting Under Visible Light Irradiation.Chem. Commun. 1998, 3: 357~ 358
    5 S. Ikeda, T. Takata, T. Kondo, G. Hitoki, M. Hara, J. N. Kondo, K. Domen, H. Hosono, H. Kawazoe, A. Tanaka. Mechano-Catalytic Verall Water Splitting. Chem Commun. 1998: 2185~2186
    6 C. C. Hu, J. N. Nian, H. H. Teng. Electrodeposited p-type Cu_2O as Photo-catalyst for H2 Evolution from Water Reduction in the Presence of WO3. Sol. Energy Mater. Sol. Cells. 2008, 92: 1071~1076
    7 A. Mittiga, E. Salza, F. Sarto, M. Tucci, R. Vasanthi. Heterojunction Solar Cell with 2% Efficiency Based on a Cu_2O Substrate. Appl. Phys. Lett. 2006, 88: 163502(1~2)
    8 P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J-M. Tarascon. Nano-Sized Transition-Metal Oxides as Negative-Electrode Materials for Lithium-Ion Batteries. Nature. 2000, 407: 496~499
    9 R. H. Michael, T. M. Scot, W. Y. Choi, D. W. Bahnemann. Environmental Applications of Semiconductor Photocatalysis. Chem. Rev. 1995, 95: 69~96
    10郑小明,周任贤.环境保护中的催化治理技术(第一版).北京:化学工业出版社,2002: 264~281
    11 Y. Nosaka, M. A. Fox. Kinetics for Electron Transfer from Laser-Pulse- Irradiated Colloidal Semiconductors to Adsorbed Methylviologen. Dependence of the Quantum Yield on Incident Pulse Width. J. Phys. Chem. 1988, 92(7): 1893~1897
    12 A. Haarstrock, O. Kut, E. Heinzle. TiO_2-Assisted Degradation of Envior-mentally Relevant Organic Compounds in Wastewater Using a NovelFliuidized Bed Photoreactor. Environ. Sic. Technol. 1996, 30: 817~824
    13 A. Heller, Y. Degani, D. W. Johnson, P. K. Gallagher. Controlled Suppression and Enhancement of the Photoactivity of Titanium Dioxide Pigment. J. Phys. Chem. 1987, 91: 5987~5991
    14 A. V. Emiline, V. K. Ryabchuk, N. Serpone. Spectral Dependencies of the Quantum Yield of Photochemical Processes on the Surface of Nano-/Microparticulates of Wide-Band-Gap Metal Oxides. 1. Theoretical Approach. J. Phys. Chem. B. 1999, 103: 1316~1324
    15 P. E. de Jongh, D.Vanmaekelbergh, J. J. Kelly. Cu2O: A Catalyst for the Photochemical Decomposition of Water? Chem. Commun. 1999, 12: 1069~1070
    16 P. E. de Jongh, D.Vanmaekelbergh, J. J. Kelly. Photoelectrochemistry of Electrodeposited Cu2O. J. Electrochem. Soc. 2000, 147: 486~489
    17 J-N. Nian, C-C. Hu, H. Teng. Electrodeposited p-Type Cu2O for H2 Evolution from Photoelectrolysis of Water under Visible Light Illumination. Int. J. Hydrogen. Energ. 2008, 33: 2897~2903
    18 D. Qing, J. Rabani. Photosensitization of Nanocrystalline TiO_2 Films by Anthocyanin Dyes. J. Photochem. Photobiol. A: Chem. 2002, 148: 17~24
    19 G. A. Epling, C. Lin. Photoassisted Bleaching of Dyes Utilizing TiO_2 and Visible Light. Chemospere. 2002, 46: 561~570
    20 F. Chen, W. Zou, W. Qu, J. Zhang. Photocatalytic Performance of a Visible Light TiO_2 Photocatalyst Prepared by a Surface Chemical Modification Process. Catal. Commun. 2009, 10: 1510~1513
    21 L. Song, R. L. Qiu, Y. Q. Mo, D. Zhang, H. Wei, Y. Xiong. Photodegradation of Phenol in a Polymer-Modified TiO_2 Semiconductor Particulate System under the Irradiation of Visible Light. Catal. Commun. 2007, 8: 429~433
    22 S. A. Naman, Z. A. A. Khammas, F. M. Hussein. Photo-Oxidative Degradation of Insecticide Dichlorovos by a Combined Semiconductors and Organic Sensitizers in Aqueous Media. J. Photochem. Photobio. A: Chem. 2002, 153: 229~236
