移动磁场作用下钢液湍流的大涡模拟及气液两相流行为的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为提高金属冶炼效率,改善产品质量的有效辅助手段,电磁场已在冶金领域得到广泛发展。行波磁场与旋转磁场均属于移动磁场范畴。本文运用现代流体力学的方法结合电磁场理论研究电磁场作用于冶金反应器内钢液流动的冶金特性,利用大涡模拟方法(Large eddy simulation-LES)揭示了不同磁场条件下冶金反应器内的流动规律。研究内容及取得的主要结果包括:
     (1)行波磁场作用下圆柱型反应器内液体的运动规律
     行波磁场被广泛应用于改善金属精炼与凝固质量,但对行波磁场作用下金属传输行为的认识尚不完善,制约了行波磁场的进一步应用。本文将描述行波磁场的麦克斯韦方程与流体流动N-S方程相结合,建立了计算行波磁场作用下圆柱型冶金反应器内三维流场的数学模型。通过对典型物理过程进行模拟分析,得到的结果与文献中提供的实验结果吻合良好,证明了本模型和编制的计算程序的可靠性。数值分析结果表明:行波磁场作用下圆柱型反应器内的主截面上形成了两个对称的旋涡。当径高比降低时,反应器内的流场结构没有改变,为两个对称的旋流,形状由圆形变成长方形。当电磁力增大时,轴向方向速度曲线则由平顶变为尖顶的抛物线,并且电磁力越大,波顶离底部壁面的距离越近。
     (2)离心式中间包钢液流动的大涡模拟和物理模型试验
     离心式中间包被用于特殊钢连铸工艺中,具有有效排除钢液中夹杂物的优点。但其操作特性仍未被充分掌握。并且电磁驱动旋流的效率较低,对此提出利用弯水口增大离心室内旋流强度的方法。采用自行设计的离心式中间包水模型装置,分析了旋流强度对中间包平均停留时间、死区体积分数等的影响,并对磁场强度进行了参数研究。结果表明:施加旋转磁场能显著地增长中间包的平均停留时间、缩小中间包的死区体积分数,有利于夹杂物的去除;选择离心室出口面积为0.75A时、叶轮转数为46 rpm有利于改善中间包内的流场。离心式中间包内液面下凹深度与叶轮转数的关系很重要。叶轮转速越大,液面下凹深度越大,越可能发生卷渣;但叶轮转速太小,旋流的强度又不够,降低了去除夹杂物的效率。通过拟合得到弯水口注流液面下凹深度和叶轮转速的关系式为:H=-3.17×107 n3+3.684×10-5 n2-0.0001521n,其中:H=h/D,h为下凹深度,D为离心室直径;n为叶轮转数,rpm。
     发展了大涡模拟方法求解离心式中间包内三维湍流流场。考察了只有弯水口注流,及旋转磁场作用下分别采用直水口、弯水口时离心式中间包内的流场结构和磁场强度对离心式中间包流场结构的影响。结果表明:当磁场强度从0.001T增大到0.004T时,旋流速度的最大值从0.012m/s左右增大到0.04m/s。随磁场强度的增加,旋流速度成线性增加。磁场强度的改变对流场结构的影响很小;本文模拟条件下,旋转电磁力和弯水口共同作用时可使由单纯电磁场产生的最大速度值增加约15%-19%。并得到了试验验证。
     (3)旋流场内底吹气气液两相流运动行为的数理研究
     喷气搅拌是炉外精炼中最广泛使用的技术,但突出的问题是氩气比较昂贵,且利用效率低。对此提出利用旋转磁场作用于底吹气冶金反应器的方法。采用室温模型实验,对冶金反应器内气液流动的混合特性进行了物理模型研究。结果表明:底吹气过程中施加旋转磁场能显著缩短反应器内液体的混匀时间,细化气泡并延长气泡在反应器内运动路程,更加高效地去除钢液中非金属夹杂物;选择吹气位置为0.5R,叶轮转速为60 rpm,吹气量为0.17m3/h为本试验的最佳值。建立了旋流场底吹气反应器内气-液两相流动模型。考察了底吹气位置和磁场强度对改善反应器内的流动形式和气泡运动行为的影响。结果表明:无底吹气体时,冶金反应器内竖直截面的流场结构为四个对称的旋涡;无旋流时,不断上升的气泡形成“倒锥形”的气柱。在旋转磁场(磁感应强度为0.007T)和底吹气共同作用时,主截面的流场结构发生改变,即旋涡的数量增加,上升的气泡形成了“螺旋状气柱”。当吹气位置离中心的距离从0增大到0.75R时,气泡在冶金反应器内运动的路程呈线性的增加,运动路程最大增加是无旋流时运动路程的1.54倍;当磁场强度从0增大到0.012T时,气泡在冶金反应器运动的路程呈指数形式的增加,运动路程最大增加是无旋流时运动路程的2.21倍。
     本工作中均采用FORTRAN语言,独自编程。采用有限体积法求解离散后的微分方程。用SIMPLEC法求解过滤后的非线性瞬态方程。利用ADI法和快修正法离散求解代数方程。
The electromagnetic field has been widely used in metallurgy as a effective auxiliary method of improving product quality, which would increase efficency of metal refining. Alternative magnetic filed includes traveling magnetic field and rotating magnetic field. On the basis of advanced fluid mechanics and theory of electromagnetic field, turbulence of molten steel affected by different electromagnetic field has been studied using large eddy simulation (LES). The main works and conclusions are presented as follows.
