表面修饰纳米铜颗粒的制备及其摩擦学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,纳米铜由于其不同于块状材料的特殊性能,已经在各个领域呈现出了极其重要的应用价值。作为重要的工业原料,纳米铜可以代替贵金属降低工业成本,有着广阔的应用前景。因此,对纳米铜的研究已经引起了国内外的广泛关注。
     本论文通过电化学方法对还原剂的电化学性能进行了对比研究;选择价格低廉、对环境友好的葡萄糖和次亚磷酸钠作为还原剂成功制备了各种形貌的纳米铜并对其生长机理进行了研究;考察了球状纳米铜作为润滑油添加剂的摩擦磨损性能。主要内容如下:
     1.利用Zennium电化学工作站对各种还原剂的电化学性能进行了研究。通过对不同实验条件下还原剂的循环伏安曲线进行分析对比,得到各还原剂的电化学性能与体系pH值、电解质浓度以及电势扫描速率之间的关系,从而出在液相体系中还原剂还原性能处于最佳状态时的实验条件。
     2.选择价格低廉、对环境友好的次亚磷酸钠作为还原剂,以五水硫酸铜为原料,油酸作为萃取剂和表面活性剂,通过研究不同反应条件对产物形貌、粒径及分散性的影响,最终制备得到了具有结晶度高、粒度均匀,分散性好、抗氧化的纳米铜。采用XRD、FTIR、TG/DTA、SEM、TEM等方法对产物进行了表征并对其生长机理进行了探讨。
     3.通过改变实验条件,对液相体系中树枝状、空心球状、棒状和花状纳米铜的生长机理进行了研究。结果表明:1)球状纳米铜的形成主要是油酸吸附保护及位阻效应和奥斯特瓦德熟化过程共同作用的结果。2)油酸的结构导向作用和奥斯特瓦尔德熟化对产物晶体的影响是树枝状纳米铜生成的主要原因。在反应过程中,油酸引导着晶核沿着某些晶面方向优先生长;随着陈化时间的延长,奥斯特瓦尔德熟化过程继续进行使小晶核不断溶解,并在大晶核的特定晶面上沉积生长,最终导致了树枝状纳米铜的形成。3)空心球状纳米铜的形成是油酸的模板作用和奥斯特瓦尔德熟化共同作用的结果。油酸在体系中形成的球状胶束有利于空心结构的生成;而奥斯特瓦尔德熟化促使晶体内部的小晶核不断溶解,进一步促进了晶体中空结构的形成。4)奥斯特瓦尔德熟化和油酸的导向作用是棒状纳米铜的生成的主要原因。首先油酸分子的导向作用使晶体各个晶面上的生长速度产生差别,使晶体朝着某些晶面方向优先生长;其次,奥斯特瓦尔德熟化也有利于初级纳米铜颗粒逐步组装形成一维棒状纳米铜。5)花状纳米铜的形成主要是奥斯特瓦尔德熟化和螺旋位错生长共同作用的结果。产物通过奥斯特瓦尔德熟化过程的不断生长,经历了从细小颗粒到片状的变化过程;随着纳米片浓度的不断增大,体系中小晶核绕着晶面上的螺旋错位进行逐层生长;由于温度对片状结构的形成有一定的影响,因此对于花状结构产物的生成也存在一定的影响。
     4.通过对润滑油的摩擦系数和磨斑直径随纳米铜含量、摩擦时间、载荷及转速的变化规律进行研究,分析了各种形貌纳米铜作为润滑油添加剂的摩擦磨损性能。在摩擦过程中,添加剂与摩擦面相结合,形成均匀光滑的润滑膜,从而减小了摩擦系数,降低了磨损量,同时对摩擦表面原有的磨痕进行了填塞,显著地提高了150N基础油的减摩抗磨能力及承载能力。负磨损现象的存在以及摩擦表面纳米铜颗粒的沉积都证明了当球状和空心球状纳米铜作润滑油添加剂时,磨损表面存在着一种沉积自修复机制。当树枝状、棒状和花状纳米铜作为添加剂时,基础油的黏度及添加剂不规则的形貌特征都不利于改善基础油的抗磨性能;2)当树枝状、棒状和花状纳米铜作为添加剂时,其在磨损面的沉积修复作用弱于不规则结构对磨擦面的进一步磨损,因此对基础油抗磨性能的改善不大。此外黏度的增加也不利于改善基础油的抗磨性能。
In recent years, the copper nano-particles have played an important role because of their properties different from bulk material. As a vital industrial raw material, copper nanoparticles are more economic when they take the place of the noble metal nanoparticles. Therefore, the researches on copper nanoparticles have attracted extensive attention in the world.
     In this dissertation, the electrochemical performances of reductants were detected by cyclic voltammetry. Sodium hypophosphite is chosen as reductant due to their price and environmentally friendly. Various morphologies of copper nanoparticles were prepared via a two-step reduction method, and their growth mechanisms were reviewed. The tribology performances of copper nanoparticles when they used as lubricant additive were also studied. The main contents are the following:
     1. The electrochemical performances of various reductants were studied by the Zennium electrochemical workstation. The relationships between electrochemical performances of reductants and the pH value of the system, electrolyte concentration and photodynamic scanning rate were studied by the cyclic voltammetric curves which obtained from different experiment conditions. The optimum conditions of reductibility in liquild system can be obtained.
     2. The influences of various reaction conditions on particles'morphology, size and dispersibility were studied. Copper nanoparticles with well dispersibility and uniform morphology were finally obtained. The products were characteristic by XRD, FTIR, SEM and TEM, and the growth mechanisms of spherical nanoparticles were discussed.
     3. The growth mechanisms of various morphology copper nanoparticles were studied in liquid system by changing the experiment conditions. The results showed that 1) the combined action of steric effects of oleic acid and Ostwald ripening process were the reasons of the formation of spherical copper nanoparticles; 2) the structure-directing effect of oleic acid and ageing time were the main reasons of the formation of dentritic nano-copper crystals. As a structure-director, oleic acid could guide crystal nucles grow successively along some orientations direction in the growth process. With the extension of ageing time, Ostwald ripening process took place continuously which caused small nuclei constantly dissolved, deposited and grew in the surface of big nuclei, finally dentritic copper nanoparticles obtained; 3) the growth mechanism of hollow spherical copper nanoparticles was studied in liquid system. In the formation process of hollow spherical copper nanoparticles, oleic acid was used as a soft template. The molecules of oleic acid could form to globularmicelles which were availed to the formation of hollow structure. Ostwald ripening process caused small nuclei constantly dissolved, which further promoted the formation of hollow structure; 4) Ostwald ripening and the structure directing effect of oleic acid were the main reasons of rodlike copper nanoparticles. Firstly, the structure directing effect of oleic acid could make the growth rate of various crystal faces are different. Crystals grew successively towards to some orientations. Secondly, Ostwald ripening was in favour of the formation of one-dimensional rodlike crystals from primary nanoparticles; 5) the formation of flowerlike copper nanoparticles could be considered as the results of the Ostwald ripening and screw dislocation growth process. Due to ripening process continuously, the products underwent a proess from fine particles to flake. With the increasing concentration of nanoflakes, they layer-grew around screw dislocation, and then flowerlike copper nanoparticles obtained. And since the temperature of system had some influence on the formation of nanoflakes, it could also affect the formation of flowerlike crystals.
     4. The friction coefficient and wear scar width were studied if copper nanoparticles were used as lubricant additive, when the concentration of copper nanoparticles, fiction time, load and rotational speed were changed. In the friction process, copper nanoparticles combined with the wear surface, evenly and smooth lubrication film formed. Thus the friction coefficient and the amount of wear reduced. At the same time, copper nanoparticles filled the grinding mark on the wear surfaces, the anti-wear ability and carrying capacity of 15 ON base oil were improved significantly. Negative wear and the deposition of copper nanoparticles on wear surface proved that a self-repairing mechanism existed on the wear surface when spherical and hollow spherical copper nanoparticles used as lubricant additives. When dentritic, rodlike and flowerlike copper nanoparticles were used as lubricant additives, the irregular morphology would make the wear surface further wearing, so they are not good at improving the anti-wear properties of base oil. In addition, the viscosity of lubricant was also made the tribological performance of lubrication less favorable.
引文
[1]徐云龙,赵崇军,钱秀珍.纳米材料学概论.上海:华东理工大学出版社,2008
    [2]张立德.纳米材料.北京:化学工业出版社,2000
    [3]杨向东.自悬浮定向流法制备金属与合金纳米微粒及其结构物性的研究:[博士学位论文].成都:四川大学,2003
    [4]张立德.我国纳米材料研究的现状.中国粉体技术,2001,7(5):1-5
    [5]王志松.能干的小引擎-纳米马达.自然杂志,2006,28(3):160~163
    [6]Detlef B, Christian G, Rudiger N. Synthesis of Nanocrystalline, Redispersable Antimony-Doped SnO2 Particles for the Preparation of Conductive, Transparent Coatings. Journal of Sol-Gel Science and Technology,1998,13:789-792
    [7]Pierre K, Saint C. High frequency electromagnetic radiation absorbent coating comprising a binder and chips obtained from a laminate of alternating amorphous magnetic films and electrically insulating. France, EP,0448426,1991-09-25
    [8]Peng C H, Wang H W, Kan S W, et al. Microwave absorbing materials using Ag-NiZn ferrite core-shell nanopowders as fillers. Journal of Magnetism and Magnetic Materials,2004,284:113-119
    [9]Kapoor S. Preparation, characterization, and surface modification of silver particles. Langmuir,1998,14(5):1021-1025
    [10]施利毅,等.纳米材料.上海:华东理工大学出版社,2007
    [11]Guo C X, Boullanger P, Jiang L, et al. Highly sensitive gold nanoparticles biosensor chips modified with a self-assembled bilayer for detection of Con A. Biosensors and Bioelectronics,2007,22(8):1830-1834
    [12]Wang H C, Wang X S, Zhang X Q, et al. A novel glucose biosensor based on the immobilization of glucose oxidase onto gold nanoparticles-modified Pd nanowires. Biosensors and Bioelectronics,2009,25(1):142-146
    [13]倪星元,沈军,张志华.纳米材料的理化特性与应用.北京:化学工业出版社,2006
    [14]童忠良.纳米化工产品生产技术.北京:化学工业出版社,2006
    [15]Sugimoto T. Industrial application. Monodispersed Particles,2001:580-731
    [16]Hu C K, Luther B, Kaufman F B, et al. Copper interconnection integration and reliability. Thin Solid Films,1995,262(1-2):84-92
    [17]LaMer V K, Dinegar R H. Theory, Production and Mechanism of Formation of Monodispersed Hydrosols. Journal of the American Chemical Society,1950,72(11): 4847-4854
    [18]Li D X, Zhao S L, Wen J B, et al. Preparation and electrochemical properties of nanocrystailine NiO powder prepared by sol-gel process. Transactions of materials and heat treatment,2008,29(4):39-42
    [19]Liu B, Zeng C. Hydrothermal Synthesis of ZnO Nanorods in the Diameter Regime of 50 nm. Journal of American Chemical Society,2003,125(15):4430-4431
    [20]Capek I. Preparation of metal nanoparticles in water-in-oil(w/o) microemulsions. J. Advances in Colloid and Interface Science.2004,110:49-74
    [21]Hao C C, Xiao F, Yuan S L. Preparation of Nanometer Copper in Inverse Microemulsions. Materials Review.2007,21(5A):65-66
    [22]Ye H C, Richard M C. Effect of Elemental Composition of PtPd Bimetallic Nanoparticles ontaining an Average of 180 Atoms on the Kinetics of the Electrochemical Oxygen Reduction Reaction. Journal of the American Chemical Society,2007,129(12):3627-3633
    [23]Luo Y L. Preparation of water-soluble, well-stable noble metal nanoparticles in the presence of 2-mercapto-5-benzimidazole-sulfonic acid sodium. Journal of Materials Letters,2008,62:3758-3760
    [24]Yang J G, Zhou Y L, Okamoto T, et al. A new method for preparing hydrophobic nano-copper powders. Journal Of Materials Science,2007,42:7638-7642
    [25]刘志杰,赵斌,张宗涛,等.以次亚磷酸钠为还原剂的铜超微粒子的制备及其稳定性研究.化学通报,1996,10:55~58
    [26]Zhang Z M, Han X J, Sun M X. Preparation of nano copper powder. Fine Chemicals, 2000,17(2):69-71
    [27]Zhang J C, Zhu F M, Cao W L. Preparation of nano sized copper powder by supercritical drying technique. The Chinese Journal of Nonferrous Metals,2004, 14(10):1741-1746
    [28]Zhang Q L, Yang Z M, Ding B J. Preparation of copper nanoparticles by chemical reduction using potassium borohydride. The Chinese Journal of Nonferrous Metals, 2008,18:s348-s352
    [29]赵斌,胡黎明.超细铜粉的水合肼还原法制备及其稳定性研究.华东理工大学学报,1997,23(3):372~376
    [30]Wu S P, Meng S Y. Preparation of micron size copper powder with chemical reduction method. Journal of Materials Letters,2006,60:2438-2442
    [31]Liao R, Sun B, Tan H B. Research of preparation of ultrafine copper powder using formaldehyde as reductive agent. Journal of Chendu University of Technology: Science and Technology Edition,2003,30(2):417-421
    [32]于鹤龙,许一,史佩京,等.纳米铜颗粒的摩擦学性能研究及其减摩润滑机理探讨.材料工程,2007,10:35~38
    [33]于鹤龙,徐滨士,许一,等.纳米铜颗粒作为润滑油添加剂的研究进展.材料导报,2005,19(10):53~55
    [34]史佩京,刘谦,于鹤龙,等.纳米铜颗粒作为润滑油添加剂的分散方法及其摩擦学性能研究.石油炼制与化工,2005,36(3):33~38
    [35]于鹤龙,许一,王晓丽,等.纳米铜润滑油添加剂的制备及其性能研究.装甲兵工程学院学报,2006,20(5):86~89
    [36]李远松,万水.纳米铜润滑油耐磨性能的实验研究.云南大学学报(自然科学版),2005,27(3A):30~32
    [37]欧忠文,徐滨士,马世宁,等.磨损部件自修复原理与纳米润滑材料的自修复设计的构思.表面技术,2001,30(6):47~49,53
    [38]Yang J G, Zhou Y L, Okamoto T, et al. Preparation of Oleic Acid-capped Copper Nanoparticles. Chemistry Letters,2006,35(10):1190-1191
    [39]黄新友.无机非金属材料专业综合实验与课程实验.化学工业出版社,2008:192~196
    [40]杨孙楷,苏循荣,林竹光.仪器分析实验.厦门大学出版社,1996
    [41]Wei S H, Zhao F Q, Xu Z Y, et al. Voltammetric Determination of Folic Acid with a Multi-Walled Carbon Nanotube-Modified Gold Electrode. Microchim Acta,2006,152: 285-290
    [42]Herna'ndez P, Sa'nchez I, Pato'n F, et al. Cyclic voltammetry determination of epinephrine with a carbonfiber ultramicroelectrode. Talanta,1998,46:985-991
    [43]Diaz T G, Cabanillas A G, Franco M F A, et al. Voltammetric Behavior and Simultaneous Determination of the Antioxidants Propyl Gallate, Butylated Hydroxyanisole, and Butylated Hydroxytoluene in Acidic Acetonitrile-Water. Electroanalysis,1998,10:497-505
    [44]Raoof J B, Ojani R, Ramine M. Electrocatalytic Oxidation and Voltammetric Determination of Hydrazine on the Tetrabromo-p-Benzoquinone Modified Carbon Paste Electrode. Electroanalysis,2007,19(5):597-603
    [45]Ayman M Z, Fawzi H A, Sayed S, Abd E R, et al. Electrochemical behaviour of silver in borate buffer solutions. Applied Surface Science,2004,221(1-4):349-357
    [46]Balamurugan A, Chen S M. Voltammetric oxidation of NADH at phenyl azo aniline/PEDOT modified electrode. Sensors and Actuators B,2008,129(2):850-858
    [47]Razmi H, Harasi M. Voltammetric Behavior and Amperometric Determination of Ascorbic Acid at Cadmium Pentacyanonitrosylferrate Film Modified GC Electrode. /nt. J. Electrochem. Sci.,2008,3:82-95
    [48]Wu Z S, Zhou J F, Zhang Z J, et al. Structure Characterization and Tribological Behavior of Surface-Modified ZrO2 Nanoparticles. Chemical Research,2001,12(2): 4-8
    [49]Zhao Y B, Zhou J F, Zhang Z J, et al. Effect of Oleate/PS/TiO2 Composite nanospheres as Additive on the Antiwear and Extreme Pressure Properties of Liquid Paraffin. Tribology,2001,21(1):73-75
    [50]Zhao Y B, Zhou J F, Zhang Z J, et al. Characterization and Tribological Behavior of Polystrene(PS)-TiO2 Nano-spheres. Chinese Journal of Chemical Physics,2000,13(6): 683-688
    [51]Zhou J F, Yang J J, Zhang Z J, et al. Study on the structure and tribological properties of surface-modified Cu nanoparticles. Materials Research Bulletin,1999,34(9): 1361-1367
    [52]Liu W M. Application of Nanoparticles in Lubricants. Tribology,2003,23(4) 265-267
    [53]Battez H A, Rico F J E, Arias N A, et al. The tribological behaviour of ZnO nanoparticles as an additive to PAO6. Wear,2006,261:256-263
    [54]Yu H L, Xu Y, Shi P J, et al. Characterization and nano-mechanical properties of tribofilms using Cu nanoparticles as additives. Surface & Coatings Technology,2008, 203:28-34
    [55]Yu H L, Xu Y, Shi P J, et al. Tribological Properties and Mechanism of Cu nanoparticles. Journal of Materials Engineering,2007,10:35-38
    [56]Yu H L, Xu B S, Xu Y, et al. Research progress of Cu Nanoparticles as Lubricating Oil Additive. Materials Review,2005,19(10):53-55
    [57]Shi P J, Liu Q, Yu H L, et al. Study on the Dispersion Method of Copper Nanoparticles as Lube Oil Additive and Their Tribilogical Properties. Petroleum Processing and Petrochemicals,2005,36(3):33-38
    [58]Wang X L, Xu B S, Xu Y, et al. The Nano-effect of Nanometer Lubricating Material in Equipment Maintenance. The 4th World Congress on Maintenance, Hainan, China, 2008
    [59]Looi M H, Lee S T, Sharifahbee A H. Use of Citric Acid in Synthes5ing a Highly Dispersed Copper Catalyst for Selective Hydrogenolysis. Chinese Journal of catalysis, 2008,29(6):566-570
    [60]Zhou J F, Tao X J, Zhang Z J, et al. Synthesis and Tribological Behaviors of Surface-Modified Ag2S Nanoparticles. Chemical Research,1999,10(4):1-5
    [61]Kang X H, Wang B, Zhu L, et al. Synthesis and tribological property study of oleic acid-modified copper sulfide nanoparticles. Wear,2008,265:150-154
    [62]Guo H X, Li Y Q, Fan L F, et al. Voltammetric behavior study of folic acid at phosphomolybdic-polypyrrole film modified electrode. Electrochimica Acta,2006,51: 6230-6237
    [63]Wu J, Liu G D, Huang S S, et al. Electrochemical behavior of 2-pyridinamine modified glassy carbon electrode and application to the determination of ascorbic acid. Chinese Journal of Analytical Chemistry,2001,29:1140-1143
    [64]蒋太祥,吴辉煌.酸性溶液中NaH2PO2在铂电极上氧化的原位红外光谱研究.高等学校化学学报,2003,8:1464~1467
    [65]Chen J H, Zhang J, Zhuang Q, et al. Electrochemical behavior of bergenin and its determination. Chinese Journal of Analysis Laboratory,2008,27(3):30-33
    [66]Liu Y H. Electrochemical Measurement Technology. Beijing:Publishing House of Beijing Aeronautical and Astronautical Institute,1987:128-139
    [67]Deng P, Sun S Y, Wang S J, et al. The Study on Electrochemistry Characteristics of TBHQ. China Food Additives,2008:108-110
    [68]Li R. Determination of the Hydrogen Diffusion Coefficient in Alloy by Cyclic Voltammetry. Journal of Chongqing Normal University (Natural Science Edition), 2004,21(4):40-42
    [69]Martins J I, Nunes M C, Koch R, et al. Electrochemical oxidation of borohydride on platinum electrodes:The influence of thiourea in direct fuel cells. Electrochimica Acta, 2007,52(23):6443-6449
    [70]Fleury V. On a new example of ramified electrodeposits. Journal of Materials Research,1991,6:1169-1174
    [71](a) Daceord G, Nitmmnn J, Stanley H E, In On Growth and Form:Fractal and Non-fractal Patterns in Physics; (b) Stanley H E, Oslrowsky N. Martinus Nijhoff: Dordrecht,1986
    [72]Xiao J P, Xie Y, Tang R., et al. Advanced in Materials,2001,13:1887-1890
    [73]Zhang W Q, Yang Q, Xu L Q, et al. Growth of PbS crystals from nanocubes to eight-horn-shaped dendrites through a complex synthetic route. Materials Letters, 2005,59:3383-3388
    [74]Xu C K, Xu G D, Liu Y K, et al. Preparation and charactedzation of SnO2 nanorods by themal decomposition of nC2O4 precursor. Scripta Materialia,2002,46(11): 789-794
    [75]Dai H J, Wong E W, Licber C M, et al. Synthesis and characterization of carbide nanorods. Nature,1995,375:769-772
    [76]Jana N R, Gearheart L, Murphy C J. Wet chemical synthesis of high aspect ratio cylindrical gold nanorods. Journal of Physical Chemistry B,2001,105(19): 4065-4047
    [77]郭敏,刁鹏,任焱杰,等.高度取向ZnO单晶亚微米棒阵列的制备与表征.物理化学学报,2003,19(5):478~480
    [78]Liu Q L, Wang J K, Zewail A H. Femtosecond dynamics of dissociation and recombination in solvent cages. Nature,1993,364:427-430
    [79]Li Y D, Wang J W, Deng Z X, et al. Bismuth nanotubes:a rational low-temperature synthetic route. Journal of American Chemistry Society,2001,123:9904-9905
    [80]孙艳丽,王世铭,王琼生.MoS2纳米花的溶剂热合成及其表征.无机化学学报,2008,24(6):1003~1006
    [81]Zhou P, Zhang J, Gu X T, et al. Preparation of BaWO4 Nanoparticles of Different Shapes. Chinese Journal of Applied Chemistry,2006,4:370-373
    [82]Cao Q H, Gao Y Q, Chen X Y, et al. Solution Phase Synthesis of Hollow SnO2 Nanospheres at Room Temperature. Chemistry Letters,2006,2:178-179
    [83]Wu S P. Preparation of fine copper powder, using ascorbic acid as reducing agent and its application in MLCC. Materials Letters 2007,61:1125-1129
    [84]Wang T, Jiang X, Mao C W. Influence of adsorption of reactants on preparation of silver nanoparticles by adsorption phase synthesis. Colloids and Surfaces A: Physicochemical and Engineering Aspects,2009,339:68-72
    [85]Xie S Y, Ma Z J, Wang C F, et al. Preparation and self-assembly of copper nanoparticles via discharge of copper rod electrodes in a surfactant solution:a combination of physical and chemical processes. Journal of Solid State Chemistry, 2004,177:3743-3747
    [86]Chen L J, Wan C C, Wang Y Y. Chemical preparation of Pd nanoparticles in room temperature ethylene glycol system and its application to electroless copper deposition. Journal of Colloid and Interface Science,2006,297:143-150
    [87]Jin L, Yang S P, Tian Q W, et al. Preparation and characterization of copper metal nanoparticles using dendrimers as protectively colloids. Materials Chemistry and Physics,2008,112:977-983
    [88]Kobayashi Y, Sakuraba T. Silica-coating of metallic copper nanoparticles in aqueous solution. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008, 317:756-759
    [89]Yang F Z, Yang B, Lu B B. Electrochemical Study on Electroless Copper Plating Using Sodium Hypophosphite as Reductant. Acta Physico-Chimica Sinica,2006, 22(11):1317-1321
    [90]Wang M Y, Kuang Y F. The Progress in Research of Electroless Nickel Deposition in Sodium Hypophosphite Bath. Corrosion & Protection,1999,20(12):533-536
    [91]Wang G X, Li N, Li J, et al. Direct Copper Plating Using Sodium Hypophosphite as Reductant on the Surface of Plastics. Fine Chemicals,2006,23(1):70-73,93
    [92]Wu X W, Feng Y J, Wei H, et al. Preparation of IR and Microwave Absorbing Barium Ferrite Material by Electroless Ni-P Plating. Journal of Inorganic Materials,2009, 24(001):97-102
    [93]Xu G Y. A new technology of nonmetallic electroless copper plating. Corrosion & Protection,2006,27(12):642-644
    [94]Qiang W L, Wang Y L, He P, et al. Synthesis of silica/polystyrene monocore-shell nanocomposite particles via miniemulsion polymerization. Journal of Functional Materials,2007,38(2):268-271
    [95]Zheng H, Shao Q, Leng S W, et al. Palladium-free Activation Electroless Nickel Plating on Cenosphere Surface. Surface Technology,2008,37(1):56-58
    [96]Ghattas M S. Sodium-hypophosphite as a novel reducing agent in the preparation and characterization of silver/silica gel catalysts. Journal of Molecular Catalysis A: Chemical,2006,248(1-2):175-180
    [97]Zhang Z M, Han X J, Sun M X. Preparation of Nanon Copper Powder. Fine Chemicals, 2000,17(2):69-71
    [98]Song X Y, Sun S X, Zhang W M, ea al. A method for the synthesis of spherical copper nanoparticles in the organic phase. Journal of Colloid and Interface Science,2007, 273:463-469
    [99]王红.氧化铁纳米材料的可控合成研究:[博士学位论文].长春:吉林大学,2008
