不同结构型式连铸结晶器的电磁软接触特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电磁软接触连铸技术通过施加高频磁场控制钢液的初始凝固过程来提高铸坯的表面质量。高频磁场作用下结晶器内的磁场和金属液弯月面变形特性是衡量电磁软接触效果的重要指标,而电磁软接触结晶器的结构型式和参数设计对软接触效果具有决定性的影响作用,它也是电磁软接触技术能否推向工业应用的关键技术之一。研究和探讨不同坯型(方、扁、圆)和不同切缝形式和参数下的软接触结晶器内的磁场、金属液弯月面变形和凝固传热特性,认识其变化规律,是设计工业用电磁软接触结晶器,推广电磁软接触技术的重要技术基础。本论文以此为选题,重点研究方坯、矩形坯和工业用圆坯电磁软接触结晶器的软接触特性和传热特性,具有重要的理论意义和实用价值。
     针对工业用Φ178mm圆坯电磁软接触连铸结晶器,采用数值模拟和实验相结合的方法,研究了结晶器切缝参数对结晶器内部磁场分布的影响规律,并通过低熔点合金热模拟实验,揭示了切缝参数对结晶器内弯月面变形的影响规律。研究结果表明:工业结晶器的上法兰盘对结晶器内的磁场分布具有一定的影响作用。特别是随着电源功率(安匝数)增大到90kW以上时,结晶器上法兰盘对磁场的屏蔽作用逐渐增强;随着圆坯结晶器切缝数目、切缝宽度和切缝长度的增加,结晶器内的磁感应强度和弯月面变形均增大,其中又以切缝数目和切缝长度对软接触效果的影响最主要;当切缝数由24增加到32时,结晶器内最大磁感应强度增加了32%,弯月面高度增加110%;当切缝长度由100 mm增到加130 mm时,结晶器内最大磁感应强度增加了28%,弯月面高度增加了155%。当切缝宽度由0.3 mm增加到0.5 mm时,结晶器内最大磁感应强度增加了15%。这些研究结果为Φ178mm工业用圆坯电磁软接触连铸结晶器的设计提供了重要参数依据。
     设计并制作了内径尺寸为213mm×85mm的两种非均匀切缝矩形坯电磁软接触连铸结晶器;通过磁场测试和热模拟实验揭示了两种结晶器内磁场分布和弯月面变形的规律。实验结果表明:随电源功率的增大,结晶器内磁感应强度和弯月面高度均增大,且电源功率不改变结晶器内磁场分布特征;结晶器最大磁感应强度所处位置随感应线圈同向移动;液态金属的自由液面应控制在线圈中心附近,此时磁场的利用率最高,软接触效果最好;
     结晶器内切缝的布置对磁场和金属液变形具有重要的影响作用。研究发现,对于单侧窄面切缝的矩形结晶器,在电源功率一定时,无切缝窄面附近仍然存在磁场;在电源功率达52kW时,无切缝窄面中心的最大磁感应强度是切缝窄面的60%左右;而对于在窄面角部增加切缝的改进型矩形结晶器,其内部磁场分布和弯月面变形都得到较大提高,基本呈现均匀分布,且在数量级上也达到了实现软接触效果的要求;论证了采用较少的非均匀切缝结构,也能够获得矩形坯电磁软接触效果的可行性。
     设计并制作了内径尺寸为100mm×100mm的非均匀切缝方坯电磁软接触连铸结晶器,并进行了低熔点合金的静态和动态凝固传热实验,揭示了不同电源功率下结晶器内部磁场分布、弯月面变形、凝固坯壳形貌、三相点位置、结晶器壁温度与热流、熔池温度和结晶器冷却水温度的变化规律。实验结果表明:与均匀切缝结晶器相比,其磁场分布和弯月面变形规律变化不大,基本相同;随着电源功率的增大,低熔点合金自由液面的波动加剧,熔池温度升高,初始凝固点下移,形成的凝固坯壳逐渐变薄,直至发生重熔,揭示了高频磁场对结晶器内合金液加热,造成三相点下移的变化规律;随电源功率的增加,合金液和结晶器壁中产生的焦耳热增大,并在切缝处和分瓣体会出现不均匀分布,造成坯壳厚度分布不均,同时结晶器壁温度和热流也升高;连铸结晶器的振动作用促使弯月面区域结晶器壁温度上升;由此,在工业应用电磁软接触连铸技术时,应结合实际连铸工艺合理选择电参数,适当地调节结晶器的冷却水量等工艺参数,这些研究结果对电磁软接触连铸工业实验提供了重要的指导作用。
     通过以上几种不同型式软接触结晶器的软接触特性研究发现,线圈与结晶器的相对位置、钢液模拟物与结晶器的相对位置以及电源功率三个参数对结晶器内部电磁特性的影响规律并不随结晶器结构型式的变化产生大的变化,基本规律相同。
The technology of electromagnetic soft-contanct continuous casting (EMCC) can improve the surface quality of the billets through applying high frequency magntic field to control the process of initial stage of solidification. The distribution of magnetic flux density and the characteristic of meniscus are important aspects to estimate the results of EMCC. The structures of EMCC mold are important not only to the effects of the technology of EMCC, but also to its industrialization. It is the foundation for the technology of EMCC industrialization to know the distribution of magnetic flux density, the characteristic of meniscus, and the characteristic of heat transfer in EMCC mold under the condition different structure patterns (billet, round billet and rectangular billet). The electromagnetic soft-contact and heat transfer characteristics continuous casting mould with different structure patterns have been discussed in this thesis.