    23 J. C. Xu, Y. L. Shi, J. E. Huang, B. Wang, H. L. Li. Doping Metal Ions only onto the Catalyst Surface. J. Mol. Catal. A: Chem. 2004, 219: 351~355
    24 J. C. X, M. Lu, X. Y. Guo, H. L. Li. Zinc Ions Surface-Doped Itanium Dioxide Nanotubes and Its Photocatalysis Activity for Degradation of Methyl Orange in Water. J. Mol. Catal. A: Chem. 2005, 226: 123~127
    25冯洁.掺铁纳米ZnO粉体的软化学法合成及其表征.浙江师范大学学报(自然科学版). 2005, 28(4): 417~420
    26 S. Elcambaram, Y. Iikubo, A. Kudo. Combustion Synthesis and Photocatalytic Properties of Transition Metal-Incorporated ZnO. J. Alloy. Comp. 2007, 433(12): 237~240
    27 M. Alvarez, T. Lbpez, J. A. Odriozola, M. I. Dom?′nguez, M. Montes, P. Quintana, D. H. Aguilar, R. D. Gonza′lez. 2,4-Dichlorophenoxyacetic Acid (2,4-D) Photodegradation Using an Mn+/ZrO_2 Photocatalyst: XPS, UV–vis, XRD Characterization. Appl. Catal. B: Environ. 2007, 73(12): 34~41
    28 D. S. Ren, Z. J. Zhang. Crystal Structure and Photocatalytic Characteristics of Nanoscale Sb-doped TiO_2 Thin Films. Chin. J. Chem. Phys. 2006, 19: 549~555
    29 S. U. M. Khan, M. Al-Shahry, W. B. I. Jr. Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2. Science. 2002, 297: 2243~2245
    30 S. Yin, K. Ihara, Y. Aita, M. Komatsu, T. Sato. Visible-light Induced Photocatalytic Activity of TiO_2?xAy (A =N, S) Prepared by Precipitation Route. J. Photochem. Photobio. A: Chem., 2006, 179(12): 105~114
    31 S. W. Hsu, T. S. Yang, T. K. Chen, M. S. Wong. Ion-Assisted Electron-Beam Evaporation of Carbon-Doped Titanium Oxide Films as Visible-Light Photocatalyst. Thin Solid Films, 2007, 515(78): 3521~3526
    32赵秀峰,张志红,孟宪锋. B掺杂TiO_2/AC光催化剂的制备及活性.分子催化. 2003, 17(4): 292~296
    33 H. F. Yu. Photocatalytic Abilities of Gel-Derived P-doped TiO_2. J. Phys. Chem. Solid, 2007, 68(4): 600~607
    34文晨,孙柳,张纪梅,邓桦,王鹏.碘掺杂对纳米TiO_2催化剂光催化活性的影响.高等学校化学学报. 2006, 27: 2408~2410
    35 J. Z. Zhang. Interficial Carrier Dynamics of Colloidal Semiconductor Nanoparticles. J. Phys. Chem. B. 2000, 104: 7239~7253
    36 A. Hameed, T. Montini, V. Gombac, P. Fornasiero. Surface Phases and Photocatalytic Activity Correlation of Bi2O3/Bi2O4-x Nanocomposite. J. Am. Chem. Soc. 2008, 130: 9658~9659
    37 D. Barreca, P. Fornasiero, A. Gasparotto, V. Gombac, C. Maccato, T. Montini, E. Tondello. The Potential of Supported Cu_2O and CuO Nanosystems in Photocatalytic H2 Production. ChemSusChem. 2009, 2(3): 230~233
    38 T. Tatsuma, S. Saitoh, Y. Ohko, A. Fujishima. TiO_2-WO3 Photoelectro-Chemical Anticorrosion System with an Energy Storage Ability. Chem. Mater.2001, 13: 2838~2842
    39 T. Tatsuma, S. Saitoh, P. Ngaotrakanwiwat, Y. Ohko, A. Fujishima, Energy Storage of TiO_2-WO3 Photocatalysis Systems in the Gas Phase. Langmuir. 2002, 18: 7777~7779
    40 J. P. Yasomanee, J. Bandara. Multi-Electron Storage of Photoenergy Using Cu2O-TiO_2 Thin Film Photocatalyst. Sol. Energ. Mater. Sol. Cells. 2008, 92: 348~352
    41 Y. G. Zhang, L. L. Ma, J. L. Li, Y. Yu. In Situ Fenton Reagent Generated from TiO_2/Cu2O Composite Film: a New Way to Utilize TiO_2 under Visible Light Irradiation. Environ. Sci. Technol. 2007, 41: 6264~6269
    42 H. J. Choi, M. Kang. Hydrogen Production from Methanol/Water Decom-position in a Liquid Photosystem using the Anatase Structure of Cu Loaded TiO_2. Int. J. Hydrogen. Energ. 2007, 32: 3841~3848
    43 P. V. Kamat. Photophysical, Photochemical and Photocatalytic Aspects of Metal Nanoparticles. J. Phys. Chem. B. 2002, 106: 7729~7744