     (1)Flow field of molten metal affected by traveling magnetic field in cylindrical reactor
     The traveling magnetic field has been widely used in metal refining and solidification. But the knowldgement of transport behivor of molten metal affected by traveling magnetic field is lack, which will hold back the further application of traveling magnetic field. By coupling the traveling magnetic field theory and N-S equation, the three dimensional flow field is produced in cylindrical reactor. The new formulation of electromagnetic force affected by traveling magnetic field is introduced. The simulation result is accord with the experiment result made by Gerbeth, which testifies the self-developed program and model are reliable. The results show that the flow structure of main section in cylindrical reactor affected by traveling magnetic field is made of two symmetrical vortices; when the aspect ratios decreased, the flow structure has no changed, only the shape changed from round to rectangular; when the electromagnetic force increased, the curve of axial direction velocity changes from flat to steeple and the peek and moves close to the bottom wall.
     (2) Studied on flow structure of molten steel in centrifugal flow tundish with the method of large eddy simulation and physical model experiment
     Centrifugal flow tundish is used in continuous casting of producing special steel, which has the advantange of effectively removing non-metal inclusion. But the principle operation condition is not clear. For the strength of swirling flow density affected by magnetic field is low, the method of using bend nozzle to increase swirling flow density in rotation chamber is suggested. The water model of centrifugal flow tundish is self-designed. The residence time distribution, dead volume fraction etc have been studied with varying magnetic field density. Results show that the use of rotating magnetic field can increase average residence time and reduce dead volume fraction, which is helpful to exclusion the non-metal inclusion. The optimum condition in the experiment is the oulet area of rotation chamer of 0.75A, and rotating speed of 46 rpm. Through the fitting of the data, the expression of sink depth of fluid level with rotating speed is as follows:H=-3.17×107n3+3.684×10-5n2-0.0001521n, where:H=h/D, H is sink depth of fluid level, D is diameter of rotating chamber; n is rotating speed, rpm.
     Large eddy simulation (LES) method is developed to resolve the three-dimensional flow structure of centrifugal flow tundish. In the present works, flow field in three cases are simulated and analyzed, i.e. the swirling flow is produced by (a) electromagnetic force with the direct nozzle (b) bending nozzle using height potential energy of molten steel (c) combination of electromagnetic force and bending nozzle. The effect of magnetic field density on flow structure of centrifugal flow tundish is considered. Results show that when the magnetic field density increased from 0.001T to 0.004T, The maximum velocity increased from 0.012m/s to 0.04m/s,the maximum velocity increased linearly when the the magnetic field density increased. The effect of magnetic field density on flow structure is small; the effectiveness of bending nozzle is validated by 15%-19% increment of maximum swirling velocity in rotation chamber which have verified by water experiment.
