旋流式组合压力喷雾干燥技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
压力喷雾干燥装置是利用压力雾化装置将原料液分散成细小雾滴,并与热介质在干燥塔内充分进行热量、质量交换,最终达到干燥产品的目的。干燥产品可以根据需要生产成细粉状、颗粒状、空心球状或团聚状。压力喷雾干燥装置其雾化器的结构适用易调,可通过改变喷嘴的内部结构得到所需要的喷液量和雾滴尺寸,目前该型式干燥机已推广应用于食品、化工、医药、建材、环保等行业。作为能源消耗的大户之一的喷雾干燥,如何在保证干燥产品质量的前提下,进一步提高能源利用率,提高干燥塔的体积蒸发强度;减少环境污染,降低运行成本;加强系统的自动化程度以提高劳动生产率;在提高产品质量的同时减小设备尺寸,减少固定投资等都具有重要的研究和应用价值。本文总结了国内外在压力喷雾干燥装置的研究应用状况,并分析了现有喷雾干燥装置设计方面的优缺点,运用流体力学、空气动力学、传热传质学、机械设计和计算机技术等多学科知识,综合研究了传统压力喷雾干燥系统的单喷嘴雾化装置在并流、逆流以及混流干燥中的应用和喷雾干燥塔的不同布风装置以及出风装置的设置情况等,提出了新型旋流式组合压力喷雾干燥技术并对此进行了研究,其主要内容包括:
     (1) 本文创造性地设计出旋流式组合压力喷嘴的基本结构,并通过对料液的物化特性研究分析以及颗粒度的分布要求,给出了喷嘴的不同结构设计参数。
     (2) 对旋流式组合压力喷嘴喷射雾化机理加以分析,建立了旋流式喷嘴雾化的数学模型,采用冷态试验法并借助激光雾滴测试等实验装置对喷嘴的雾化参数(如雾化压力、喷液量、料液温度、雾化角、雾距、雾滴直径和分布以及喷嘴的空芯半径等)进行测量和计算。针对几种不同物化特性的物料,并利用CFD技术模拟分析影响其雾化的关键参数,通过调整喷嘴的结构参数和喷射条件,优化了该型式喷嘴的雾化性能。
     (3) 采用κ-ε模型实现了压力喷雾干燥塔的温度场、湿度场、流场的理论建模,利用计算流体力学(CFD)技术来解决喷雾干燥过程中热介质与雾滴间的传热传质以及动量传递和湍流扰动等问题,避免了干燥过程中的设计不合理状况;通过增加双格栅均风装置和旋转出风装置,改善了干燥塔内的热质传递,提高了干燥塔的体积蒸发强度。
     (4) 采用旋流式组合压力喷嘴雾化后的液滴直径大都分布在30~150um之间,雾滴分布范围较窄,其雾化的平均液滴直径在50~100um左右,压力喷嘴的雾化角度可在150°~180°范围内。因雾滴的脱水时间与其直径的平方成正比,减小液滴直径有利于缩短干燥脱水时间,可有效降低干燥塔的高度;由于旋流式组合压力喷嘴雾化滴径的减小,脱水速度明显加快,在不影响干燥物料性质的前提下,适当提高进风温度,同时有效地降低排气温度,有利于提高干燥塔的蒸发强度,也有利于提高干燥设备的平均能源利用率。
     (5) 本文创造性地设计了新型的双格栅均风装置并设置在压力喷雾干燥塔的上部,强化了干燥塔内气、液两相间的混合,最大限度地消除了干燥塔内的无效区域,对热敏性物料的干燥更显出该结构型式的优越性。
     应用结果表明:采用新型的旋流式压力喷雾干燥塔的体积蒸发强度可达12kgH_2O/m~3·h,能源利用率可达60%,既提高了产品的质量和产量,又降低了设备投资和土建规模。压力喷雾干燥塔的高度比常规压力式喷雾干燥塔高度降低1/3,总投资要节省1/3以上,具有较高的应用推广价值。
The dried powder product was formed in the spray dryer by pressure nozzle which atomized liquid into small droplets and heat and mass transferring was performed between droplets and hot medium in the drying chamber. This type of dryer was fitful for liquid drying in concurrent, counter-current or mixed air-flow. The dryer can produce powders, granules, hollow spherical particles and agglomerates products. The spraying capacity and particle size were changed by altering the parts assembled in the nozzle. Pressure spray dryers have been widely used in foodstuff, chemicals, medicaments, building materials, environmental protection, etc. As one of the most energy consumption, it is quite valuable to study how to make the spray dryer save energy consumption, enhance volumetric evaporation intensity, decrease its environmental pollution and running cost, improve its productivity through automatic controlling system and cut down the investment on equipment. In this dissertation, the author summed up the muti-technique in fluid dynamics, heat and mass transferring, mechanical designing and computational technique and studied the conventional pressure spray dryers with different air disperse structure and outlet equipment, at last put forward the theme i.e. the study on combined spin-flow pressure spray drying technology, the main contents were as follows:
    (1) The combined spin-flow pressure nozzle was designed whose novel structure has no report at present, and the structural designing parameters were obtained through analyzing the physical characteristic of materials and distribution of particles.