    44 A. Sasahara, K. Hiehata, H. Onishi. Metal-to-Oxide Charge Transfer Observed by a Kelvin Probe Force Microscope. Catal. Surv. Asia. 2009, 13: 9~15
    45 L. Du, A. Furube, K.Yamamoto, K. Hara, R. Katoh, M. Tachiya. Plasmon- Induced Charge Separation and Recombination Dynamics in Gold-TiO_2 Nanoparticle Systems: Dependence on TiO_2 Particle Size. J. Phys. Chem. C. 2009, 113(16): 6454~6462
    46 Y. Tian, T. Tatsuma. Mechanisms and Applications of Plasmon-Induced Charge Separation at TiO_2 Films Loaded with Gold Nanoparticles. J. Am. Chem. Soc. 2005, 127: 7632~7637
    47 V. Subramanian, E. Wolf, P. V. Kamat. Semiconductor-Metal Composite Nanostructures. To What Extent Do Metal Nanoparticles Improve the Photocatalytic Activity of TiO_2 Films? J. Phys. Chem. B. 2001, 105: 11439~11446
    48 S. W. Lam, K. Chiang, T. M. Lim, R. Amal, G. K-C. Low. The Effect of Platinum and Silver Deposits in the Photocatalytic Oxidation of Resorcinol. Appl. Catal. B: Environ. 2007, 72: 363~372
    49 Y. Nosaka, K. Norimatsu, H. Miyama. The Function if Metal-Compounded Semiconductor Photocatalysts. Chem. Phys. Lett. 1984, 106: 128~130
    50 N. Chandrasekharan, P. V. Kamat. Improving the Photoelectrochemical Performance of Nanostructured TiO_2 Films by Adsorption of GoldNanoparticles. J. Phys. Chem. B. 2000, 104(46): 10851~10857
    51 T. Sreethawong, S. Yoshikawa. Comparative Investigation on Photocatalytic Hydrogen Evolution over Cu-, Pd-, and Au-loaded Mesoporous TiO_2 Photocatalysts. Catal. Commun. 2005, 6: 661~668
    52 S. Chaturvedi, J. A. Rodriguez, J. Hrbek. Reaction of S2 with ZnO and Cu/ZnO Surfaces: Photoemission and Molecular Orbital Studies. J. Phys. Chem. B. 1997, 101(50): 10860~10869
    53 Z. F. Wang, W. P. Wang, G. X. Lu. Studies on the Active Species and on Dispersion of Cu in Cu/SiO_2 and Cu/Zn/SiO_2 for Hydrogen Production via Methanol Partial Oxidation. Int. J. Hydrogen. Energ. 2003, 28: 151~158
    54陈崧哲,钟顺和. Cu/ZnO-NiO上光促表面催化二氧化碳和水反应规律的研究.高等学校化学学报. 2003, 24(1): 135~139
    55赵春,钟顺和. Cu/ZnO-TiO_2复合半导体光催化材料的制备与表征.无机化学学报. 2004, 9: 1131~1135
    56 V. Subramanian, E. E. Wolf, P. V. Kamat. Catalysis with TiO_2/Gold Nano-composites. Effect of Metal Particle Size on the Fermi Level Equilibration. J. Am. Chem. Soc. 2004, 126: 4943~4950
    57钱逢麟,竺玉书.涂料助剂.北京:化学工业出版社,1990
    58黄熙怀.玻璃中纳米半导体质点的形成与光吸收.物理化学学报, 1994, 10(6) : 570~575
    59邵文柱,沙德生, V. V.伊万诺夫,杨德庄.氧化亚铜基金属陶瓷导电性的试验研究.材料科学与工艺. 1999, 7(2): 109~102
    60张招柱,薛群基,刘维民,沈维长.几种金属氧化物填充聚四氟乙烯复合材料在干摩擦条件下的摩擦磨损性能.摩擦学学报. 1997, 17(1): 45~52
    61 Y. Z. Huang, H. Miao, Q. H. Zhang, C. Chen, J. Xu. Cu2O: a Simple and Efficient Reusable Catalyst for N-arylation of Nitrogen-Containing Heterocycles with Aryl Halides. Catal. Lett. 2008, 122: 344~348
    62 N. Ozer, F. Tepehan. Structure and Optical Properties of Electrochromic Copper Oxide Films Prepared by Reactive and Conventional Evaporation Techniques. Sol. Energ. Mater. Sol. Cells. 1993, 30(1):13~26
    63 W. Siripala, A. Ivanovskaya, T. F. Jaramillo, S. Baeck. A Cu2O/TiO_2 Hetero-junction Thin Film Cathode for Photoelectrocatalysis. Sol. Energ. Mater. Sol. Cells. 2003, 77(3): 229~237
    64 J. Zhang, J. Liu, Q. Peng, X. Wang, Y. Li. Nearly Monodisperse Cu2O andCuO Nanospheres: Preparation and Applications for Sensitive Gas Sensors. Chem. Mater. 2006, 18: 867~871
    65 S. T. Shishiyanu, T. S. Shishiyanu, O. I. Lupan. Novel NO_2 Gas Sensor Based on Cuprous Oxide Thin Films. Sens. Actuators, B. 2006, 113(1): 468~476