     (3) The physical and mathematical research of gas-liquid two phase flow behavior with bottom gas stirring in rotating magnetic field
     Argon gas blowing is the most used tecnology in refining, but the pop problem is that argon gas is very expensive and its efficency is very low. It is suggested that using rotating magnetic field can extend the gas bubble moving distance in reactor. The water model is designed by myself and mixing character of gas-fluid in reactor has been studied. The results show that the rotating magnetic field used in the process of bottom gas stirring can greatly shorten the mixing time in reactor, refine the size of gas bubble, extend the gas bubble moving distance, enlarge the collision area of gas bubble and nonmetal inclusion and is beneficial to removal inclusion. The optimum condition is the position of nozzle at 0.5R, rotating speed at 60 rpm and gas quantity of 0.17m3/h.
     The three dimensional gas-liquid two phase mathematical model in rotating magnetic field is established. The effect of nozzle position and magnetic field density on flow structure and gas bubble behavior of reactor is considered. The results show that if there is no gas stirring, the flow structure of main section in reactor is made of four symmetrical vortices. If there is only gas stirring, the shape of gas plume is inverted cone, When gas stirring and rotating magnetic field applied together, the flow structure of main section in reactor have changed, which takes more vortices than no gas stirring. The chape of gas plume became spiral and the shape of gas plume simulated is the same with the experiment observation. When the distance between reactor center and nozzle position increased, the distance of gas bubble moving increased in linear form. If the distance between reactor center and nozzle position changed from 0 to 0.75R, the channel length wthich gas bubbles float to free surface is prolonger to 1.54 times at most than without swirling flow. When the magnetic density changed from 0 to 0.012T, the channel length wthich gas bubbles float to free surface is prolonger to 2.21 times at most than without swirling flow.
     The program is self-developed using FORTRAN language. A finite volume method has been chosen for this calculation of complicated system. The filtered non-linear simultaneous equations are solved by using SIMPLEC algorithm. A combination of Alternating-Direction-semi-Implicit iteration scheme (ADI) and block correction is used to solve the discrete algebraic equations.
引文
1.徐曾兽.炉外精炼[M],北京:冶金工业出版社,1998,1-12
    2.蒋国昌.纯净钢及二次精炼[M],上海:上海科学技术出版社,1994,2-6
    3.娓冈博幸(日),李宏译.炉外精炼[M],北京:冶金工业出版社,2002,1-45
    4.刘浏,何平.炉外精炼技术的发展与配置[J],第十届全国炼钢学术会议论文集,1998:49-51
    5.傅杰,王平.关于我国发展炉外精炼技术的几点思考[J],第十届全国炼钢学术会议论文集,1998:77-80
    6.孙鹏.精炼过程中钢水成份均匀性研究[D].北京:北京科技大学,2001
    7. Getselev Z N. Method of continuous an semicontinous casting of metals and plant for same[J].,US.Pat 3467166,1969:164-169
    8.贾光霖,张国志,康进武.电磁离心铸造液态金属运动规律研究[J].东北大学学报(自然科学版),1996,17(6):610-614
    9. JiaoY N,Liu Q M,Yang Y S.Analysis of fluid field of liquid metal in electromagnetic eentrifugaleasting [A], The 3rd International Symposium on Electromagnetic Processing of Materials.Nagoya,Japan:ISIJ,1994:355-358
    10. Asai S. Metallurgical applymentof magnetic hydrodynamic [A]. Proceedings of a IUTAM Symposium, The Metal Society,1984:224
    11. Asai S. Recent activities and trend of electromagnetic processing of materials [A]. Proceeding of the 6th International Iron and steel Congress,Nagoya, ISIJ int,1990:370.