    (2) Base on the analysis of the atomizing principles of spray nozzle, mathematical model of combined spin-flow pressure spray drying was set up and the essential parameters such as spraying pressure, liquid quantity, temperature, spraying angle, inject distance, particle diameter and distribution, hollow diameter for several materials in normal conditions by experiment and LDV. The key items influent on the characteristics of spraying have been also studied in the dissertation, we can get a good spraying result by adjusting the related parameters efficiently.
    (3) The theoretical model of the dynamical parameters such as temperature, moisture, pressure and contour for hot medium and particle inside the drying chamber were obtained by model, utilized the Computational Fluid Dynamics technique to solve the problem between spraying droplets medium by arranging the double grid dispersing structure and rotary outlet structure and the developed structure improved the drying efficiency and product quality.
    (4) The droplets diameter of the combined spin-flow pressure spray drying are between 30um and 150um and the ranges of the droplets are narrow. The average diameter of the droplets is between 50 um and 100 um and the spraying angle can be adjusted from 30 to 180 . The dehydration time is square of the droplets diameter so the small diameters of the droplets can cut down the drying time then reduce the height of the drying chamber. To the combined spin-flow pressure spray drying, the diameters of droplets are small and the dehydration rate is higher so keeping the qualities of the dried products we can increase the speed of the inlet wind and reduce the temperature of the outlet wind thus can improve the evaporation intensity of the drying chamber and the average energy utilization of the drying equipment.
    A novel type double grid dispersing structure is designed and set on the top of the drying chamber
    
    
    
    which increase the mingling degree of the liquid with the gas and reducing the invalid area of the drying chamber. The combined spin-flow pressure spray drying equipment has more superiority to the thermal sensitive material.
    The preliminary results obtained from the industrial production showed that the volumetric evaporation intensity and energy consumption efficiency would be up to 12kgH2O/m3.h and 60% respectively to use the combined spin-flow pressure spray dryer. Moreover, the combined spin-flow
引文
[1] 金国淼.干燥设备设计.上海:上海科学出版社,1983
    [2] 潘永康,王喜忠.现代干燥技术.北京:化学工业出版社,1998
    [3] 持田隆(日),张佑国译.喷雾干燥.江苏科学技术出版社,1982
    [4] K. Masters. Spray Dryers in Practice. Spray Dry Consult International ApS, Denmark, 2002
    [5] Zhang Zhongjie. Applications and Studies on Combined Spin-flow Spray Dryer. Proceeding of ADS'01, Malaysia, 2001
    [6] A.S.Mujumdar and M.L.Passos.干燥:研究和发展中的革新技术和趋势.第七届全国干燥会议论文集,1999.11~27
    [7] K. Masters. Developments in Spray Drying. Proceedings of the 11th International Drying Symposium, Greece.
    [8] 解茂昭.燃油喷雾场结构与雾化机理.力学与实践,1990,12(4):9~15
    [9] Rayleigh, L. On the Instability of Jets, London Mathematical Society. 1987,Vol.10: 361~371
    [10] Bracco, F.V. Modeling of Engine Sprays. SAE, 1985. 113~136
    [11] Castleman, R. A. Mechanism of Atomization Accompanying Solid Injection. NACA, 1932,Vol.40
    [12] Dejuhasz, K. J., Dispersion of Sprays in Solid Injection Oil Engines, ASME, Vol.53,1931,pp.65
    [13] Schweitzer, P. H. Mechanisms of Disintegration of Liquid Jets. Jet Applied Physics, 1937, Vol.8: 513~526
    [14] Sitkei, G. On the Theory of Jet Atomization. ACAT tech., 1959,Vol.25:87~96
    [15] Bergweik, W. Flow Pattern in Diesel Nozzle Spray Holes. Proceeding of IME, 1959, Vol.173: 665~676
    [16] Sadek, R. Communication to Bergweik. Proceeding of IME, 1959,Vol. 173:671~691
    [17] Shakadov, V. Y. Wave Formation on the Surface of a Viscous Liquid due to Tangential Stress. Fluid Dynamics, 1970, Vol. 5:473~496
    [18] Rupe, J. H. On the Dynamics Characteristics of Free-liquid Jets and a Partial Correlation with Orifice Geometry. JPL Tech. Report, 1962, No.32:207~216
    [19] Giffen, T., Murraszew, A. The Atomization of Liquid Fuels. John Wiley and Sons, New York, 1953
    [20] Drazin,P.G.,Reid,W.H.,周祖巍 译.流体运动稳定性.宇航出版社,1981
    [21] H. Hiroyasu. Diesel Engine Combustion and its Modeling, International Symposium on Diagnostics and Modeling of Combustion in Reciprocation Engines. Tokyo: 1985, Vol.4(6)
    [22] P. H. Schweizer. Penetration of Oil Spray. Pennsylvania State College Bulletin. pp:36~46
    [23] Y. Wakuri, etc. Studies of the Penetration of Fuel Spray in a Diesel Engine. JSME, 1960, Vol.3(9)
    [24] 汪海清,刘永长等.对和栗贯穿距离公式的改进.柴油机,1995,Vol.5
    [25] 汪海清,刘永长等.变喷油压力和背压时的贯穿距离计算.中国内燃机学会首届青年学术会议论文集,1994,武汉
    [26] 黄震等.瞬态喷雾初期贯穿模型.内燃机工程,1992,No.1
    
    
    [27] G.N. Abramovich. The Theory of Turbulent Jets. MTZ press, 1963
    [28] G. Sitkei. Kraft stoff aufbereitung und verbrennung bei diesel motoren. Springer Verlag, 1964
    [29] K. Yokota, S. Matsuoka. An experimental Study of Fuel Spray in a Diesel Engine. JSME, 1977, Vol.43:373~383
    [30] R. D. Reitz, F.V. Bracco. On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions. SAE, 790494, 1979
    [31] 黄震,等.激光阴影法对柴油机喷雾燃油分布的测量研究.内燃机工程,1991,No.4
    [32] 曹崇文,朱文学.农产品干燥工艺过程的计算机模拟.北京:中国农业出版社,2001
    [33] Gerald Ondrey. Models Demystify Spray Drying. Chemical Engineering, 1955, Vol. 102:30~31
    [34] 蒋惠亮,殷福珊.喷雾干燥的数学模型和技术进展.日用化学工业,1998,Vol.3
    [35] 曹崇文.计算流体力学(CFD)在喷雾干燥中的应用.哈尔滨:第八届全国干燥会议论文集,2002,32~37
    [36] Czeslaw Strimullo and Tadeusz Kudra. Drying principles, application and design. Golden and Breach Science Publishers, 1986
    [37] Mujumdar A.S.干燥—现状和发展趋势.哈尔滨:第八届全国干燥会议论文集,2002,54~66
    [38] Mujumdar A.S. Handbook of Industrial Drying. Marcel Dekker, New York, 1995
    [39] 刘登瀛,等.现代干燥装置性能评价指标初探.哈尔滨:第八届全国干燥会议论文集,2002,1~6
    [40] 范炳喜.我国喷雾干燥机干燥中药浸膏难题的解决.哈尔滨:第八届全国干燥会议论文集,2002,132~135
    [41] Trefethen, L.M. Liquid Jets Broken up into Droplets. SFM070, 1965, 27~35
    [42] Reitz, R. D., Bracco, F.V. Ultra High Speed Filming of Atomizing Jets. Phys. Fluids, 1979, Vol.22:1054~1064
    [43] Reitz, R. D., Bracco, F.V. On the Dependence of Spray Angle and Other Spray Parameters on Nozzle Design and Operating Conditions. SAE, 1974, 494~508
    [44] Wu. K. J., Reitz, R. D., Bracco, F. V. Measurements of Drop Size at the Spray Edge near the Nozzle in Atomizing Liquid Jets. Phys. Fluids, 1986, Vol.29:941~951
    [45] 高希彦.应用激光技术对柴油机喷雾场测量的研究.大连理工大学博士论文,1986
    [46] 宋永臣.三维瞬变喷雾场浓度、温度与颗粒分布的激光全息与干涉层析研究.大连理工大学博士论文,1993
    [47] R.B.基伊[美].干燥原理及应用.上海科学技术文献出版社,1986
    [48] 张忠杰,等.旋流式组合压力雾化器的应用研究.无机盐工业,2003,Vol.3
    [49] Wu Yuan, Fu Jufu, Zheng Chong. The Mathematical Modeling of Concurrent Spray Drying. Drying'85, 1985
    [50] Zbicinski, I., Gabowski, S., Strumillo, C. Mathematical Modeling of Spray Drying. Chem. Eng., 1988, Vol. 12(4)
    [51] Drazin,P.G.,Reid,W.H.周祖巍,顾德炜,译.流体运动稳定性.宇航出版社,1981
    [52] Rayleigh, L. On the Instability of Jets. London Mathematical Society, 1987, Vol. 10:361~371
    
    
    [53] Weber, C. Z. Zum Zerfall eines Flussigkeitsstrahles, Mathematik und Mechanik. 1931, Vol.11: 136~154
    [54] Chandrasekar, S. Hydrodynamic and Hydromagnetic Stability. Oxford University Press, 1961
    [55] Keller, J. B., Rubinow, S. L. Spatial Instability of a Jet, Physics of Fluids. 1972, Vol.16:2052~2055
    [56] 长尾不二夫.内燃机讲义(上卷).养贤堂,1977
    [57] Taylor, G.I. Generation of Ripple by Wind Blowing Over Viscous Fluid. The Scientific Papers of G. I. Taylor, Cambridge University Press, 1963, Vol.3:244~254
    [58] 宋永臣.三维瞬变喷雾场浓度、温度与颗粒分布的激光全息与干涉层析研究.大连理工大学博士论文,1993
    [59] 潘文全.流体力学基础.北京:机械工业出版社,1982
    [60] 姚玉英.化工原理.天津:天津大学出版社,1999
    [61] 吴望一.流体力学.北京,高等教育出版社,1982
    [62] 刘谦.传递过程原理,北京,机械工业出版社,1991
    [63] 郭宜佑,王喜忠.喷雾干燥,北京,化学工业出版社,1983
    [64] K. Masrers. Scale-up of Spray Dryer, Drying Technology. 1994, Vol.12:235~257
    [65] H. Hiroyasu, Matasaka, Arai. Structure of Fuel Spray in Diesel Engines. SAE, No.900475, 1990, 1050~1060.
    [66] Matasaka, Arai. Breakup Mechanism of a High Speed Liquid Jet and Control Methods for a Spray Behavior, Advanced Spray Combustion. International Symposium in Japan, 1994, 1~24
    [67] Bower, G., Chang, S. K. Physical Mechanisms for Atomization of a Jet Spray. SAE, No.881318, 1988, 1~17
    [68] 戴干策,陈敏恒.化工流体力学,北京,化学工业出版社,1988
    [69] 潘永康,王喜忠.现代干燥技术,北京,化学工业出版社,1998
    [70] 朱自强,等.石油化工.1986,Vol.15(8):517~522
    [71] 李世雄.小波理论及应用.天津,南开大学数学所,1992
    [72] 任露泉.试验优化技术,北京,机械工业出版社,1987
    [73] 陈祖杰,等.现代测试技术.济南,山东大学出版社,2000
    [74] 赵作善.试验设计.中国农业大学试用教材
    [75] 浙江大学数学系高等数学教研室.概率论与数理统计.高等教育出版社,1989
    [76] 化学工业专业编写委员会.实用化工手册.北京,化学工业出版社,1996
    [77] 黄大能,等.建筑材料工业手册.北京,中国建材出版社,1999
    [78] 沈阳化工研究院.染料工业手册.沈阳,染料工业出版社,1986
    [79] Czeslaw Strimullo, Tadeusz Kudra. Drying principles, application and design. Golden and Breach Science Publishers, Poland, 1986
    [80] 王补宣.工程传热传质学.北京,科学技术出版社,1998
    [81] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.科学技术出版社,1994
    [82] 倪浩清.工程湍流流动、传热及传质的数值模拟.中国水利水电出版社,1996
    [83] Bahu, R. E. Scale-up of Spray Dryers with the Aid Computational Fluid Dynamics. Drying
    
    Technology, 1994, Vol. 12(1~2):217~233
    [84] Yuji Sano. Gas Flow Behavior in Spray Dryer Performances. Drying Technology, 1993, 11(4): 697~718
    [85] Straatsma, J., Houwelingen, G. V., Steenbergen, A. E. and Jong, P. D. Spray Drying of Food Products: 1. Simulation Model, Journal of Food Engineering. 1999, Vol.42:67~72
    [86] J. R. Perez-Correa, F. Farias. Modeling and Control of a Spray Dryer. Food Control, 1995, Vol. 6(4): 219~227
    [87] I. Zibicinski, A. Delag, C. Strumillo, J. Adamiec. Advanced Experimental Analysis of Drying Kinetics in Spray Drying. Chemical Engineering Journal 86, 2002, 207~216
    [88] Ken Fouhy, Gerald Parkinson. CPI Design Engineers Go with the Flow. Chemical Engineering Journal, 1995, Vol. 102(6):28~31
    [89] Southwell, D. B., Langrish, T. A. G. Observations of Flow Patterns in a Spray Dryer. Drying Technology, 2000, 18(3):661~685
    [90] 吴中华,刘相东.喷雾干燥过程的CFD模型.中国农业大学学报,2002,Vol.7(2):41~46
    [91] Jameson A. Successes and Challenge in Computational Aerodynamics. AIAA'87, 1987, 1184~1196
    [92] 廖传华,孙国有,等.数学模拟法在喷雾干燥设备设计中的应用.化工机械,1999,Vol.26(1):52~54
    [93] Filkova Iva. Numerical Prediction of Spray Dryer Performances. Drying, 1988, Vol. (7): 355~358
    [94] 戴命和,孙宁.喷雾干燥过程的热力学建模及仿真.桂林电子工业学院学报,2001,Vol.21(4):49~50
    [95] [苏]伊萨琴科.传热学.北京,高等教育出版社,1987
    [96] 邓颂九,李启恩.传递过程原理.广州:华南理工大学出版社,1990
    [97] 叶长焱,黄诗煌.并流喷雾干燥器优化设计数学模型与软件开发.南京化工大学学报,2001,Vol.23(6):52~53
    [98] 欧阳联渊.计算机数值计算方法.国防工业出版社,1996
    [99] 孔祥谦.有限单元法在传热学中的应用.科学技术出版社,1998
    [100] 甘舜仙.有限元技术与程序.北京理工大学出版社,1988
    [101] 李开泰,等.有限元方法及其应用.西安交通大学出版社,1984
    [102] Melaaen M. C. Calculation of Fluid Flows Staggered and Non-staggered Curvilinear Non-orthogonal Grid Comparison. Numer Heat Transfer, 1992, Vol.21, Part B:21~39
    [103] 李庆扬,等.微分方程数值解法.科学技术出版社,2000
    [104] Rhie C. M. A Pressure Based Navier-Stokes Solver Using the Multi-grid Method. AIAA86', 1986, 6~9
    [105] Oakley D. E. Scale-up of Spray Dryer with the Aid of Computational Fluid Dynamics. Drying Technology, 1994, Vol. 12(1): 221~233
    [106] 申义庆,高智.耦合离散流体理论的差分格式及其应用.计算力学学报,2000,Vol.17(4):385~389
    [107] 高智,申义庆.粘性流动有限差分计算的新策略.中国科学,1999,Vol.29(5):433~443
    
    
    [108] Anderson D. A., Tannehill J. C., Pletcher R. H. Computational Fluid Mechanics and Transfer. Hemisphere, New York, 1984
    [109] 徐自新.微分方程近似解.华东化工学院出版社,1990
    [110] 王德人.非线性方程组解法与最优化方法.人民教育出版社,1979
    [111] 郭仲衡.近代数学和力学.北京大学出版社,1987
    [112] Harten A. High Resolution Schemes for Hypersonic Conservation Laws. J. C. Phys., 1983, Vol. 49: 151~164
    [113] Horstman C. C., Johnson D. A. Prediction of Transonic Separated Flows. AIAA'84, 1984, Vol. 22(7)
    [114] 汪明生,郭荣伟.一种适合全流速的流场数值方法.南京航空航天大学学报,1998,Vol.30(6)
    [115] 周力行.湍流气粒两相流动和燃烧的理论与数值模拟.科学技术出版社,1994
    [116] I. J. Ford. Modelling Formation of Spray Dried Powders. AEA Technology, 1999
    [117] Lin J. C., James W. G. Modelling of Particle Formation by Spray Drying Process. J. Aerosol Sci. Vol. (28): 477~479
    [118] 张会强,王赫阳.两相混合层中颗粒运动的数值模拟.工程热物理学报,2000,Vol.21(1):115~119
    [119] Marktatos, N. C. The Mathematical Modeling of Turbulent Flows. Applied Mathematical Modeling, 1986, Vol.(10): 190~220
    [120] Fredv, Shaw. Fresh Options in Drying. Chemical Engineering Journal, 1994, Vol 101(7): 76~84
    [121] A. S. Mujumdar. Innovation in drying. Drying'96, 1996
    [122] 刘殿宇.低聚糖浆喷雾干燥工艺.粮油加工与食品机械,2001,Vol.4:32~34
    [123] 时钧主编.化学工程手册(上卷).北京,化学工业出版社,1996
    [124] 任玉彤.碱式硫酸铬的造粒干燥装置----带附壁风的压力式喷雾干燥器.中国皮革,2000,Vol.29(23):27~28
    [125] K. Masters. Spray Dryers in Practice, Spray Dry Consult International ApS, Denmark, 2002
    [126] 潘永康,王喜忠.现代干燥技术.北京:化学工业出版社,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700