    66 M. Ristov, G. J. Sinadinovski, M. Mitreski. Chemically Deposited Cu2O Thin Film as an Oxygen Pressure Sensor. Thin Solid Films. 1988, 167(1-2): 309~316
    67 L. Xu, L. P.Jiang, J. J. Zhu. Sonochemical Synthesis and Photocatalysis of Porous Cu2O Nanospheres with Controllable Structures. Nanotechnology. 2009, 20: 045605 (1~6)
    68 H. L. Xu, W. Z. Wang, W. J. Zhu. Shape Evolution and Size-Controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties. J. Phys. Chem. B. 2006, 110: 13829~13834
    69 S. Ikeda, T. Takata, M. Komoda, M. Hara, J. N. Kondo, K. Domen, A. Tanaka, H. Hosono, H. Kawazoe. Mechano-Catalysis– A Novel Method for Overall Water Splitting. Phys. Chem. Chem. Phys. 1999, 1: 4485~4491
    70张立德,牟季美.纳米结构自组装和分子自组装体系.物理. 1999, 28(1): 22~26
    71 M. J. Siegfried, K-S. Choi. Elucidating the Effect of Additives on the Growth and Stability of Cu2O Surfaces via Shape Transformation of Pre-Grown Crystals. J. Am. Chem. Soc. 2006, 128: 10356~10357
    72 W. Wang, G. Wang, X. Wang, Y. Zhan, Y. Liu, C. Zheng. Synthesis and Characterization of Cu2O Nanowires by a Novel Reduction Route. Adv. Mater. 2002, 14(1): 67~69
    73 L. Gou, C. J. Murphy. Solution-Phase Synthesis of Cu2O Nanocubes. Nano Lett. 2003, 3(2): 231~234
    74 Y. Luo, S. Li, Q. Ren, J. Liu, L. Xing, Y. Wang, Y. Yu, Z. Jia, J. Li. Facile Synthesis of Flowerlike Cu2O Nanoarchitectures by a Solution Phase Route. Cryst. Growth. Des. 2007, 7(1): 87~92
    75 R. Xu, H. C. Zeng. Self-Generation of Tiered Surfactant Superstructures for One-Pot Synthesis of Co3O4 Nanocubes and Their Close and Non-Close-Packed Organizations. Langmuir. 2004, 20: 9780~9790
    76 X. Y. Kong, Z. L. Wang. Spontaneous Polarization-Induced Nanohelixes, Nanosprings, and Nanorings of Piezoelectric Nanobelts. Nano. Lett. 2003, 3(12): 1625~1631
    77 M. Li, S. Heimo, M. Stephen. Coupled Synthesis and Self-Assembly of Nano-particles to Give Structures with Controlled Organization. Nature. 1999, 402: 393~395
    78 F. Kim, S. Kwan, J. Akana. Langmuir-Blodgett Nanorod Assembly. J. Am. Chem. Soc. 2001, 123(18): 4360~4361
    79 B. Nikoobakht, Z. L. Wang, M. A. Ei-Sayed. Self-Assembly of Gold Nanorods. J. Phys. Chem. B. 2000, 104(36): 8635~8640
    80 J. Biener, G. W. Nyce, A. M. Hodge, M. M. Biener, A. V. Hamza, S. A. Maier. Nanoporous Plasmonic Metamaterials. Adv. Mater. 2008, 20: 1211~1217
    81 M. Hideatsu, M. Yoshiko. Atomic Force Microscopy Studies for Investigating the Smectic Structures of Colloidal Crystals ofβ–FeOOH. Langmuir. 1996, 12(6): 1446~1452
    82 Y. Chang, H. C. Zeng. Manipulative Synthesis of Multipod Frameworks for Self-Organization and Self-Amplification of Cu2O Microcrystals. Cryst. Growth. Des. 2004, 4(2): 273~278
    83 I. M. Kolthoff, R. C. Bowers. Studies on Aging and Coprecipitation. XLV. The Irreversible Flocculation of Colloidal Silver Bromide and the Aging in the Flocculated State. J. Am. Chem. Soc. 1954, 76:1510~1515
    84 R. L. Penn, J. F. Banfield. Imperfect Oriented Attachment: Dislocation Gene-ration in Defect-Free Nanocrystals. Science. 1998, 281: 969~971
    85 Y. Chang, H. C. Zeng. Controlled Synthesis and Self-Assembly of Single-Crystalline CuO Nanorods and Nanoribbons. Cryst. Growth. Des. 2004, 4(2): 397~402
    86 J. T. Sampanthar, H. C. Zeng. Arresting Butterfly-Like Intermediate Nano-crystals ofβ-Co(OH)2 via Ethylenediamine-Mediated Synthesis. J. Am. Chem. Soc. 2002, 124: 6668~6675
    87 X. W. Lou, H. C. Zeng. Complexα-MoO3 Nanostructures with External Bon-ding Capacity for Self-Assembly. J. Am. Chem. Soc. 2003, 125: 2697~2704
    88 B. Liu, H. C. Zeng. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. J. Am. Chem. Soc. 2003, 125: 4430~4434
    89 B. Liu, H. C. Zeng. Mesoscale Organization of CuO Nanoribbons: Formation of“Dandelions”. J. Am. Chem. Soc. 2004, 126(26): 8124~8125
    90 Y. Chang, J. J. Teo, H.C. Zeng. Formation of Colloidal CuO Nanocrystallites and Their Spherical Aggregation and Reductive Transformation to Hollow Cu2O Nanospheres. Langmuir. 2005, 21: 1074~1079
    91 J. J. Teo, Y. Chang, H. C. Zeng. Fabrications of Hollow Nanocubes of CuO and Cu via Reductive Self-Assembly of CuO Nanocrystals. Langmuir. 2006, 22(17): 7369~7377
    92 H. G. Yang, H. C. Zeng. Preparation of Hollow Anatase TiO_2 Nanospheres via Ostwald Ripening. J. Phys. Chem. B. 2004, 108: 3492~3495
    93 H. G. Yang, H. C. Zeng. Self-Construction of Hollow SnO_2 Octahedra Based on Two-Dimensional Aggregation of Nanocrystallites. Angew. Chem. Int. Ed. 2004, 43: 5930~5933
    94 B. Liu, H. C. Zeng. Symmetric and Asymmetric Ostwald Ripening in the Fabrication of Homogeneous Core–Shell Semiconductors. Small. 2005, 1(5): 566~571
    95 J. Yu, L. Zhang, B. Cheng, Y. Su. Hydrothermal Preparation and Photo-catalytic Activity of Hierarchically Sponge-like Macro-/Mesoporous Titania. J. Phys. Chem. C. 2007, 111: 10582~10589
    96 S. C. Lyu, Y. Zhang, C. J. Lee. Low-Temperature Growth of ZnO Nanowire Array by a Simple Physical Vapor-Deposition Method. Chem. Mater. 2003, 15(17): 3294~3299
    97 Z. Wang, X. Qian, J. Yin. Large-Scale Fabrication of Tower-like, Flower-like, and Tube-like ZnO Arrays by a Simple Chemical Solution Route. Langmuir. 2004, 20(8): 3441~3448
    98 H. Chen, C. P. Grey. Molten Salt Synthesis and High Rate Performance of the“Desert-Rose’’Form of LiCoO_2. Adv. Mater. 2008, 20: 2206~2230
    99 P. Gao, Z. L. Wang. Self-Assembled Nanowire-Nanoribbon Junction Arrays of ZnO. J. Phys. Chem. B. 2002, 106(49):12653~12658
    100 V. Polshettiwar, B. Baruwati, R. S. Varma. Self-Assembly of Metal Oxides into Three-Dimensional Nanostructures: Synthesis and Application in Catalysis. ACS NANO. 2009, 3: 728~736
    101魏明真,霍建振,伦宁,马西骋,温树林.一种新型的半导体光催化剂——纳米氧化亚铜.材料导报. 2007, 21(6): 130~133
    102刘小玲,陈金毅,周文涛,李家麟.纳米氧化亚铜太阳光催化氧化法处理印染废水.华中师范大学学报(自然科学版). 2002, 36(4): 475~477
    103陈金毅,刘小玲,李阊轮,李家麟.纳米氧化亚铜可见光催化分解亚甲基蓝.华中师范大学学报(自然科学版). 2002, 36(2): 200~203
    104梁宇宁,黄智,覃思晗,甘庆华. Cu2O光催化降解水中对硝基苯酚的研究.环境污染治理技术与设备. 2003, 4(10): 36~39
    105何星存,梁伟夏,黄智,陈孟林.可见光响应的“Cu核-Cu2O壳”型光催化剂性能的研究.现代化工. 2005, 25(11): 38~42
    106 H. Yu, J. Yu, S. Liu, S. Mann. Template-free Hydrothermal Synthesis of CuO/Cu2O Composite Hollow Microspheres. Chem. Mater. 2007, 19: 4327~4334
    107 F. Zhang, R. Jin, J. Chen. High Photocatalytic Activity and Selectivity for Nitrogen in Nitrate Reduction on Ag/TiO_2 Catalyst with Fine Silver Clusters. Catal. 2005, 232: 424~431
    108 S. W. Lam, K. Chiang, T. M. Lim. The Effect of Platinum and Silver Deposits in the Photocatalytic Oxidation of Resorcinol. Appl. Catal. B. 2007, 72: 363~372
    109 L. S. Wang, J. C. Deng, F. Yang. Preparation and Catalytic Properties of Ag/CuO Nano-Composites via a New Method. Mater. Chem. Phys. 2008, 108: 165~169
    110 L. L. Ren, Y. P. Zeng, D. L. Jiang. Preparation, Characterization and Photo-catalytic Activities of Ag-Deposited Porous TiO_2 Sheets. Catal. Commun. 2009,
    10: 645~649
    111 F. B. Li, X. Z. Li. Photocatalytic Properties of Gold/Gold Ion-Modified Titanium Dioxide for Wastewater Treatment. Appl. Catal. A: Gen. 2002, 228: 15~27
    112 I. M. Arabatzis, T. Stergiopoulos, D. Andreevaeta. Characterization and Photo-catalytic of Au/TiO_2 Thin Rims for Azo-Dye Degradation. J. Catal. 2003, 220: 127~135
    113 Y. Yu, W. Y. Huang, F. P. Du, L. L. Ma. Synthesis and Characteristic of Cuprous Oxide Nano-Whiskers with Photocatalytic Activity under Visible Light. Mater. Sci. Forum, 2005, 353: 475~479
    114 Y. S. Luo, S. Q. Li, Q. F. Ren, J. P. Liu, L. L. Xing, Y. Wang, Y. Yu, Z. J. Jia, J. L. Li. Facile Synthesis of Flowerlike Cu2O Nanoarchitectures by a Solution Phase Route. Cryst. Grow. Des. 2007, 7: 87~92
    115 S. Reich, C. Thomsen, P. Ordejon. Electronic Band Structure of Isolated and Bundled Carbon Nanotubes. Phys. Rev. B. 2002, 65: 155411
    116 A. R. Roosen, W. C. Carter. Simulations of Microstructural Evolution: Anisotropic Growth and Coarsening. Physica. A. 1998, 261: 232~257
    117 W. Wang, F. Bai. A Simple Aqueous-Solution Processing Route to PrepareQuantum-Confined CdS Nanorods. Chem. Phys. Chem. 2003, 4(7): 761~763
    118 J. Yu, J. Joo, H. M. Park, S. I. Baik, Y. W. Kim, S. C. Kim, T. Hyeon. Desi-gning PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. J. Am. Chem. Soc. 2005, 127: 7140~7147
    119 A. Katasifaras, N. Spanos. Effect of Inorganic Phosphate Ions on the Spon-taneous Precipitation of Vaterite and on the Transformation of Vaterite to Calcite. J. Cryst. Growth. 1999, 204: 183~190
    120 J. Lei, C. S. Liu, F. B. Li, X. M Li, S. G.. Zhou, T. X. Liu, M. H. Gu, Q. T. Wu. Photodegradation of Orange I in the Heterogeneous Iron Oxide-Oxalate Complex System under UVA Irradiation. J. Hazard. Mate. B. 2006, 137: 1016~1024
    121 E. V. Hess. Environmental Chemicals and Autoimmune Disease: Cause and Effect. Toxicology. 2002, 181-182: 65~70
    122 I. Poulios, D. Makri, X. Prohaska. Photocatalytic Treatment of Olive Milling Waste Water: Oxidation of Protocatechuic Acid. Global Nest Int J. 1999, 1: 55~61
    123 I. Arslan, I. A. Balcioglu, D. W. Bahnemann. Advanced Chemical Oxidation of Reactive Dyes in Simulated Dyehouse Effluents by Ferrioxalate-Fenton/UVA and TiO_2/UVA Processes. Dyes. Pigm. 2000, 47: 207~218
    124 H. L. Xu, W. Z. Wang, W. Zhu. A Facile Strategy to Porous Materials: Coordination-Assisted Heterogeneous Dissolution Route to the Spherical Cu2O Single Crystallites with Hierarchical Pores. Micro. Meso. Mater. 2006, 95: 321~328
    125 X. Zhang, Y. Xie, F. Xu, X. Liu, D. Xu. Controllable Growth of In(OH)(3) Nanorods with Rod-in-Rod Structure in a Surfactant Solution. Inorganic Chem. Commun. 2003, 6(12): 1445~1447
    126 C-H Kuo, C-H Chen, M. H. Huang. Seed-Mediated Synthesis of Mono-dispersed Cu2O Nanocubes with Five Different Size Ranges from 40 to 420 nm. Adv. Funct. Mater. 2007, 17(18): 3773~3780
    127 L. Fan,F. L. Yan, W. S. Yang. Performance of the Decolorization of an Azo Dye with Bipolar Packed Bed Cell. Sep. Purif. Technol. 2004, 34: 89~96
    128 O. Carp, C. L. Huisman, A. Reller. Photoinduced Reactivity of Titanium Dio-xide. Prog. Solid. State. Chem. 2004, 32: 33~177