    12. Gamier M. Present and future prospect in electromagnetic processing materials [A], The 3rd International Symposium on Electromagnetic Processing of Materials Nagoya, ISU, 1994:1-8
    13. Tsunekawa Y, Suzuki H, Genma Y. Application of ultrasonic vibration to in site MMC process by electromagnetic melt stirring [J], Materials and Design,2001,22(6):467-472
    14. Wang X J, Wu K, Zhang H F, Huang W X, Chang H, Gan W M, Zheng M Y, Peng D L. Effect of hot extrusion on the microstructure of a particulate reinforced magnesium matrix composite [J], Materials Science and Engineering,2007, A465(1-2):78-84
    15.张秋明,曹志强,金俊泽,郭志芳.电磁搅拌法制备复合材料过程的工艺优化[J],中国有色金属学报,2002,12(S1):142-146
    16.李廷举,金俊泽.材料电磁加工新进展[J],材料导报,2000(9):25-32
    17.浅井滋生.电磁气冶金の诞生と最近の动向[C],129回西山纪念技术讲座.东京:日本钢铁协会.平成元年:3-6
    19. Ayata K. Improvement of maero-segregation in continuously cast bloom and billet by electromagnetic stirring[J], Transactions ISIJ,1984:24
    20.韩至成编译.电磁流体力学在冶金生产中的应用(1Ⅰ)[J],国外钢铁,1987,(6):26
    21.上原彰夫,藤崎敬介,清濑明人.连续铸造ぉける铸型内电磁搅拌方法[P],特开平10-180426
    23.水上英夫,中岛敬治.丸铸片の连续铸造装置[P],特开平.7-256414
    24.渡边省三,瑕名清,青木松秀等.连续铸造方法[P],平3-254338
    25.山本裕则,松村千史,森健太郎.连续铸造方法及びその装置[P],特开平4-220149
    28.藤村俊生,北冈英就.连续铸造片の中心偏析防止方法[P],特开昭63-157748
    29.徐国兴,张琪渔.电磁搅拌技术在连铸机上的应用及其对铸坯质量的影响[J],武钢科技.1997,(1),5
    31.岸田民也,辛岛一生,山根康史.工具钢连铸铸片の内质改善方法[P],特开昭63-49352
    32.长道常昭.钢の连续铸造方法[P],平2-284749
    33.饭田晋三,岛田节夫.连铸设备の铸型内电磁搅拌装置[P],昭62-68662
    35.沟田久和,小岛信司,松川敏胤.连续铸造にぉける铸片の连续锻压方法[P],特开平2-15857
    37.角井询,古河洋文,秋田秀喜等.连续铸造用电磁搅拌装置[P],昭62-224465
    38. L. Beitelman著,廖永松译.采用双线圈电磁搅拌系统灵活控制结晶器内的搅拌[J].武钢技术,1998,(10):25-29
    39.池田力.连续铸造用电磁搅拌装置[P],昭62-275552
    40.易本熙.结晶器用新型双线圈电磁搅拌系统[J]连铸.1998,(4):24
    42.冈泽健介,尺田郁夫,原田宽等.电磁制动技术を利用した连铸铸型内の熔钢喷流举动[J],1998,84(7):20-25
    44. Sten G. K,Helmut R H,Partiek J H. Improving quality of flat rolled products using eleetromagnetic break(EMBR) in continuous casting[J], Iron and steel engineer,1996, (7):24-28
    46.岩井一彦,浅井滋生.高周波磁场印加にょる熔融金属表面の波动の安定化[J],CAMP-ISIJ.1994,7:14
    47.杨长贺,高钦.有色金属净化[M],大连:大连理工大学出版社,1989:123-156
    48. Fleteher D, Gerber R, Moore T. Anextended study of the electromagnetic separation of non-ferrous metals from insulators[J], IEEE transaetions on magnetics,1995,31(6): 4187-4189
    49.铃木陵平,中岛慎一,木村雅保等.4-ccl strandへの铸型内电磁搅拌装置导入にょる品质改善[J], CAMP-ISIJ,2001,14:169
    53.清水善之,天野景博,峙竹弥等.溶钢を含高清净化する取锅搅拌方法[J], CAMP-ISIJ, 1996,9:82
    54.李克,孙宝德,李天晓等.利用高频磁场分离Al熔体中的非金属夹杂[J],金属学报,2001,37(4):406-410
    55.山尾文孝,佐佐健介,岩井一彦等.固定交流磁场を利用した赴溶融金属中の非金属介在物除去[J],铁ょ钢,1997,82(1):30~35
    58.田中佳子, Joon-Pyou PARK等.移动磁场を用ぃた溶融金属中非金属介在物の除去[J],CAMP-ISIJ,1995,8:209
    60.樊俊飞,朱苗勇.六流连铸中间包内流动与传热耦合过程的数值模拟及控流装置优化[J],金属学报,1999,35(11):1192-1194
    61.程乃良,朱苗勇,萧泽强.非稳态双流连铸中间包内钢液的流动与传热特征[J],钢铁研究学报,2001,36(10):23-25
    62.樊俊飞,张清朗.多流连铸中间包内流动与传热耦合过程的数值模拟[J],金属学报1999,18,3:55-67
    63.朱苗勇.连铸中间包内钢液流动与传热耦合过程的计算机模拟[J],金属学报,1999,18(3):933
    64.朱苗勇,迟田郁夫.连铸中间包内三维湍流流动的数值模拟[J],金属学报,1997,33(11):323-328
    65.刘青,田乃媛,张永元,赵平,李秋民,蒋立新,陶金波.高效连铸的重要技术[J],钢铁研究,2000,(1):54-58
    66.王建军,包燕平,曲英.中间包冶金学[M],北京:冶金工业出版社,2001:5-8.89;15-20;27-30;31-35;36-38;21;110
    67. McLena A. The turbulent tundish-contaminator or refiner [A], Steelmaking Conference Proceeding,1988:3-23
    68. Stel J V D. Therm ophysical and kinetic considerations for the selection of a tundish flux [A], Steelmkaing Conference Poreeeding,1993:503-516
    69. Crowley R W. Cleanliness improvement using a turbulence Suppressing tundish impact pad [J], Steelmaking Conference Proceeding,1995,78:629-636
    70. Saylor K, Bolger D. Preventing turbulence in the Tundish [J], Steel Technology International,1995:187-191
    71. Moarles R D,Lopez-ramirez S,Palafox-Rams J. Numerical and modeling analysis of fluid flow and heat transfer of liquid steel in a tundish with different flow control devices[J], ISIJ international,1999,39(5):455-462.