    [100]Li Z Y, Gong P W, Zhai Y C. Effect of granularity on anti-oxidizing ability of copper nano-powder. Journal of Iron and Steel Research International,2007,14(5, s1): 126-129
    [101]Cao G Z. Nanostructures and Nanomaterials:Synthesis, Properties and Applications. Imperial College Press,2003,15:105
    [102]赵瑶兴,孙祥玉.有机分子结构光谱鉴定.北京:科学出版社,2003
    [103]仲维卓,华素坤.晶体生长形态学.北京:科学出版社,1999
    [104]武玉英.几种含硅合金中富硅相形核与生长机制的研究:[博士学位论文].青岛:山东大学,2008
    [105]贾寿泉.溶液相晶体生长理论发展概述.物理,1979,6:526~531
    [106]介万奇.晶体生长原理与技术.北京:科学出版社,2010
    [107]Sugimoto T. Preparation of monodispersed colloidal particles. Advanced in colloid Interface Science,1987,28:65-108
    [108]Mullin J W, Crystallization,3rd ed.; Butterworth-Heinemann:Oxford,1997
    [109]Bailey J K, Blinker C J, Mecartney M L. Growth Mechanisms of Iron Oxide Particles of Differing Morphologies from the Forced Hydrolysis of Ferric Chloride Solutions, Journal of Colloid and Interface Science,1993,157:1-13
    [110]Privman V, Goia D V, Park J, et al. Mechanism of Formation of Monodispersed Colloids by Aggregation of Nanosize Precursors, Journal of Colloid and Interface Science,1999,213:36-45
    [111]Chemseddine A, Moritz T. European Journal of Inorganic Chemistry,1999:235-245
    [112]Zhu H T, Wang J X, Xu G Y. Fast Synthesis of Cu2O Hollow Microspheres and Their Application in DNA Biosensor of Hepatitis B Virus. Crystal Growth and Design, 2009,9:633-638
    [113]张建民,徐可为,马飞.用改进嵌入原子法计算Cu晶体的表面能.物理学报,2003,5(8):1993~1999
    [114]Zhang M., Wang Z. H., Ma D. K., et al. Surfactant-Assisted Controlled Synthesis of Antimony and Bismuth Three-Dimefisional uperstructures in Different Hydrothermal Emulsion Systems. Australian Journal of Chemistry,2005,58:539-543
    [115]Frank C, Rachel A C, Helmuth M. Nanoengineering of Inorganic and Hybrid Hollow Spheres by Colloidal Templating. Science,1998,282:1111-1114
    [116]Ma Y R, Qi L M, Ma J M, et al. Synthesis of Submicrometer-Sized CdS Hollow Spheres in Aqueous Solutions of a Triblock Copolymer. Langmuir,2003,19: 9079-9085
    [117]从怀萍.无机/染料纳米复合材料的合成及其机理和性质的研究:[博士学位论文].合肥:中国科学技术大学,2008
    [118]司玲,王利侠,张杰,等.亚微米级Ag2S空心球的乳液合成.无机化学学报,2003,19(11):1253~1256
    [119]Zhang M, Wang Z H, Mo M S, et al. A simple approach to synthesize KNiF3 hollow spheres by solvothermal method. Materials Chemistry and Physics,2005,89: 373-378
    [120]Chen X Y, Wang Z H, Wang X, et al. Synthesis of novel copper sulfide hollow spheres generated from copper(II)-thiourea complex. Journal of Crystal Growth, 2004,263:570-574
    [121]隋永明.氧化亚铜纳米结构制备及性能研究:[博士学位论文].长春:吉林大学,2010
    [122]Jia B, Gao L. Morphological transformation of Fe3O4 Spherical Aggregates from Solid to Hollow and Their Self-Assembly under an External Magnetic Field. Journal of Physical Chemistry C,2008,112:666-671
    [123]Wang X, Yuan F, Hu P, et al. Self-Assembled Growth of Hollow Spheres with Octahedron-like Co Nanocrystals via One-Pot Solution Fabrieation. Journal of Physical Chemistry C,2008,112:8773-8778
    [124]Fan L, Guo R. Fabrication of novel CdIn2S4 hollow Spheres via a facile hydrothermal Process. Journal of Physical Chemistry C,2008,112:10700-10706
    [125]Xu M, Kong L, Zhou W, et al. Hydrothermal Synthesis and Pseudocapacitance Properties of α-Mn02 Hollow Spheres and Hollow Urehins. Journal of Physical Chemistry C,2007,111:19141-19147
    [126]Guan M, Tao F, Sun J, et al. Facile Preparation Method for Rare Earth Phosphate Hollow Spheres and Their Photoluminescence Properties. Langmiur,2008,24: 8280-8283
    [127]Qiao R, Zhang X, Qiu R, et al. Preparation of Magnetic Hybrid Copolymer-Cobalt Hierarchical Hollow Spheres by Localized Ostwald Rpening. Chemistry of Materials, 2007,19:6485-6491
    [128]傅献彩,沈文霞,姚天扬,等.物理化学(第五版).北京:高等教育出版社,2006:404~477
    [129]Cong H P, Yu S H. Hybrid ZnO-Dye Hollow Spheres with New Optical Properties from a Self-Assembly Process Based on Evans Blue Dye and Cetyltrimethylammonium Bromide. Advanced Functional Materials,2007,17: 1814-1820
    [130]Wang Y L, Herrieks T, Xia Y N. Single Crystalline Nanowires of Lead Can Be Synthesized through Thermal Decomposition of Lead Acetate in Ethylene Glycol. Nano Letters.2003,3(8):1163-1166
    [131]Zhang X J, Zhang D E, Ni X M, et al. Fabrication and Characterization of Porous Copper Nanorods with Rectangular Cross Sections. Chemistry Letters,2006,35(10): 1142-1143
    [132]Cho K S, Talapin D V, Gaschler W G, et al. Designing PbSe Nanowires and Nanorings through Oriented Attachment of Nanoparticles. Journal of American Chemistry Society,2005,127(19):7140-7147
    [133]Aheme D, Ledwith D M, Gara M, et al. Optical Properties and Growth Aspects of Silver Nanoprisms Produced by a Highly Reproducible and Rapid Synthesis at Room Temperature. Advanced Functional Materials,2008,18:2005-2016
    [134]McEachran M, Kitaev V. Direct structural transformation of silver platelets into right bipyramids and twinned cube nanoparticles:morphology governed by defects. Chemical Communication,2008,5737-5739
    [135]马德琨.一维纳米结构材料的液相控制合成与形成机理研究:[博士学位论文].合肥:中国科学技术大学,2007
    [136]John E E. Obituary:Sir Frederick Charles Frank (1911-1998). Nature,1998,393:314
    [137]Robert W C,杨柯等译.《走进材料科学》.北京:化学工业出版社,2008
    [138]Wang X, Zhuang J, Chen J, et al. Thermally Stable Silicate Nanobutes. Angewandte Chemie-intemational Edition,2004,43:2017-2020
    [139]Li Y D, Li X L, He R R, et al. Artificial Lamellar Mesostructures to WS2 Nanotubes. Journal of American Chemistry Society,2002,124(7):1411-1416
    [140]张胜义,宋吉明,朱文晶,等.不同形貌纳米铜的制备及其形成机理研究.安徽大学学报(自然科学版),2006,30(3):62~66
    [141]Sillha-A, Sharma B P. Preparation of copper powder by glycerol Process. Materials Research Bulletin,2002,37:407-416
    [142]Ermoline A, Schoenitz M, Drizin E, et al. Production of carbon-coated aluminium nanopowders in pulsed microarc discharge. Nanotechnology,2002,13:638-643
    [143]Dice G D, Mujumdar S, Elezzabi A Y. Plaslnonicaly enhanced diffusive and Subdifusive metal nanoparticle-dye random laser. Applied Physics Letters,2005,86, 131105-1311057
    [144]Pileni M P. Magnetic Fluids:Fabrieation, Magnetic Properties, and Organization of Nanocrystals. Advanced Functonal Materials,2001,11:323-336
    [145]Alivisatos A P. Semieonductor Clusters, Nanocrystals, and Quantum Dots. Science, 1996,271,933-937
    [146]刘仁德.新型油溶性有机金属盐化合物与纳米金属粒子的制备及其摩擦学特性研究:[博士学位论文].上海:上海大学,2004
    [147]Liu R D, Wei X C, Tao D H, et al. Study of preparation and tribological properties of rare earth nanoparticles in lubricating oil. Tribology International,2010,43: 1082-1086
    [148]Zhang M, Wang X B, Fu X S, et al. Performance and anti-wear mechanism of CaCO3 nanoparticles as a green additive in poly-alpha-olefin. Tribology International,2009, 42:1029-1039
    [149]薛景文.摩擦学及润滑技术.北京:北京兵器工业出版社,1992
    [150]郭延宝,许一,徐滨士,等.纳米铜粉作润滑油添加剂时的“负磨损”现象研究.中国表面工程,2004,2:15~17
    [151]Choi Y, Lee C, Hwang Y, et al. Tribological behavior of copper nanoparticles as additives in oil. Current Applied Physics,2009,9:e124-e127
    [152]Xu H L, Xu Y, Shi P J, et al. Tribological properties and lubricating mechanisms of Cu nanoparticles in lubricant. Transactions of Nonferrous Metals Society of China, 2008,18(2):636-641

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700