    129 J. Brown, R. Richer, L. Mercier. One-Step Synthesis of High Capacity Meso-porous Hg2+ Adsorbents by Non-Ionic Surfactant Assembly. Microporous.Mesoporous. Mater. 2000, 37: 41~48
    130 X. C. Wang, J. C. Yu, Y. L. Chen, L. Wu, X. Z. Fu. ZrO_2-Modified Meso-porous Manocrystalline TiO_2-xNx as Efficient Visible Light Photocatalysts. Environ. Sci. Technol. 2006, 40(7): 2369~2374
    131 S. J. Gregg, K. S. W. Sing. Adsorption Surface Area and Porosity. J. Electrochem. Soc. 1967, 114(11): 279C~279C
    132 K. N. P. Kumar, J. Kuma, K. Keizer. Effects of Acidic and Basic Hydrolysis Catalysts on the Photocatalytic Activity and Microstructures of Bimodal Mesoporous Titania. J. Am. Ceram. Soc. 1994, 77: 1396~1400
    133 S. Tsunekawa, T. Fukuda, A. Kasuya. Blue shift in ultraviolet absorption spe-ctra of monodisperse CeO_2-x nanoparticles. J. Appl. Phys. 2000, 87: 1318-1321
    134 Y. S. Luo, Q. F. Ren, J. L. Li, Z. J. Jia, Q. R. Dai, Y. Zhang, B. H. Yu. Synthesis and optical properties of multiwalled carbon nanotubes beaded with Cu2O nanospheres. Nanotechnology. 2006, 17: 5836–5840
    135郑化桂,李亚栋,李成韦,赵化章,刘元辉,钱逸泰.铜胶体的制备及光谱研究.物理化学学报, 1997, 13(11): 974~977
    136楚广,熊志群,刘伟,韦建军.自悬浮定向流法制备纳米Cu粉的微结构和性能表征.中国有色金属学报. 2007, 17(4): 623~628
    137 A. D. Tang, Y. Xiao, J. O. Yang, S. Nie. Preparation, Photo-Catalytic Activity of Cuprous Oxide Nano-Crystallites with Different Sizes. J. Alloy. Compd. 2008, 457: 447~451
    138 H. C. Yatmaz, A. Akyol, M. Bayramoglu. Kinetics of the Photocatalytic Deco-lorization of an Azo Reactive Dye in Aqueous ZnO Suspensions. Ind. Eng. Chem. Res. 2004, 43: 6035~6039
    139 J. P. Espinu, J. Morales, A. Barranco, A. Caballero, J. P. Holgado, A. R. Gonzáolez-Elipe. Interface Effects for Cu, CuO, and Cu2O Deposited on SiO_2 and ZrO_2. XPS Determination of the Valence State of Copper in Cu/SiO_2 and Cu/ZrO_2 Catalysts. J. Phys. Chem. B. 2002, 106: 6921~6929
    140 W. Wang, Y. Zhan, X. Wang, Y. Liu, C. Zheng, G. Wang. Synthesis and Cha-racterization of CuO Nanowhiskers by a Novel One-Step, Solid-State Reaction in the Presence of a Nonionic Surfactant. Mater. Res. Bull. 2002, 37: 1093~1100
    141 J. Ghijsen, L. H. Tjeng, J. VanElp, H. Eskes, J. Westerink, G. A. Sawatzky, M. T. Czyzyk. Electronic Structure of Cu2O and CuO. Phys. Rev. B. 1988, 38: 11322~11330
    142 B. Balamurugan, B. R. Mehta, S. M. Shivaprasad. Surface-Modified CuO Lay-er in Size-Stabilized Single-Phase Cu2O Nanoparticles. Appl. Phys. Lett. 2001, 79: 3176~3178
    143 M. Yin, C-K. Wu, Y. B. Lou, C. Burda, J. T. Koberstein, Y. Zhu, S. O’Brien. Copper Oxide Nanocrystals. J. Am. Chem. Soc. 2005, 127: 9506~9511
    144陈美玲.含酚废水处理技术的研究现状及发展趋势.化学工程师. 2003, 2: 48~51
    145 G. Gonzalez,M. G. Herrera, M. T. García, M. M. Pe?a. Biodegradation of Phenol in a Continuous Process: Comparative Study of Stirred Tank and Fluidized-Bed Bioreactors. Bioresour. Technol. 2001, 76(3): 245~251
    146á. A. M. G. Monteiro, R. A. R. Boaventura, A. E. Rodrigues. Phenol Biode-gradation by Pseudomonas Puti da DSM 548 in a Batch Reactor. Biochem. Eng. J. 2000, 6(1): 45~49
    147黄健花,王兴国,金青哲,刘元法.超声波有机改性凹凸棒土的苯酚吸附性能研究.环境污染治理技术与设备. 2005, 6(9): 25~28
    148杨义燕.络合萃取法处理工业含酚废水.环境科学,1995, 16(2): 35~37
    149 S. Rengaraj, S. H. Moon, R. Sivabalan, B. Arabindoo, V. Murugesan. Removal of Phenol Fromaqueous Solution and Resin Manufacturing Industry Waste-water Using an Agricultural Waste: Rubber Seed Coat. J. Hazard. Mater. 2002, 89(2-3): 185~196
    150 S. H. Lin, C. S. Wang. Treatment of High Strength Phenolic Wastewater by a New Two-Step Method. J. Hazardous Materials. 2002, 90(2): 205~216
    151 A. E. H. Machado, J. A. de Miranda, R. F. de Freitas, E. T. F. M. Duarte, L. F. Ferreira, Y. D. T. Albuquerque, R. Ruggiero, C. Sattler, L. de Oliveira. Des-truction of the Organic Matter Present in Effluent from a Cellulose and Paper Industry Using Photocatalysis. J. Photochem. Photobio. A: Chem. 2003, 155: 231~241
    152刘洪禄,张爱茜,吴海锁,黄智,王连生.氧化亚铜光催化降解对硝基苯酚.环境化学. 2004, 23(5): 490~494
    153丁敦煌,关鲁雄,杨松青,李伶慧. TiO_2/H2O_2光催化体系降解亚甲基蓝的动力学研究.中南工业大学学报(自然科学版). 2003, 34(5): 513~515
    154李爱梅,朱亦仁,于昕,鲁玲,张弛,解恒参. Fe2O3/UV/H2O_2光催化法降解造纸废水的研究.安全与环境学报. 2007, 7(5): 39~42
    155 J. C. Benjamin, A. A. L.Lind, K. R. Peter. Hydrogen Peroxide Enhanced Phot-ocatalytic Oxidation of Microystin-LR Using Titanium Dioxide. Appl. Catal. B: Environ. 2000, 25(1): 59~67
    156徐悦华,古国榜,李新军.光催化降解甲胺磷影响因素的研究.华南理工大学学报:自然科学版. 2001, 29(5): 682~711
    157 Z. C. Wu, W. Li. Treatment of Phenol-Containing Wastewater Using UV/ H_2O_2 Systems. J. Chem. Ind. Eng. 2001, 52(3): 277~280
    158 I. A. Balcioglu, Y. Ind. Photocatalytic Degradation of Organic Contaminated in Semiconductor Suspensions with Added H2O_2. Environ. Sci. Health. 1996, 13: 123~128
    159 D. Y. Goswami. A Review of Engineering Developments of Aqueous Phase Solar Photocatalytic Detoxification and Disinfection Processes. J. Sol. Energy. Eng. 1997, 119(2): 101~107
    160 N. Lakshminarasimhan, E. Bae, W. Choi. Enhanced Photocatalytic Production of H2 on Mesoporous TiO_2 Prepared by Template-Free Method: Role of Interparticle Charge Transfer. J. Phys. Chem. C. 2007, 111: 15244~15250
    161 N. Lakshminarasimhan, W. Kim, W. Choi. Effect of the Agglomerated State on the Photocatalytic Hydrogen Production with in Situ Agglomeration of Colloidal TiO_2 Nanoparticles. J. Phys. Chem. C. 2008, 112: 20451~20457
    162 Y. H. Zheng, C. Q. Chen, Y. Y. Zhan, X. Y. Lin, Q. Zheng, K. M. Wei, J. F. Zhu. Photocatalytic Activity of Ag/ZnO Heterostructure Nanocatalyst: Correlation between Structure and Property. J. Phys. Chem. C. 2008, 112: 10773~10777
    163 J. L. Li, L. Liu, L.Yu, Y. W. Tang, H. L. Li, F. P. Du. Preparation of Highly Photocatalytic Active Nano-Size TiO_2-Cu2O Particle Composites with a Novel Electrochemical Method. Electrochem. Commun. 2004, 6: 940~943
    164 M. J. R. Mirecki, D. Twesten, D. M. Follstaedt, S. R. Lee, E. D. Jones. Lateral Composition Modulation in AlAs/InAs Short Period Superlattices Grown on InP(001). Appl. Phys. Lett. 1997, 70(11): 1042~1044
    165 L. H. Kuo, L. Salamanca-riba, B. J. Wu, J. M.eDepuydt. Misfit Strain Induced Tweed-Twin Transformation on Composition Modulation Zn1-xMgxSySe1-y Layers and the Quality Control of the ZnSe Buffer/GaAs. J. Electronie. Mater. 1995, 24(3): 155~162
    166 K. Adachi, T. Takeuchi, H. G. Suzuki. Cu precipitation in Cr ribbon of Cu-15 wt % Cr in situ composite. Appl. Phys. Lett. 1996, 69(10): 1931~1932
    167 K. C. Yang, P. Shen, D. Gan. Defect Microstructures of TiO_2 Rutile due toZr4+ Dissolution and Expulsion. J. Solid State Chem. 2006, 179: 3478~3483
    168 Y. Tak, S. J. Hong, J. S. Lee, K. Yong. Solution-Based Synthesis of a CdS Nanoparticle/ZnO Nanowire Heterostructure Array. Cryst. Growth. Des. 2009, 9(6): 2627~2632

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700