    72. Ilegbusi O J,Szekeeiy J. Effect of magnetic Field on Flow Temperature and inclusion removal in shallw tundish [J], ISIJ,1989, (29):1032-2039
    73.三木佑司,竹内秀次.日本铁钢协会钢中夹杂物析出物[J].分析评价论坛,2001年12月.
    74.远藤公一,高本久等.多功能二次精炼技术RH喷粉法的开发[J],制铁研究,1989,335:20-25。
    75. Park J P, Morihira A, Sassa K. Elimination of non-metallic inclusions from molten metal by use of electromagnetic force[J], Testsu-to-Hagane,1994,80 (5):31~36
    76. K. Takahashi and S. Taniguchi. Electromagnetic separation of nonmetallic inclusion from liquid metal by imposition of high frequency magnetic field [J], ISIJ Int,2003 (6): 820-827.
    78. Miki Y, Ogura S and Fujii T. Separation of inclusions from molten steel in a tundish by use of a rotating electromagnetic field[J]. The 3th Symposium on Electromagnetic Processing of Materials, ISIJ int.,1994:217.
    79. Martinelli J R, Sene F F. Electrical resistivity of ceramic-metal composite materials: Application in crucibles for induction furnaces [J], Ceramics International,2000,26(3): 325-335
    81. Par G J, Lage T I J. The use of fundamental process models in studying ladle refining operations[J], ISIJ Int.,2001,41(11):1289-1302.
    82. Wu J H. Application of CFD technology in steel refining [J], ACFD 2000 Conference Proceedings[C], Beijing:The Federation of Engineering Societies of China and Technology,2000:162-169.
    83.詹树华,赖朝斌,萧泽强.侧吹金属熔池内的搅动现象[J],中南工业大学学报(自然科学版),2003,34(2):148-151.
    84.张鉴.炉外精炼的理论与实践[M].北京:冶金工业出版社,2004.
    85.汪明东,李扬洲,仲剑丽.RH钢水真空处理技术现状[J],钢铁钒钛,1997,18(4):35-41
    86.蔡廷书.炉外精炼工艺技术应用[J],四川冶金,2003,3:34-39
    87.战东平,姜周华,芮树森,王文忠.RH真空精炼技术冶金功能综述[J],宝钢技术,1999,4:60-63
    88.陈达士.最新炉外精炼及铁水预处理新工艺、新技术实用手册[M],北京:当代中国音像出版社,2005.
    89.是勋刚.湍流[M],天津:天津大学出版社,1994.
    90. Herring J R. Some contributions of two-point closure to turbulence[J], In Frontiers in fluid Mechanics,1984:68-86.
    91. Horiuti K. Anisotropic representation of the Reynolds stress in large eddy simulation of turbulent channel flow [J], Proc.Int,symp.on comp.Fluid Dynamics, Nagoya,1989,8:233
    92. Smagorinsky,J. General circulation experiments with the primitive equations.1.The basic experiment[J], Month Wea Rev,1963,91:99-164
    93. Horiuti K and Yoshizawa A. