具有特殊形貌介孔材料的合成及其研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
介孔材料以其高比表面积、结构排列有序、孔径大小均一、孔径可以在2~50 nm范围内连续调节等优点,以及这类材料在吸附、分离、催化、药物缓释等方面,甚至光、电、磁等领域的潜在应用前景而备受人们关注。目前广泛研究的硅基介孔材料由于骨架由氧化硅组成,仅仅具有少量的弱酸中心,基本不具备催化功能,不能充分发挥介孔材料结构的优越性。因此,通过向介孔孔壁上掺杂其他原子,或在材料表面修饰有机基团,赋予硅基介孔更好的吸附及催化性能已成为近年来介孔材料研究领域的热点课题。另一方面,通过使用多重模板剂的方式赋予介孔材料以特定的形貌,无论是从材料合成科学的角度,还是从材料应用的角度来看,均具有十分重要的意义。
     本文主要从实验和理论两个方面对新型的具有特殊形貌介孔材料和掺杂杂原子的介孔材料的制备与性能进行了研究。合成了系列掺杂介孔分子筛材料,以及具有球状、空心球状、叶片状等特殊形貌的介孔材料,考察了通过适当修饰和处理后的这些材料的催化、吸附、储氢、和控制释放性能。采用SEM/TEM、XRD、XPS等对这些材料进行了表征,获得了许多重要信息,并在此基础上提出了空心球状介孔材料的形成机理。
     通过一步合成法合成出了将一种新型的稀土金属钕掺杂的硅基介孔材料,非常重要的是,合成出的材料除了成功地实现了钕的掺杂外,还具有空心球状结构形貌。实验考察了反应时间、反应物中的硅钕比(nSi / nNd)以及模板剂的脱除方式对产物介孔结构的影响。XRD和XPS结果表明当nSi / nNd >10时,Nd可以很好地以三价形式替代硅原子嵌入到介孔材料骨架之中,钕掺杂介孔材料具有比表面积高、孔径分布均匀、良好的热和水热稳定性等重要特点。同时,钕掺杂介孔材料对于苯乙烯的催化氧化反应具有良好的催化性能。当硅钕摩尔比为20时,其苯乙烯转化率可达16.21 %,生成苯乙醛的选择性可达95.07 %。
     采用十二烷二胺(DADD)为主模板剂,聚乙烯吡咯烷酮(PVP)和三嵌段共聚物(F127)为助模板剂的双模板剂路线,我们成功地合成出了具有漂亮的树叶状及实心球状形貌的介孔材料。这些样品具有比表面积高,蠕虫孔道分布均匀、热稳定性高等特点。通过浸渍-氢气还原法将5 wt%的Pd负载到这类材料上制得一种高储氢量的储氢材料,发现这类材料具有优秀的储氢性能,在室温和氢压力为12 atm条件下,储氢量高达2.59 wt%,使得该材料可望成为一种有效的储氢材料。
     另外,采用十二胺(DDA)为主模板剂,PVP和F127为助模板剂分别合成出了具有空心球和棉花糖形貌的介孔材料。并在大量实验数据的基础上尝试提出了空心球形貌的形成机理,而且通过实验对机理进行了验证。选择不同分子量的具有不同链长的PVP聚合物为助模板剂制备得到不同大小的空心球介孔材料。当使用较长链长的PVP-30为助模板剂时,合成得到的粒径尺寸约为500 nm的空心球介孔材料。然而,使用短链长的PVP-10合成出的粒径尺寸明显下降到约为170 nm,结果表明空心球的尺寸可以通过PVP聚合物的链长进行调节控制。实验还考察了不同PVP浓度的影响,当PVP的浓度小于形成球状的临界胶束浓度时,空心球结构将逐渐消失。验证了我们提出的DDA为主模板剂形成介孔结构,PVP为助模板剂主导空心球结构的机理。空心球和棉花糖状的介孔材料均具有高比表面积、均匀孔径和大孔容,例如,空心球介孔材料的孔容高达1.77 cm3g-1,棉花糖状的介孔材料的比表面积高达1255 m2g-1。以两种材料为吸附剂,考察研究了样品储载客体分子香豆素480的储载能力,空心球介孔材料的储载量约是棉花糖状介孔材料储载量的3倍。从而说明空心球介孔材料是一种很好的储载客体分子的载体。
     最后,我们尝试通过引入一个纳米阀门在空心球介孔材料来制备一种新型的智能纳米储存材料,首先以DDA和PVP-10为双模板合成出了空心球和实心球介孔硅材料,然后将α-环糊精为阀门,三种不同链长的含苯胺基的有机硅烷链为“芯”的pH响应的纳米阀门安装在介孔材料上。该纳米阀门依靠的是α-环糊精和有机硅烷链之间的氢键结合作用。在中性条件下,α-环糊精与苯胺基链相互结合,大量的环状分子处在介孔的孔口处,因而客体分子被封闭在空心介孔硅材料中;而当pH≤5或6达到苯胺基中氨基得以质子化的pKa时,氨基被质子化带有正电荷,从而两者之间失去了相互结合作用力而分开,药物分子随之释放。实验考察了纳米阀门的药物释放在不同链长、不同pH值及不同介孔材料下的影响,实验表明短链纳米阀门比长链纳米阀门释放的量多,低pH值环境中释放的速率快,空心球中释放的量是实心球中释放量的2倍。因此可见,含有纳米阀门控制器的空心球介孔材料可望在药物缓释应用材料中担当一个重要角色。
Mesoporous materials have attracted much more attention due to their advantages, such as high surface area, ordered arrangement, uniform pore structure, as well as their pore size could be adjusted in the range of 2 to 50 nm, and their potential application in the field of sorption, separation, catalysis, drug control-release, light, electricity and magnetism, etc. Due to the framework of the most current mesoporous materials is composed of SiO2, which only possess a little of weak acid centers, they are almost catalytic inactive. To make the silica based mesoporous materials possess catalytic active, embedding hetero atoms into the silica framework or modifying the framework of silicas with organic functional groups have been widely applied, and it is becoming one of the hottest topics in the field of mesoporous materials. Furthermore, synthesis of the mesoporous materials with special morphology by using multiple surfactants as co-templates is a novel attempt, it is a valuable attempt not only for improving the knowledge of materials science, but also for extending the application areas of mesoporous materials.
     The main topics of this dissertation are the preparation and characterization of the hetero atoms embedded mesoporous materials and the novel mesoporous silicas with special morphologies. A series of the metal embedded materials, and the mesoporous silicas with special morphologies, including solid sphere, hollow sphere, and leaf like shape, have been synthesized, their performances in catalysis, sorption, hydrogen storage, and medicine controlled release have been investigated, and some of the materials are modified by supporting precious metal or introducing functional groups. All the synthesized materials were characterized with SEM/TEM, XRD, XPS, et al, and some important information about the structure of materials has been obtained. Furthermore, a possible mechanism for the formation of hollow sphere structure also has been proposed.
     A new type of neodymium embedded mesoporous silica material has been synthesized successfully by a facile one-pot approach, it is important that the synthesized materials not only had the Nd incorporated into the framework of synthesized materials, but also exhibited a hollow sphere morphology. The effects of molar ratio of Si/Nd, synthesizing time and the removal method of templates have been investigated. Both XRD and XPS results confirmed the framework incorporation of Nd atoms into the framework of mesoporous silica when the molar ratio of Si / Nd is more than 10. It was found that the material showed high surface area, uniform pore size distribution, good thermal and hydrothermal stability. Meanwhile, it was also found that the Nd embedded hollow mesoporous silica material showed good catalytic activity and selectivity towards the oxidation of styrene. When the molar ratio of Si/Nd is 20, the conversion of styrene reached 16.21 %, and the selectivity of hyacinthin was high up to 95.07 %.
     By using 1, 12-diaminododecane (DADD) as main template, poly(vinylpyrrolidone) (PVP) and tri-block copolymer (F127) as co-templates, mesoporous silica with beautiful leaf-shape and solid sphere structures were successfully synthesized respectively. The mesoporous silicas showed high surface area, uniform pore wormlike pore structure and high thermal stability. By supporting 5 wt% Pd on the solid sphere mesoporous spheres with an impregnation-hydrogen reduction process, a high volume hydrogen storage material was prepared. It was found that the sample exhibited good hydrogen storage properties, the storage capacity was up to 2.59 wt% at room temperature and hydrogen pressure of 12atm, which might make it a promising hydrogen storage candidate material.
     Furthermore, a hollow sphere and cotton candy like mesoporous silica were synthesized by using DDA as main template, PVP and F127 as co-templates respectively. Based on the experimental results, a possible formation mechanism for hollow-sphere mesoporous morphology has been proposed. When the different molecular weight PVP with different chain length as co-template was applied, the different mesoporous materials were obtain. When long chain PVP-30 was used as co-template, the hollow sphere mesoporous silica with diameter of ca. 500 nm was synthesized; However, when short chain PVP-10 was used, the diameter was decreased to ca. 170 nm; indicating that the size of the hollow sphere was controlled by the chain length of the PVP polymers. In addition, the effect of PVP concentration was also investigated; it showed that the hollow sphere morphology will be disappeared when the concentration was lower than a critical value. It verified our proposed mechanism that the mesoporous structure might be dominated by main template DDA, and the morphology might be dominated by co-template PVP. Both hollow sphere and cotton candy like mesoporous silicas showed high surface area, uniform pore size, and large pore volume, e.g. the pore volume of the hollow sphere could be high up to 1.77 cm3g-1, and the surface area of the cotton candy like mesoporous silica could be 1255 m2g-1. The storage properties of the hollow sphere and the cotton candy like mesoporous silica were measured by loading Coumarin 480 dye molecules, the storage amount of hollow sphere is almost three times of that of the cotton candy like mesoporous silica, suggesting that the hollow sphere mesoporous silica with a large hollow space is a good guest molecule storage material.
     Finally, we attempted to prepare a novel type of intelligent nano storage materials by introducing a nanovalve into the hollow sphere materials, firstly the hollow sphere and solid sphere materials was synthesized by using DDA and PVP-10 as co-templates, then a pH value sensitive nanovalve was introduced on the mesoporous silica by using theα-cyclodextrin (α-CD) rings as capping agents and three different of anilino group linker molecules as stalks. The nanovalve’s work relied on the hydrogen bonding interaction betweenα-CD and the stalk. When theα-CD ring is complexed with the stalk at neutral pH, the bulky cyclic component is located near the pore openings, thereby blocking departure of cargo molecules that were loaded in the nanopores and hollow interior of the particle. Protonation of the nitrogen atoms at lower pH (≤5 or 6) causes the binding affinity to decrease, releasing theα-CD and allowing the cargo molecules to escape. The effect of different stalk lengths, pH conditions and different mesoporous silica on the release of fluorescent dye cargo molecules is measured, and the results showed that nanovalves functionalized with short linkers molecules can release more molecules than that with long linkers molecules, the release rate of cargo molecules would be faster at lower pH condition, hollow mesoporous silica can release as much as two times more cargo molecules than solid mesoporous silica. Therefore, the hollow sphere mesoporous silica with nanovalves will potentially play an important role in the application of drug delivery.
引文
[1] IUPAC manual of symbol sand terminology [J]. Pure Appl. Chem., 1972, 31: 578-638
    [2] Corma A. From microporous to mesoporous molecular sieve materials and their use in catalysis [J]. Chem. Rev., 1997, 97(6): 2373-2419.
    [3] Stein A., Melde B.J., Schroden R.C. Hybrid inorganic-organic mesoporous silicates -nanoscopic reactors coming of age [J]. Adv. Mater., 2000, 12(19):1403-1419.
    [4] Davis M.E. Ordered porous materials for emerging application [J]. Nature, 2002, 417: 813-821.
    [5] Kleitz F., Liu D., Anilkumar G.M., et al. Large cage face-centered-cubic Fm3m mesoporous silica: synthesis and structure [J]. J. Phys. Chem. B, 2003, 107(51): 14296-14300.
    [6] Kohtani M., Jarrold M F. Water molecule adsorption on short alanine peptides: how short is the shortest gas-phase alanine-based helix [J]. J. Am. Chem. Soc., 2004, 126(27): 8454-4858.
    [7] Kresge C.T., Leonowicz M.E., Roth W.J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism [J]. Nature, 1992, 359(6397): 710-712.
    [8] Beck J.S., Vartuli J.C., Roth W.J., et al. A new family of mesoporous molecular sieves prepared with liquid crystal templates [J]. J. Am. Chem. Soc., 1992, 114(27): 10834-10843.
    [9] Huo Q.S., Margolese D.L., Ciesla U., et al. Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays [J]. Chem. Mater., 1994, 69(8): 1176-1191.
    [10] Zhao D., Fan J., Huo Q.S, et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores [J]. Science, 1998, 279(5350): 548-552.
    [11] Kim T.W., Ryoo R., Kruk M., et al. J. Tailoring the pore structure of SBA-16 silica molecular sieve through the use of copolymer blends and control of synthesis temperature and time [J]. Phys. Chem. B, 2004, 108(31): 11480-11489.
    [12] Wang L.M., Fan J., Tian B.Z., et al. Synthesis and characterization of small pore hick-walled SBA-16 templated by oligomeric surfactant with ultra-long hydrophilic chains [J]. Micropor. Mesopor. Mater., 2004, 67(2-3):135-141.
    [13] Fan J., Yu C., Gao F., et al. Cubic mesoporous silica with large controllable entrance sizesand advanced adsorption properties [J]. Angew. Chem. Int. Ed., 2003, 42(27): 3146-3150.
    [14] Bagshaw S.A., Prouzet E., Pinnavaia T.J. Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants [J] .Science, 1995, 269(5228): 1242-1244.
    [15] Ryoo R., Kim J.M, Ko C.H, et al. Disordered molecular sieve with branched mesoporous channel network [J]. J. Phys. Chem, 1996, 100(45): 17718-17724.
    [16] Yu C.Z, Yu Y.H, Zhao D.Y. Highly ordered large caged cubic mesoporous silica structures templated by triblock PEO-PBO-PEO copolymer [J]. Chem. Commun, 2000, (7):575-576.
    [17] Che S., Liu Z., Ohsuma T., et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature, 2004, 429(6989): 281-284.
    [18] Schueth F. Non-siliceous mesostructured and mesoporous materials [J]. Chem. Mater., 2001, 13(10): 3184-3195.
    [19] Carbrera S., Haskouri J.E., Alamo J., et al. Surfactant-assisted synthesis of mesoporous alumina showing continuously adjustable pore sizes [J]. Adv. Mater., 1999, 11(5): 379-381.
    [20] Vaudry F., Khodabandeh S., Davis M.E. Synthesis of pure alumina mesoporous materials [J]. Chem. Mater., 1996, 8(7): 1451-1464.
    [21] Yada M., Machida M., Kijima T. Synthesis and deorganization of an aluminum-based dodecyl sulfate mesophase with a hexagonal structure [J]. Chem. Commun., 1996, 6: 769-770.
    [22] Yada M., Ohya M., Machida M., et al. Synthesis of porous yttrium aluminum oxide templated by dodecyl sulfate assemblies [J]. Chem. Commun., 1998, 18: 1941-1942.
    [23] Yada M., Ohya M., Ohe K., et al. Porous yttrium aluminum oxide templated by alkyl sulfate assemblies [J]. Langmuir, 2000, 16(4): 1535-1541.
    [24] Yada M., Ohya M., Machida M., et al. Mesoporous gallium oxide structurally stabilized by yttrium oxide [J]. Langmuir, 2000, 16(10): 4752-4755.
    [25] Valange S., Guth J.L., Kolenda F., et al. Synthesis strategies leading to surfactant-assisted aluminas with controlled mesoporosity in aqueous media [J]. Micropor. Mesopor. Mater., 2000, 35-36: 597-607.
    [26] Zhao D., Goldfarb D. Synthesis of lamellar mesostructures with nonamphiphilic mesogens as templates [J]. Chem. Mater., 1996, 8(11): 2571-2578.
    [27] Hatayama H., Misono M., Taguchi A., et al. Hydrothermal synthesis of cubic mesostructured vanadium-phosphorus oxide [J]. Chem. Lett., 2000, 8: 884-885.
    [28] Yang P.D, Zhao D.Y, Margolese D.I., et al. Generalized syntheses of large-poremesoporous metal oxides with semicrystalline frameworks [J]. Nature, 1998, 396(6707): 152-155.
    [29] Yang P., Zhao D., Margolese D.I., et al. Block copolymer templating syntheses of mesoporous metal oxides with large ordering lengths and semicrystalline framework [J]. Chem. Mater., 1999, 11(10): 2813-2826.
    [30] Blanchard J., Schuth F., Trens P., et al. Synthesis of hexagonally packed porous titanium oxo-phosphate [J]. Micropor. Mesopor. Mater., 2000, 39(1-2): 163-170.
    [31] Romannikov V.N., Fenelov V.B., Paukshtis E.A., et al. Mesoporous basic zirconium sulfate: structure, acidic properties and catalytic behavior [J]. Micropor. Mesopor. Mater., 1998, 21(4-6): 411-419.
    [32] Luo J., Suib S.L. Formation and transformation of mesoporous and layered manganese oxides in the presence of long-chain ammonium hydroxides [J]. Chem. Commun., 1997, (11):1031-1032.
    [33] Tian Z.R., Tong W., Wang J.Y., et al. Manganese oxide mesoporous structures: mixed-valent semiconducting catalysts [J]. Science, 1997, 276(5314): 926-930.
    [34] Braun P.V., Osenar P., Stupp S.I. Semiconducting superlattices templated by molecular assemblies [J]. Nature, 1996, 380(6572): 325-328.
    [35] Osenar P., Braun P.V., Stupp S.I. Lamellar semiconductor-organic nanostructures from self-assembled templates [J]. Adv. Mater., 1996, 8(12): 1022-1025.
    [36] Tohver V., Braun P.V., Pralle M.U., et al. Counterion effects in liquid crystal templating of nanostructured CdS [J]. Chem. Mater., 1997, 9(7): 1495-1498.
    [37] Braun P.V., Osenar P., Tohver V., et al. Nanostructure templating in inorganic solids with organic lyotropic liquid crystals [J]. J. Am. Chem. Soc., 1999, 121(32): 7302-7309.
    [38] Bonhomme F., Kanatzidis M.G. Structurally characterized mesostructured hybrid surfactant-inorganic lamellar phases containing the adamantane [Ge4S10]4- anion: synthesis and properties [J]. Chem. Mater., 1998, 10(4): 1153-1159.
    [39] Wachhold M., Rangan K.K., Lei M., et al. Mesostructured metal germanium sulfide and selenide materials based on the tetrahedral [Ge4S10]4- and [Ge4Se10]4- units: surfactant templated three-dimensional disordered frameworks perforated with worm holes [J]. J. Solid State Chem., 2000, 152(1): 21-36.
    [40] Rangan K.K., Trikalitis P.N., Kanatzidis M.G. Light-emitting meso-structured sulfides with hexagonal symmetry. Supramolecular assembly of [Ge4S10]4- clusters with trivalent metal ions and cetylpyridinium surfactant [J]. J. Am. Chem. Soc., 2000, 122(41), 10230-10230.
    [41] Rangan K.K., Billinge S.J.L., Petkov V., et al. Aqueous mediated synthesis of mesostructured manganese germanium sulfide with hexagonal order [J]. Chem. Mater., 1999, 11(10): 2629-2632.
    [42] MacLachlan M.J., Coombs N., Ozin G.A. Non-aqueous supramolecular assembly of mesostructured metal germanium sulfides from (Ge4S10)4- clusters [J]. Nature, 1999, 397(6721): 681-684.
    [43] MacLachlan M.J., Coombs N., Bedard R.L., et al. Mesostructured metal germanium sulfides [J]. J. Am. Chem. Soc., 1999, 121(51): 12005-12017.
    [44] Warnheim T. Aggregation of surfactants in nonaqueous, polar solvents [J]. Curr. Opin. Colloid Interface Sci.,1997, 2(5): 472-477.
    [45] Trikalitis P.N., Bakas T., Papaefthymiou V., et al. Supramolecular assembly of hexagonal mesostructured germanium sulfide and selenide nanocomposites incorporating the biologically relevant Fe4S4 cluster [J]. Angew. Chem. Int. Ed., 2000, 39(24): 4558-4562.
    [46] Sayari A., Karra V.R., Reddy J.S., et al. Synthesis of mesostructured lamellar aluminophosphates [J]. Chem. Commun., 1996, 3:411-412.
    [47] Kimura T., Sugahara Y., Kuroda K. Synthesis of a hexagonal mesostructured aluminophosphate [J]. Chem. Lett., 1997, 10:983-984.
    [48] Feng P., Xia Y., Feng J., et al. Synthesis and characterization of mesostructured aluminophosphates using the fluoride route [J]. Chem. Commun., 1997, 10:949-950.
    [49] Tiemann M., Fr?ba M., Rapp G., et al. Nonaqueous synthesis of mesostructured aluminophosphate/surfactant composites: synthesis, characterization, and in-situ SAXS studies [J]. Chem. Mater., 2000, 12(5): 1342-1348.
    [50] Chakraborty B., Pulikottil A.C., Das S., et al. Synthesis and characterization of mesoporous SAPO [J]. Chem. Commun., 1997, 10:911-912.
    [51] Zhao D., Luan Z., Kevan L. Synthesis of thermally stable mesoporous hexagonal aluminophosphate molecular sieves [J]. Chem. Commun., 1997, 11:1009-1010.
    [52] Khimyak Y.Z., Klinowski J. Synthesis of mesostructured aluminophosphates using cationic templating [J]. Phys. Chem. Phys., 2000, 2(22): 5275-5285.
    [53] Kimura T., Sugahara Y., Kuroda K. Synthesis and characterization of lamellar and hexagonal mesostructured aluminophosphates using alkyltrimethylammonium cations as structure-directing agents [J]. Chem. Mater., 1999, 11(2): 508-518.
    [54] Holland B.T., Isbester P.K., Blanford C.F., et al. Synthesis of ordered aluminophosphate and galloaluminophosphate mesoporous materials with anion-exchange properties utilizing polyoxometalate cluster/surfactant salts as precursors [J]. J. Am. Chem. Soc.,1997, 119(29): 6796-6803.
    [55] Attard G.S., Goltner C.G., Corker J.M., et al. Liquid-crystal templates for nanostructured metals [J]. Angew. Chem. Int. Ed. Engl., 1997, 36(12): 1315-1317.
    [56] Goltner C.G., Antonietti M. Mesoporous materials by templating of liquid crystalline phases [J]. Adv. Mater., 1997, 9(5): 431-436.
    [57] Attard G.S., Bartlett P.N., Coleman N.R.B., et al. Mesoporous platinum films from lyotropic liquid crystalline phases [J]. Science, 1997, 278(5339): 838-840.
    [58] Whitehead A.H., Elliott J.M., Owen J.R., et al. Electrodeposition of mesoporous tin films [J]. Chem. Commun., 1999, (4): 331-332.
    [59] Kim T.W., Park I.S., Ryoo R. A synthetic route to ordered mesoporous carbon materials with graphitic pore walls [J]. Angew. Chem. Int. Ed. Engl., 2003, 42(36): 4375-4379.
    [60] Ryoo R., Joo S.H., Jun S. Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation [J]. J. Phys. Chem. B, 1999, 103(37): 7743-7746.
    [61] Ryoo R., Joo S.H., Kruk M., et al. Ordered mesoporous carbons [J]. Adv. Mater., 2001, 13(9): 677-681.
    [62] Joo S.H., Chl S., Oh I., et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles [J]. Nature, 2001, 412(6843): 169-172.
    [63] Jun S., Joo S.H., Ryoo R., et al. Synthesis of new, nanoporous carbon with hexagonally ordered mesostructure [J]. J. Am. Chem. Soc., 2000, 122(43): 10712-10713.
    [64] Fryxell G.E. The synthesis of functional mesoporous materials [J]. Inorg. Chem. Commun., 2006, 9(11): 1141-1150.
    [65] Soler-lllia G.J. de A.A., Sanchez C., Lebeau B., et al. Chemical strategies to design textured materials: from microporous and mesoporous oxides to nanonetworks and hierarchical structures [J]. Chem. Rev., 2002, 102(11): 4093-4138.
    [66] Tanev P.T., Chlbwe M., Plannavala T.J. Titanium-containing mesoporous molecular sieves for catalytic oxidation of aromatic compounds [J]. Nature, 1994, 368(6469): 321-323.
    [67] Voegtlin A.C., Ruch F., Guth J.L., et al. F- mediated synthesis of mesoporous silica with ionic- and non-ionic surfactants. A new templating pathway [J]. Micro. Mater., 1997, 9(1-2), 95-105.
    [68] Huo Q., Feng J., Schütch F., et al. Preparation of hard mesoporous silica spheres [J]. Chem. Mater., 1997, 9(1): 14-17.
    [69] Buechel G., Unger K.K., Matsumoto A., et al. A novel pathway for synthesis ofsubmicrometer-size solid core/mesoporous shell silica spheres [J]. Adv. Mater., 1998, 10(13): 1036-1038
    [70] Unger K.K., Kumar D., Grun M., et al. Synthesis of spherical porous silicas in the micron and submicron size range: challenges and opportunities for miniaturized high-resolution chromatographic and electrokinetic separations [J]. J. Chromatogr. A, 2000, 892(1-2): 47-55.
    [71] Yu C., Tian B., Fan J., et al. Salt effect in the synthesis of mesoporous silica templated by non-ionic block copolymers [J]. Chem. Commun., 2001, 24: 2726-2727.
    [72] Suzuki K., Ikari K., Imai H. Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system [J]. J. Am. Chem. Soc., 2004, 126(2): 462-463.
    [73] Suzuki K., Ikari K., Imai H. Grain size control of mesoporous silica and formation of bimodal pore structures [J]. Langmuir, 2004, 20(26): 11504-11508.
    [74] Yano K., Fukushima Y., Particle size control of mono-dispersed super-microporous silica sphere [J]. J. Mater. Chem., 2003, 13(10): 2577-2581.
    [75] Schacht S., Huo Q., Voigt-Martin I.G., et al. Oil-water interface templating of mesoporous macroscale structures [J]. Science, 1996, 273(5276): 768-771.
    [76] Zhu Y.F., Shi J.L., Chen H.R., et al. A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property [J]. Micropor. Mesopor. Mater., 2005, 84(1-3): 218-222.
    [77] Wang J.G., Li F., Zhou H.J., et al. Silica hollow spheres with ordered and radially oriented amino-functionalized mesochannels [J]. Chem. Mater., 2009, 21(4): 612–620.
    [78] Huo Q.S., Zhao D.Y., Feng J.L., et al. Room temperature growth of mesoporous silica fibers: a new high-surface-area optical waveguide [J]. Adv. Mater., 1997, 9(12): 974-978.
    [79] Wang J.F., Zhang J.P., Asoo B.Y., et al. Structure-selective synthesis of mesostructured / mesoporous silica nanofibers [J]. J. Am. Chem. Soc., 2003, 125(46): 13966-13967.
    [80] Chu Y.H., Kim H.J., Song K.Y., et al. Preparation of mesoporous silica fiber matrix for VOC removal [J]. Catal. Today, 2002, 74(3-4): 249-256.
    [81] Yang P.D., Zhao D.Y., Chmelka B.F., et al. Triblock-copolymer-directed syntheses of large-pore mesoporous silica fibers [J]. Chem. Mater., 1998, 10(8): 2033-2036.
    [82] Katsunori K., Tetsu S., Nobuyuki K., et al. Morphological control of rod- and fiberlike SBA-15 type mesoporous silica using water-soluble sodium silicate [J]. Chem. Mater., 2004, 16(5): 899-905.
    [83] Zhao D., Sun J., Li Q., et al. Morphological control of highly ordered mesoporous silicaSBA-15 [J]. Chem. Mater., 2000, 12(2): 275-279.
    [84] Wayakama H., Fukushima Y. Nanoporous silica prepared with activated carbon molds using supercritical CO2 [J]. Chem. Mater., 2000, 12(3): 756-761.
    [85] Yoshiyuki O., Kazuaki N., Masahito S., et al. Organic gels are useful as a template for the preparation of hollow fiber silica [J]. Chem. Commun., 1998, 14: 1477-1478.
    [86] Sajo P., Naik A., Igor S. Synthesis of mesoporous silica fibers and discoids endowed with circular pore architecture using disodium trioxosilicate as silica source [J]. Micropor. Mesopor. Mater., 2008, 116(1-3): 581-585.
    [87] Davis S.A., Burkett S.L., Mendelson N.H., et al. Bacterial templating of macrostructures in silica and silica-surfactant mesophases [J]. Nature, 1997, 385: 420-423.
    [88] Raimondi M.E., Maschmeyer T., Templer R.H., et al. Synthesis of direct templated aligned mesoporous silica coatings within capillaries [J]. Chem. Commun., 1997, 19: 1843-1844.
    [89] Che S., Liu Z., Ohsuna T., et al. Synthesis and characterization of chiral mesoporous silica [J]. Nature, 2004, 429: 281-284.
    [90] Ohsuna T., Liu Z., Che S., et al. Characterization of chiral mesoporous materials by transmission electron microscopy [J]. Small, 2005, 1(2): 233-237.
    [91] Wu Y.Y., Cheng G.S., Katsov K., et al. Composite mesostructures by nano-confinement [J]. Nat. Mater., 2004, 3: 816-822.
    [92] Trewyn B.G., Whitman C.M., Lin V.S.Y. Morphological control of room-temperature ionic liquid templated mesoporous silica nanoparticles for controlled release of antibacterial agents [J]. Nano. Lett., 2004, 4(11): 2139-2143.
    [93] Wu X., Jin H., Liu Z., et al. Racemic helical mesoporous silica formation by a chiral anionic surfactant [J]. Chem. Mater., 2006, 18(2): 241-243.
    [94] Zhang Q.H., Lu F., Li C.L., et al. An efficient synthesis of helical mesoporous silica nanorods [J]. Chem. Lett., 2006, 35: 190-191.
    [95] Wang B., Chi C., Shan W., et al. Chiral mesostructured silica nanofibers of MCM-41[J]. Angew. Chem. Int. Ed., 2006, 45(13): 2088-2090.
    [96] Wu Y.Y., Livneh T., Zhang Y.X., et al. Templated synthesis of highly ordered mesostructured nanowires and nanowire arrays [J]. Nano. Lett., 2004, 4(12): 2337-2342.
    [97] Yang S., Zhao L.Z., Yu, C.Z., et al. On the origin of helical mesostructures [J]. J. Am. Chem. Soc., 2006, 128(32): 10460-10466.
    [98] Yang Y.G., Suzuki M., Owa S., et al. Preparation of helical nanostructures using chiral cationic surfactants[J]. Chem. Commun., 2005, 35: 4462-4464.
    [99] Yang Y.G., Suzuki M., Shirai H., et al. Nanofiberization of inner helical mesoporous silica using chiral gelator as template under a shear flow [J]. Chem. Commun., 2005, 15: 2032-2034.
    [100] Yang Y.G., Suzuki. M., Owa S., et al. Control of mesoporous silica nanostructures and pore-architectures using a thickener and a gelator [J]. J. Am. Chem. Soc., 2006, 129(3): 581-587.
    [101] Yang Y.G., Suzuki M., Fukui H., et al. Preparation of helical mesoporous silica and hybrid silica nanofibers using hydrogelator [J]. Chem. Mater., 2006, 18(5): 1324-1329.
    [102] Raimondi M.E., Maschmeyer T., Templer R.H., et al. Synthesis of direct templated aligned mesoporous silica coatings within capillaries [J]. Chem. Commun., 1997, 19: 1843-1844.
    [103] Yang H., Kuperman A., Coombs N., et al. Synthesis of oriented films of mesoporous silica on mica [J]. Nature, 1996, 379: 703-705.
    [104] Yang H., Coombs N., Sokolov I., et al. Free-standing and oriented mesoporous silica films grown at the air-water interface [J]. Nature, 1996, 381: 589-592.
    [105] Yang H., Coombs N., Ozin G., Morphogenesis of shapes and surface patterns in mesoporous silica [J]. Nature, 1997, 386: 692-695.
    [106] Lu Y., Ganguli R., Drewien C.A., et al. Continuous formation of supported cubic and hexagonal mssoporllus films by sol-gel dip-coating [J]. Nature, 1997, 389: 364-368.
    [107] Sellinger A., Weiss P.M., Nguyen A., et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre [J]. Nature, 1998, 394: 256-260.
    [108] Lu Y.F., Fan H.Y., Doke N., et al. Evaporation-induced self-assembly of hybrid bridged silsesquioxane film and particulate mesophases with integral organic functionality [J]. J. Am. Chem. Soc., 2000, 122(22): 5258-5261.
    [109] Zhao D.Y., Yang P.D., Margolese D.I., et al. Synthesis of continuous mesoporous silica thin films with three-dimensional accessible pore structures [J]. Chem. Commun., 1998, 22: 2499-2500.
    [110] Tanaka S.S., Nishiyama N., Oku Y., et al. Nano-architectural silica thin films with two dimensionally connected cagelike pores synthesized from vapor phase [J]. J. Am. Chem. Soc., 2004, 126(15): 4854-4858.
    [111] Bosc F., Ayral A., Albouy P. A., et al. Mesostructure of anatase thin films prepared by mesophase templating [J]. Chem. Mater., 2004, 16(11): 2208-2214.
    [112] Shioya Y., Ikeue K., Ogawa M., et al. Synthesis of transparent Ti-containingmesoporous silica thin film materials and their unique photocatalytic activity for the reduction of CO2 with H2O [J]. Appl. Catal. A, 2003, 254(2): 251-259.
    [113] Zhao D., Yang P., Melosh N., et al. Continuous mesoporous silica films with highly ordered large pore structures [J]. Adv. Mater., 1998, 10(16): 1380-1385.
    [114] Baskaran S., Liu J., Domansky K., et al. Low dielectric constant mesoporous silica films through molecularly templated synthesis [J]. Adv. Mater., 2000, 12(4): 291-294.
    [115] Grosso D., Balkenende. A.R., Albouy P.A., et al. Highly oriented 3D-hexagonal silica thin films produced with cetyltrimethylammonium bromide [J]. J. Mater. Chem. 2000, 10(9): 2085-2089.
    [116] Kim J. M., Kim S. K., Ryoo R. Synthesis of MCM-48 single crystals [J]. Chem. Commun., 1998, 2: 259-260.
    [117] Guan S., Inagaki S., Ohsuna T., et al. Cubic hybrid organic?inorganic mesoporous crystal with a decaoctahedral shape [J]. J. Am. Chem. Soc., 2000, 122(23): 5660-5661.
    [118] Che S., Sakamoto Y., Terasaki O., et al. Control of crystal morphology of SBA-1 mesoporous silica [J]. Chem. Mater., 2001, 13(7): 2237-2239.
    [119] Che S., Sakamoto Y., Terasaki O., et al. Synthesis and morphology control of SBA-1 mesoporous silica with surfactant of cetyltrimethylammonium bromide (CTMABr) [J]. Chem. Lett., 2002, 214-215.
    [120] Che S., Lim S., Kaneda M., et al. The effect of the counteranion on the formation of mesoporous materials under the acidic synthesis process [J]. J. Am. Chem. Soc., 2002, 124(47): 13962-13963.
    [121] Che S., Sakamoto Y., Yoshitake H., et al. Synthesis and characterization of Mo-SBA-1 cubic mesoporous molecular sieves [J]. J. Phys. Chem. B, 2001, 105(43): 10565-10572.
    [122] Che S., Kamiya S., Terasaki O., et al. The formation of cubic Pm3n mesostructure by an epitaxial phase transformation from hexagonal P6mm mesophase [J]. J. Am. Chem. Soc., 2001, 123(48): 12089-12090.
    [123] Yu C., Tian B., Fan J., et al. Nonionic block copolymer synthesis of large-pore cubic mesoporous single crystals by use of inorganic salts [J]. J. Am. Chem. Soc., 2002, 124(17): 4556-4557.
    [124] Melosh N.A., Lipic P., Bates F.S., et al. Molecular and mesoscopic structures of transparent block copolymer?silica monoliths [J]. Macromolecules, 1999, 32(13): 4332-4342.
    [125] Melosh N.A., Davidson P., Chmelka B.F. Monolithic mesophase silica with largeordering domains [J]. J. Am. Chem. Soc., 2000, 122(5): 823-829.
    [126] Feng P., Bu X., Stucky G.D., et al. Monolithic mesoporous silica templated by microemulsion liquid crystals [J]. J. Am. Chem. Soc., 2000, 122(5): 994-995.
    [127] Zhu Y.F., Shi J.L. A mesoporous core-shell structure for pH-controlled storage and release of water-soluble drug [J]. Micropor. Mesopor. Mater. 2007, 103(1-3): 243-249.
    [128] Lai C.Y., Trewyn B.G., Jeftinija D.M., et al. A mesoporous silica nanosphere-based carrier system with chemically removable CdS nanoparticle caps for stimuli-responsive controlled release of neurotransmitters and drug molecules [J]. J. Am. Chem. Soc., 2003, 125 (15): 4451-4459.
    [129] Giri S., Trewyn B.G., Stellmaker M.P., et al. Stimuli-responsive controlled-release delivery system based on mesoporous silica nanorods capped with magnetic nanoparticles [J]. Angew. Chem. Int. Ed., 2005, 44(32): 5038-5044.
    [130] Vivero-Escoto J.L., Slowing I.I., Wu C.W., et al. Photoinduced intracellular controlled release drug delivery in human cells by gold-capped mesoporous silica nanosphere [J]. J. Am. Chem. Soc., 2009, 131(10): 3462-3463
    [131] Hernandez, R., Tseng, H. R., Wong, J. W., et al. An operational supramolecular nanovalve [J]. J. Am. Chem. Soc., 2004, 126(11): 3370-3371.
    [132] Saha, S., Leung, K.C.F., Nguyen, T.D., et al. Nanovalves [J]. Adv. Funct. Mater., 2007, 17(5): 685-693.
    [133] Nguyen, T.D., Liu, Y., Saha, S., et al. Design and optimization of molecular nanovalves based on redox-switchable bistable rotaxanes [J]. J. Am. Chem. Soc., 2007, 129(3): 626-634.
    [134] Yang, Q., Wang, S., Fan, P., et al. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery [J]. Chem. Mater., 2005, 17(24): 5999-6003.
    [135] Nguyen, T.D., Leung, K.C.F., Liong, M., et al. Construction of a pH-driven supramolecular nanovalve [J]. Org. Let., 2006, 8(15): 3363-3366.
    [136] Leung, K.C.F., Nguyen, T.D., Stoddart, J.F., et al. Supramolecular nanovalves controlled by proton abstraction and competitive binding [J]. Chem. Mater., 2006, 18(25): 5919-5928.
    [137] Park, C., Oh, K., Lee, S. C., et al. Controlled release of guest molecules from mesoporous silica particles based on a pH-responsive polypseudorotaxane motif [J]. Angew. Chem. Int. Ed., 2007, 46(9): 1455-1457.
    [138] Angelos, S., Yang, Y.W., Patel, K., et al. pH-responsive supramolecular nanovalvesbased on cucurbit[6]uril pseudorotaxanes [J]. Angew. Chem. Int. Ed., 2008, 47(12): 2222-2226.
    [139] Angelos S., Khashab N.M., Yang Y.W., et al. pH clock-operated mechanized nanoparticles [J]. J. Am. Chem. Soc., 2009, 131 (36): 12912-12914.
    [140] Patel, K., Angelos, S., Dichtel, W.R., et al. Enzyme-responsive snap-top covered silica nanocontainers [J]. J. Am. Chem. Soc., 2008, 130(8): 2382-2383.
    [141] Ferris D.P., Zhao Y.L., Khashab N.M., et al. Light-operated mechanized nanoparticles [J]. J. Am. Chem. Soc., 2009, 131(5): 1686-1688.
    [142] Angelos S., Liong M., Choi E., et al. Mesoporous silicate materials as substrates for molecular machines and drug delivery [J]. Chem. Eng. J., 2008, 137(1): 4-13
    [143] Mal N.K., Fujiwara M., Tanaka Y. Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica [J]. Nature, 2003, 421(6921): 350-353.
    [144] Liu N., Dunphy D.R., Atanassov P., et al. Photoregulation of mass transport through a photoresponsive azobenzene-modified nanoporous membrane [J]. Nano Lett., 2004, 4(4): 551-554.
    [145] Nguyen T.D., Leung K.C.F., Liong M., et al. Versatile supramolecular nanovalves reconfigured for light activation [J]. Adv. Funct. Mater., 2007, 17(13): 2101-2110.
    [146] Taramasso M., Perego G., Notari B. Preparation of porous crystalline synthetic materials comprised of silicon and titanium oxides [P]. U S Patent 4410501, 19813.
    [147]姜文清,刘玲,张喜燕等.立方介孔相含钕氧化硅的合成与表征[J].无机化学学报, 2004, 20(12): 1407-1412.
    [148]杨春,贾雪平,何农跃等.酸性条件下纯硅六方介孔分子筛的合成(Ⅱ)合成温度,时间的影响及其与碱性合成的比较[J].无机化学学报,2001,17(2): 256-262.
    [149] Zhou Y., Bao R., Yue B., et al. Synthesis, characterization and catalytic application of SBA-15 immobilized rare earth metal sandwiched polyoxometalates [J]. J. Molecular Catalysis A: Chemical, 2007, 270(1-2): 50-55.
    [150] Thomas B., Sugunan S. Acetalization of ketones on K-10 clay and rare earth exchanged HFAU-Y zeolites: a mild and facile procedure for the synthesis ofdimethylacetals [J]. J. Porous Mater., 2006, 13(2): 99-106.
    [151] Mantri K., Komura K., Kubota Y., et al. Friedel-Crafts alkylation of aromatics with benzyl alcohols catalyzed by rare earth metal triflates supported on MCM-41 mesoporous silica [J]. J. Molecular Catalysis A: Chemical, 2005, 236(1-2): 168-175.
    [152] Anwander R., Gorlitzer H.W., Gerstberger G., et al. Grafting of bulky rare earth metal complexes onto mesoporous silica MCM-41 [J]. Journal of the Chemical Society, Dalton Transactions: Inorganic Chemistry, 1999, 20: 3611-3615.
    [153] Tanev P.T., Pinnavaia T.J. Biomimetic assembly of porous lamellar silica molecular sieves with vesicular particle architecture [J]. Supramol. Sci., 1998, 5(3–4): 399–404.
    [154] Tanev P.T., Ying L., Pinnavaia T.J. Assembly of mesoporous lamellar silicas with hierarchical particle architectures [J]. J. Am. Chem. Soc., 1997, 119(37): 8616–24.
    [155] Moulder, J.F., Stickle, W.F., Sobol, P.E. Handbook of X-ray Photoelectron Spectroscopy [M]. Perkin-Elmer Corporation Physical Electronics Division, 6509 Flying Cloud Drive: Minesota, 1992, 235-256.
    [156]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS) [M].国防工业出版社,北京, 1992, 543-553.
    [157]刘世宏,王当憨,潘承璜. X射线光电子能谱分析[M].科学出版社,北京, 1998, 361-362.
    [158] Vetrivel S., Pandurangan A. Vapor-phase oxidation of ethylbenzene with air over Mn-containing MCM-41 mesoporous molecular sieves [J]. Appl. Catal. A: General, 2004, 264(2): 243-252.
    [159] Chen B.C., Chao M.C., Lin H.P., et al. Faceted single crystals of mesoporous silica SBA-16 from a ternary surfactant system: surface roughening model [J]. Micro. Meso. Mater., 2005, 81(1-3): 241-249.
    [160] Han Y., Li D.F., Zhao L., et al. High temperature generalized synthesis of stable ordered mesoporous silica-based materials by using fluorocarbon–hydrocarbon surfactantmixtures [J]. Angew. Chem. Int. Ed., 2003, 42(31): 3633-3637.
    [161] Yang S., Zhao L.Z., Yu C.Z., et al. On the origin of helical mesostructures [J]. J. Am. Chem. Soc., 2006, 128(32): 10460-10466.
    [162] Fan Y.Y., Kaufmann A., Mukasyan A., et al. Single- and multi-wall carbon nanotubes produced using the floating catalyst method: synthesis, purification and hydrogen uptake [J]. Carbon, 2006, 44(11): 2160-2170.
    [163] Yoo E., Gao L., Komatsu T., et al. Atomic hydrogen storage in carbon nanotubes promoted by metal catalysts [J]. J. Phys. Chem. B, 2004, 108(49): 18903-18907.
    [164] Ren J.W., Liao S.J., Liu J.M. Hydrogen storage of multiwalled carbon nanotubes coated with Pd–Ni nanoparticles under moderate conditions [J]. Chin. Sci. Bull., 2006, 51(21): 2959-2963.
    [165] Ren J.W., Liao S.J., Liu J.M., MNi4.8Sn0.2 (M ? La, Nd)-supported multi-walled carbon nanotube composites as hydrogen storage materials [J]. Chin. Sci. Bull., 2007, 52(12): 1616–1622.
    [166] Kunowsky M., Weinberger B., Lamari Darkrim F., et al. Impact of the carbonisation temperature on the activation of carbon fibres and their application for hydrogen storage [J]. Int. J. Hydrogen Energy, 2008, 33(12): 3091–3095.
    [167] Kim B.J., Lee Y.S., Park S.J. Novel porous carbons synthesized from polymeric precursors for hydrogen storage [J]. Int. J. Hydrogen Energy, 2008, 33(9): 2254–2259.
    [168] Sharon M., Soga T., Afre R., et al. Hydrogen storage by carbon materials synthesized from oil seeds and fibrous plant materials [J]. Int. J. Hydrogen Energy, 2007, 32(17): 4238–4249.
    [169] Jurczyk M.U., Kumar A., Srinivasan S., et al. Polyaniline-based nanocomposite materials for hydrogen storage [J]. Int. J. Hydrogen Energy, 2007, 32(8): 1010–1015.
    [170] Panella B., Hirscher M., Pütter H., et al. Hydrogen adsorption in metal-organic frameworks: Cu-MOFs and Zn-MOFs compared [J]. Adv. Funct. Mater., 2006, 16(4): 520–524.
    [171] Krawiec P., Kramer M., Sabo M., et al. Improved hydrogen storage in the metal-organic framework Cu3(BTC)2 [J]. Adv. Eng. Mater., 2006, 8(4): 293–296.
    [172] Latroche M., Serre C., Millange F., et al. Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101 [J]. Angew. Chem. Int. Ed., 2006, 45(48): 8227–8231.
    [173] Wong-Foy A.G., Matzger A.J., Yaghi O.M. Exceptional H2 saturation uptake in microporous metal-organic frameworks [J]. J. Am. Chem. Soc., 2006, 128(11):3494–3495.
    [174] Sheppard D.A., Maitland C.F., Buckley C.E. Preliminary results of hydrogen adsorption and SAXS modelling of mesoporous silica: MCM-41 [J]. J. Alloys Compd., 2005, 404–406: 405–408.
    [175] Bacsa R., Laurent C., Morishima R., et al. Hydrogen storage in high surface area carbon nanotubes produced by catalytic chemical vapor deposition [J]. J. Phys. Chem. B, 2004, 108(34): 12718-12723.
    [176] Ravikovitch P.I., Haller G.L., Neimark A.V. Density functional theory model for calculating pore size distributions: pore structure of nanoporous catalysts [J]. Adv. Colloid Interf. Sci., 1998, 76-77: 203-226.
    [177] Ravikovitch P.I., Neimark A.V. Characterization of micro- and mesoporosity in SBA-15 materials from adsorption data by the NLDFT method [J]. J. Phys. Chem. B, 2001, 105(29): 6817-6823.
    [178] Neimark A.V., Ravikovitch P.I. Capillary condensation in MMS and pore structure characterization [J]. Micro. Meso. Mater., 2001, 44-45: 697-707.
    [179] Ravikovitch P.I., Neimark A.V. Density functional theory of adsorption in spherical cavities and pore size characterization of templated nanoporous silicas with cubic and three-dimensional hexagonal structures [J]. Langmuir, 2002, 18(5): 1550-1560.
    [180] Neimark A.V., Ravikovitch P.I., Vishnyakov A. Bridging scales from molecular simulations to classical thermodynamics: density functional theory of capillary condensation in nanopores [J]. J. Phys.: Condens. Matter, 2003, 15(3): 347-365.
    [181] Zana R., Lévy H. Alkanediyl-α,ω-bis(dimethylalkylammonium bromide) surfactants (dimeric surfactants) Part 6. CMC of the ethanediyl-1, 2-bis(dimethylalkylammonium bromide) series [J]. Colloids Surf. A: Physicochemical and Engineering Aspects, 1997, 127(1-3): 229-232.
    [182] Xu H.L., Wang W.Z. Template synthesis of multishelled Cu2O hollow spheres with a single-crystalline shell wall [J]. Angew. Chem. Int. Ed., 2007, 46(9): 1489-1492.
    [183] Yang S., Zhao L.Z., Yu C.Z., et al. On the origin of helical mesostructures [J]. J. Am. Chem. Soc., 2006, 128(32): 10460-10466.
    [184] Jin H.Y., Liu Z., Ohsuna T., et al. Control of morphology and helicity of chiral mesoporous silica [J]. Adv. Mater., 2006, 18(5): 593-596.
    [185] Lin G.L., Tasi Y.H., Lin H.P., et al. Synthesis of mesoporous silica helical fibers using a catanionic-neutral ternary surfactant in a highly dilute silica solution: biomimetic silicification [J]. Langmuir, 2007, 23(8): 4115-4119.
    [186] Yeh Y.Q., Chen B.C., Lin H.P., et al. Synthesis of hollow silica spheres with mesostructured shell using cationic?anionic-neutral block copolymer ternary surfactants [J]. Langmuir, 2006, 22(1): 6-9.
    [187] Tan B., Lehmler H.J., Vyas S.M., et al. Fluorinated-surfactant-templated synthesis of hollow silica particles with a single layer of mesopores in their shells [J]. Adv. Mater., 2005, 17(19): 2368-2371.
    [188] Zhu Y.F., Shi J.L., Chen H.R., et al. Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface [J]. Micro. Meso. Mater., 2005, 85(1-2): 75-81.
    [189] Zhu Y.F., Shi J.L., Shen W.H., et al. Preparation of novel hollow mesoporous silica spheres and their sustained-release property [J]. Nanotechnology, 2005, 16: 2633-2638.
    [190] Wang W.Q., Wang J.G., Sun P.C., et al. Effect of alcohol on morphology and mesostructure control of anionic-surfactant-templated mesoporous silica (AMS) [J]. J. Colloid Interface Sci., 2009, 331(1): 156-162.
    [191] Du L., Song H.Y., Yang X., et al. A novel hollow sphere mesoporous material synthesized by using DADD template and embedding Nd into framework simultaneously [J]. Micro. Meso. Mater., 2008, 113(1-3): 261-267.
    [192] Wang J.G., Xiao Q., Zhou H.J., et al. Budded, mesoporous silica hollow spheres: hierarchical structure controlled by kinetic self-assembly [J]. Adv. Mater., 2006, 18(24): 3284-3288.
    [193] Pu H.T., Zhang X., Yuan J.J., et al. A facile method for the fabrication of vinyl functionalized hollow silica spheres [J]. J. Colloid Interface Sci., 2009, 331(2): 389-393.
    [194] Chen B.C., Chao M.C., Lin H.P., et al. Faceted single crystals of mesoporous silica SBA-16 from a ternary surfactant system: surface roughening model [J]. Micro. Meso. Mater., 2005, 81(1-3): 241–249.
    [195] Sun, Q.Y., Kooyman, P.J., Grossmann, J.G., et al. The formation of well-defined hollow silica spheres with multilamellar shell structure [J]. Adv. Mater. 2003, 15(13): 1097-1100.
    [196] Botterhuis, N.E., Sun, Q.Y., Magusin, P.C.M.M., et al. Hollow silica spheres with an ordered pore structure and their application in controlled release studies [J]. Chem. Eur. J., 2006, 12(5): 1448-1456.
    [197] Zhu Y.F., Shi J.L., Shen W.H., et al. Preparation of novel hollow mesoporous silica spheres and their sustained-release property [J]. Nanotechnology, 2005, 16: 2633-2638.
    [198] Rana, R.K., Mastai, Y., Gedanken, A. Acoustic cavitation leading to the morphosynthesis of mesoporous silica vesicles [J]. Adv. Mater., 2002, 14(19): 1414-1418.
    [199] Yeh, Y., Chen, B., Lin, H., et al. Synthesis of hollow silica spheres with mesostructured shell using cationic-anionic-neutral block copolymer ternary surfactants [J]. Langmuir, 2006, 22(1): 6-9.
    [200] Yu, M.H., Wang, H.N., Zhou, X.F., et al. One template synthesis of raspberry-like hierarchical siliceous hollow spheres [J]. J. Am. Chem. Soc., 2007, 129(47): 14576-14577.
    [201] Feng Z.G., Li Y.S., Niu D.C., et al. A facile route to hollow nanospheres of mesoporous silica with tunable size [J]. Chem. Commun., 2008, 23: 2629–2631.
    [202] Zhu Y.F., Shi J.L., Li Y.S., et al. Storage and release of ibuprofen drug molecules in hollow mesoporous silica spheres with modified pore surface [J]. Micropor. Mesopor. Mater., 2005, 85(1-3): 75–81.
    [203] Zhu Y.F., Shi J.L., Shen W.H., et al. Stimuli-responsive controlled drug release from a hollow mesoporous silica sphere/polyelectrolyte multilayer core–shell structure [J]. Angew. Chem. Int. Ed., 2005, 44(32): 5083–5087.
    [204] Liu L., Li W.G., Guo Q.X. Association constant prediction for the inclusion ofα-cyclodextrin with benzene derivatives by an artificial neural network. J Incl. Phenom. Macro., 1999, 34: 291–298.
    [205] Bluemel J. Reactions of ethoxysilanes with silica: a solid-state NMR study [J]. J. Am. Chem. Soc., 1995, 117(7): 2112-2113.
    [206] Peng C., Zhang H., Yu J., et al. Synthesis, characterization, and luminescenceproperties of the ternary europium complex covalently bonded to mesoporous SBA-15 [J]. J Phys. Chem. B, 2005, 109(32): 15278-15287.
    [207] Kecht J., BeinT. Oxidative removal of template molecules and organic functionalities in mesoporous silica nanoparticles by H2O2 treatment [J]. Micro. Meso. Mater., 2008, 116(1-3): 123-130.
    [208] Kecht J., Schlossbauer A., Bein T. Selective functionalization of the outer and inner surfaces in mesoporous silica nanoparticles [J]. Chem. Mater., 2008, 20(23): 7207-7214.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700