     Regarding toΦ178mm industrial round billet EMCC mold, the distribution of magnetic field in the mold under different slit parameters have been discussed through 3 dimension finite element method (3D FEM) numerical simulation method and experimental method. The effect of slit parameters on the distortion of meniscus has been investigated through the experimental method by using low melting point alloy. The results show that the upper flange of industrial EMCC mold has some effect on the distribution of magnetic flux density. When the input power is over 90kW, the shield effect will come out. The magnetic flux density and the height of meniscus will become larger with the slit number; slit width and siit length increasing. When the slit number was changed from 24 to 32, the maximum value of magnetic flux density increased 32%, the height of meniscus increased 110%. When the slit length was changed from 100mm to 130mm, the maximum value of magnetic flux density increased 28%, the height of meniscus increased 155%. When the width of the slit was changed from 0.3mm to 0.5mm, the maximum value of magnetic flux density increased 15%. All these results can give great support to the design ofΦ178mm industrial round billet EMCC mold.
     Two kinds of asymmetry slit rectangular soft-contact EMCC mold with the same inner size of 213mm×85mm were developed. The distribution of the magnetic flux density and the characteristics of meniscus in the molds have been discussed through experiments. The results show that:the magnetic flux density and the height of meniscus increase with the input power increasing. But the input power did not change the distribution of the magnetic field. The maximum magnetic flux density will move to the same direction as the induction coil. The free surface of the liquid metal should be controlled near the center of the coil.
     The positions of the slits in EMCC mold are important to the magnetic field and distortion of the liquid metal. It has been found that in the rectangular EMCC mold which has slits at one narrow side, the magnetic field is not zero at the other narrow side where there are no slits when the input power is not zero. At the input power of 52kW, the maximum magnetic flux density on the narrow side which no slits is about 60% of that on the other side with slits. For the improved structure rectangular mold which is added slits at four conners, the magnetic field and the height of the meniscus in the mold are also enhanced. The magnetic field is also uniformed at the same time. It can be proved that using this kind of asymmetry slit structure EMCC mold can apply the technology of EMCC to the rectangular billet continusou casting.
     A billet soft-contact EMCC mold with the size of 100 mm×100 mm with non-uniformity segment was developed. By using low melting point alloy, experiments had been done. The results show that compared with symmetry slits EMCC mold the magnetic flux density and the height of meniscus are almost the same with the input power increases. The free surface of the low melting point alloy will fluctuate heavily; the temperature of liquid metel will increases, the initial solidification point moves downwards, and the solidification shell become thinner. The joule heat in the mold will increase at the same time. The temperature and the heat flux of the EMCC mold will increase. The mold oscillation also can increase the temperature of the mold and the selections of electric parameters should be adapted with the technical parameters. The resulets can give great support to the EMCC industical experiment.
     Through the research of electromangneitic soft-contact characteristics of continuous casting mold with different structure patterns, it has been found the structures of the EMCC mold will not change the electromagnetic soft-contact characteristics which are detemined by the relative positon between the coil and the mold, the relative positon between liquid free surface and the mold, and the input power.
引文
1.中国冶金报社,连续铸钢500问[M],北京:冶金工业出版社,2004:2.
    2.干勇,仇圣桃,萧泽强著.连续铸钢过程数学物理模拟[M],北京:冶金工业出版社,2001:9.
    3.蔡开科,程士福著.连续铸钢原理与工艺[M],北京:冶金工业出版社,1994:1.
    4. Savage J. A New Reciprocation Mould Cycle to Improve Surface Quality of Continuous Casting Steel[J], Iron and Coal Trade Review,1961,182(4):787-795.
    5. Samarasekera I V, Brimacombe J K. Thermal and Mechanical Behavior of Continuous Casting Billet Mould[J], Ironmaking and Steelmaking,1982, (1):1-15.
    6. Szekeres E S. Overview of Mold Oscillation in Continuous Casting[J]. Iron and Steel Engineer,1996, (7):29-37.
    7. Tomono H, Kurz W, Heinemann W. The Liquid Steel Meniscus in Molds and Its Relevance to the Surface Quality of Casting[J]. Metallurgical Transactions B,1981,12B(6):409-411.
    8. Takeuchi E, Brimacombe J K. The Formation of Oscillation Marks in the Continuous Casting of Steel Slabs[J]. Metallurgical Transactions B,1984,15B(9):493-459.
    9. Lainea E, Busturial J C. The ELV Solidification Model in Continuous Casting Billets Moulds Using Casting Power[A]. Proceedings of 1st European Conference on Continuous Casting[C]. Florence, Italy, 1991,1621-1631.
    10. Fredriksson H, Elfsberg J. Thoughts about the Initial Solidification Process During Continous Casting of Steel[J]. Scandinavian Journal of Metallurgy,2002,31(10):292-297.
    11.陈家祥.连续铸钢手册[M].北京:冶金工业出版社,1991.
    12.韩至成.电磁冶金学[M],北京:冶金工业出版社,2001.
    13. Sumi I, Shimizu H, Nishioka S, et al. Initial Solidification Control of Continuous Casting Using Electromagnetic Oscillation Method[J]. ISIJ International,2003,43(6):807-812.
    14.漆鑫,唐萍,文光华等.结晶器振动参数对连铸坯表面质量的影响[J].特殊钢,2004,25(5):34-37
    15.叶有余.结晶器振动参数振动波纹与铸坯表面质量的关系[J].钢铁研究,1994,(6):8-13.
    16.程常桂,邓康,任忠鸣.连铸坯振痕的形成机理及控制技术的发展[J].炼钢,2000,16(5):55-61.
    17.张洪波,王海之.连铸结晶器振动参数与保护渣物化性能的关系[J].钢铁,1995,30(11):17-20.
    18.张洪波.连铸坯表面振痕的控制[J].河北冶金,1995,89(5):29-32.
    19.汪建农,马金昌,陈刚.连铸初始凝固行为的热模拟研究[J].钢铁,1999,33(9):18-20.
    20.蔡开科.连续铸钢[M].北京:科学出版社,1990.
    21. Kenneth C M, Alistair B F. The Role of Mould Fluxes in Continuous Casting-So Simple Yet So Complex[J], ISIJ International,2003,43(10):1479-1486.
    22. Yamauchi A, Itoyama, S, Kishimoto,Y, et al. Cooling Behavior and Slab Surface Quality in Continuous Casting with Alloy 718 Mold[J], ISIJ International,2002,42(10):1094-1102.
    23. Kensuke O, Toshiyuki K, Wataru Y, et al. Infiltration Phenomena of Molten Powder in Continuous Casting Derived from Analysis Using Reynolds Equation[J]. ISIJ International,2006,46(2):234-240.
    24. Suzuki M, Mizukam H, Kitagawa,T, et al. Development of a New Mold Oscillation Mode for High-speed Continuous Casting of Steel Slabs[J]. ISIJ International,1991,31(3):254-261.
    25. Gi-Gi L, Brian G T, Seon-Hyo K, et al. Microstructure Near Conner of Continuous-casting Steel Slabs Showing Three-dimensional Frozen Meniscus and Hooks[J], Acta Materialia,2007,55:6705-6712.
    26. Lavers J D, Tallback G R, Lavers E D, et al. Flow Control in Continuous Casing Mold with Dual Coil EMS:Computational Simulation Study[A]. The 5rd International Symposium on Electromagnetic Processing of Materials EPM'2006[C]. Sendai, Japan, ISIJ,2006:33-38.
    27. Noriko H, Jun K, Makoto,S. Molten Steel Flow Monitoring and Control by the EMLS in a Continuous Casing Mold[A]. The 5rd International Symposium on Electromagnetic Processing of Materials EPM'2006[C]. Sendai, Japan, ISIJ,2006:45-50
    28. Yuji M. Applications of MHD to Continuous Casting of Steel[A]. The 5rd International Symposium on Electromagnetic Processing of Materials EPM'2006[C]. Sendai, Japan, ISIJ,2006:26-30.
    29. Getseleev Z N. Casting in an Electromagnetic Field[J]. JOM,1971,23(10):38
    30. Vives C. Electromagnetic Refining of Aluminum Alloys by the CREM Process:Part Ⅰ. Working Principle and Metallurgical Results[J]. Metallurgical Transactions B,1989,20B(10):623-629.
    31. Koichi T, Shoji T. Electromagnetic Separation of Nonmetallic Inclusion from Liquid Metal by Imposition of High Frequency Magnetic Field[J], ISIJ International,2003,43(6):820-827.
    32. Zhang Z F, Wang B, Li T J, et al. Effects of Imposition of Multi-electromagnetic Field on Quality of Casting Metal in Continuous Casting[A], The 3rd International Symposium on Electromagnetic Processing of Materials EPM[C]. Nagoya, Japan, ISIJ,2000:310-314.
    33. Tho T, Takeuchi E, Hojo M, et al. Electromagnetic Control of Solidification in Continuous Casting of Steel by Low Frequency Alternating Magnetic Field[J]. ISIJ International,1997,37(11):1112-1119.
    34. Cha P R, Hwang Y S, Oh Y J, et al. Numerical Analysis on Cold Crucible Using 3D H-φ Method and Finite Volume Method with Non-staggered BFC Grid System[J]. ISIJ International,1996,36(9): 1157-1165.
    36. Kenzo A, Henichi M, Eiichi T, et al. Outline of National Project on Application of Electromagnetic Force to Continuous Casting of Steel[A], The 3rd International Symposium on Electromagnetic Processing of Materials EPM[C]. Nagoya, Japan, ISIJ,2000:376-380.
    37. Kageyama R, James W E. Development of a Three Dimensional Mathematical Model of the Electromagnetic Casting of Steel[J], ISIJ International,2002,42(2):163-170
    38. Evans J W, Li B Q, Cook D P.2D and 3D Mathematical Models and a Physical Model of Electromagnetic Casters[J]. ISIJ International,1989,19(12):1048-1055.
    39. Negrini F, Fabbri M, Zucaarini M, et al. Electromagnetic Control of the Meniscus Shape During Casting in a High Frequency Magnetic Field[J], Energy Conversion & Management,2000,41: 1687-1701.
    40. Goohwa K, Hoyoung K, Kijang O, et al. Level Meter for the Electromagnetic Continuous Casting of Steel Billet[J]. ISIJ International,2003,43(2):224-229.
    41. Kouji T. Effects of Electromagnetic Brake and Meniscus Electromagnetic Stirrer on Transient Molten Molten Steel Flow at Meniscus in a Continuous Casting Mold[J]. ISIJ International,2003,43(6): 915-922.
    42. Alemany C, Delannoy Y, Fautrelle Y. Impurity Transport in a Silicon Molten Bath under Electromagnetic Stirring[A] The 3rd International Symposium on Electromagnetic Processing of Materials EPM[C]. Nagoya, Japan, ISIJ,2000:265-270.
    43. Yves F, Damien P, Jacqueline E. Free Surface Controlled by Magnetic Fields[J], ISIJ International, 2003,43(6):801-806.
    44.藤健彦,金子克志,竹内容一.交流电磁场によゐ固定铸型连铸初期凝固制御[J]. CAMP-ISIJ,1992,5:197.
    45. Miyoshino I, Takeuchi E, Yano H, et al. Influence of Electromagnetic Pressure on the Early Solidification in a Continuous Casting Mold[J]. ISIJ International,1989,29(12):1044-1047.
    46.竹内容一,藤健彦,北条优武.钢の连铸初期凝固に及ぼす电磁气压の影响[J]. CAMP-ISIJ,1993,6:1125.
    49.谷雅弘,藤健彦,竹内荣一ら.等.电磁压力印加によゐ初期凝固现象の解明[J]. CAMP-ISIJ,1997,10:829.
    52.周月明,佐佐健介,浅井滋生.连铸过程中间歇式高频磁场代替结晶器机械振动的可行性实验研究[J].金属学报,2001,37(7):777-780.
    53. Tanaka T, Kurita K, Kuroda A. Mathematical Modeling for Electromagnetic Field and Shaping of Melts in Cold Crucible[J]. ISIJ International,1991,31(4):350-357.
    54. Nakata H, Kokita M, Morisita M, et al. Improvement of Surface Quality of Steel by Electromagnetic Mold[A]. International Symposium on Electromagnetic Processing of Material[C]. ISIJ,1994,38(3): 166-171.
    56. Sumi I, Shimizu H, Nishioka S, et al. Initial Solidification Control of Continuous Casting Using Electro-magnetic Oscillation Method [J], ISIJ International,2003,43(6):807-812.
    57. Park J, Sim D, Kim H, et al. Effect of High Frequency Electromagnetic Field on Continuously Cast Billet[J], ISIJ International,1998,11(1):131-137.
    58. Park J, Jeong H, Kim H, et al. Laboratory Scale Continuous Casting of Steel Billet with High Frequency Magnetic Field[J], ISIJ International,2002,42(4):385-391.
    59. Park J, Sim D, Jeong H, et al. Effect of High Frequency Electromagnetic Field on Continuously Cast Billet[J], ISIJ International,1999,12(1):57-60.
    60. Kim H, Park J, Jeong H, et al. Continuous Casting of Billet with High Frequency Electromagnetic Field[J], ISIJ International,2002,42(2):171-177.
    61. Park J, Kim H, Jeong H, et al. Continuous Casting of Steel Billet with High Frequency Electromagnetic Field [J], ISIJ International,2003,43(6):813-819.
    62. Cho Y W, Oh Y J, Chung S H, et al. Mechanism of Surface Quality Improvement in Continuous Cast Slab with Rectangular Cold Crucible Mold[J], ISIJ International,1998,38(7):723-729.
    63.黄军涛,赫冀成.方坯软接触结晶器电磁场分布及弯月面形状的数值模拟[J],钢铁研究学报, 2001,37(3):6-12.
    64.钱忠东,李本文,赫冀成,等.电磁连铸复合式结晶器内电磁场的数值模拟[J],东北大学学报,2001,22(1):79-82.
    65.于光伟,贾光霖,王恩刚,等.方坯电磁软接触连铸结晶器内钢液弯月面行为的热模拟[J],金属学报,2000,36(12):1253-1257.
    66.邓安元,贾光霖,赫冀成.电磁场对软接触结晶器内钢液流动的影响[J],钢铁研究学报,2002,14(1):6-10.
    67.邓安元,赫冀成.软接触结晶器内的弯月面形状及其不均匀性[J],东北大学学报,2002,23(2):130-133.
    68.邓安元,王恩刚,赫冀成.矩形软接触结晶器内磁场分布的实验研究[J],金属学报,2003,39(10):1105-1109.
    69.张林涛,王恩刚,邓安元,等.频率对矩形电磁连铸结晶器内磁场和弯月面的影响[J],东北大学学报,2006,27(7):755-758.
    70. Li T J, Nagaya S, Sassa K. et al. Study of Meniscus Behavior and Surface Properties during Casting in a High-frequency Magnetic Field[J], Metallurgical Transactions B,1995,26(2):353-359.
    71.张志峰,温斌,李廷举,等.软接触结晶器外对连铸坯施加高频磁场的基础研究[J],铸造,2000,49(5):257-260.
    72.周永东,郑贤淑,金俊泽,等.软接触结晶器结构对磁场分布影响的实验研究[J],大连理工大学学报,4(16):254-258.
    73.曹志强,贾非,张兴国,等.电磁铸造与普通连续铸造2024铝合金的组织性能对比[J],材料工程,2002,(6):37-40.
    74.姚山,温斌,李廷举,等.连铸坯凝固末端位置控制研究[J],大连理工大学学报,2002,42(5):546-549.
    75.李玉梅,张兴国,贾非,等.铝合金电磁连铸技术的基础研究[J],铸造技术,2002,23(2):111-114.
    76.曲方懿,郑贤淑,周永东,等.软接触结晶器内电磁场分布的数值模拟研究[J],铸造,2002,51(7):420-424.
    77.李丘林,李廷举,金俊泽,等.电磁连续铸造Sn-Pb空心管坯质量控制[J],材料科学与工艺,2003,11(2):148-150.
    78.李丘林,李新涛,李廷举,等.空心铜管坯水平电磁连铸过程的电磁效应研究[J],西安交通大学学报,2005,39(9):1003-1006.
    79.李丘林,李新涛,李廷举,等.水平电磁连铸空心铜管坯组织和性能研究[J],稀有金属材料与工 程,2006,35(7):1126-1128.
    80. JIA Fei, JIN Jun-ze, ZHANG Xing-guo, et al. Effect of Middle Frequency Electromagnetic Field on Surface Quality of Continuous Casting Aluminum Alloy Ingot[J], Journal of Dalian University of Technology,2003,43(3):305-310.
    81.张兴国,曲若家,何文,等.电磁连铸系统磁场的数值模拟及试验研究[J],特种铸造及有色合金,2004,(6):34-37.
    82.任忠鸣,董华峰,邓康,等.电磁软接触结晶器连铸技术中初始凝固的基础研究[J],连铸,1999,(1):17-22.
    83.邓康,任忠鸣,胡暑名,等.软接触结晶器连铸实验与电磁场分析[J],钢铁,2000,35(1):20-23.
    84. REN Zhongming, DONG Huafeng, DENG Kang, et al. Influence of High Frequency Electromagnetic Field on the Initial Solidification During Electromagnetic Continuous Casting[J], ISIJ International, 2001,41(9):981-985.
    85.魏标志,任忠鸣,邓康,等.电磁软接触连铸扁坯结晶器内电磁场的分布[J],钢铁,1999,35(SI):499-500.
    86.董华峰,任忠呜,钟云波,等.软接触结晶器电磁连铸中磁场的均匀化[J],钢铁研究学报,1998,10(2):5-8.
    87.邓康,任忠鸣,蒋国昌,等.电磁软接触连铸的数值模拟和实验分析[J],金属学报,1999,35(10):1112-1116.
    88.雷作胜,任忠鸣,邓康,等.调幅交变磁场下圆柱形金属液内电磁压力分布[J],中国有色金属学报,2002,12(1):30-35.
    89.雷作胜.连铸坯表面振痕形成机理及其电磁控制技术[D],上海:上海大学,2004.
    90.雷作胜,任忠鸣,阎勇刚,等.软接触结晶器电磁连铸保护渣道的动态压力[J],金属学报,2004,40(5):546-550.
    91.王宏明,陈国星,任忠鸣,等.电磁连铸用高频磁场内磁感应强度的分布[J],铸造技术,2006,27(7):737-739.
    92.王宏明,周富顺,雷作胜,等.软接触电磁连铸对铸坯表面质量的影响[J],铸造技术,2007,28(2):245-247.
    93.那贤昭,张兴中,仇圣桃,等.软接触电磁连铸技术分析[J],金属学报,2002,38(1):105-108.
    94.那贤昭,王锡钢,张兴中,等.高频磁场作用下软接触电磁连铸初生坯壳的变形行为[J],钢铁研究学报,2004,16(6):21-26.
    95.那贤昭,王锡钢,张兴中,等.软接触电磁连铸过程中结晶器及初生坯壳的传热[J],钢铁研究学 报,2005,17(5):31-34.
    96.寇宏超,李金山,张丰收,等.钢的电磁铸造及其研究进展[J].铸造技术,2001,3:46-48.
    97.陈瑞润,郭景杰,丁宏升.冷坩埚熔铸技术的研究现状及开发现状[J].铸造,2007,56(5):443-450.
    98.陈瑞润,丁宏升,毕维生.电磁冷坩埚技术及应用[J].稀有金属材料与工程,2005,34(4):510-514.
    99.卢百平,钟仁显.液态金属电磁约束成形技术研究进展[J].铸造技术,2006,27(7):760-763.
    100.金小礼,雷作胜,任忠鸣.连铸坯振痕形成机理及电磁控制技术[J].上海金属,2007,29(1):15-20.
    101.钟晓燕,陈佳圭.空间电磁悬浮技术的发展状况[J].物理,1996,25(9):565-570.
    102.李廷举,温斌,张志峰,等.电磁场作用下材料加工新技术[J].大连理工大学学报,2000,49(5):257-261.
    103.王哲峰,崔建忠,杨院生,等.异相位电磁连铸的电磁场分析[J].金属学报,2006,42(3):317-320.
    104.曲若家,张兴国,何文庆.热顶电磁成型系统磁场的实验与数值模拟[J].材料科学与工艺,2005,13(6):647-651.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700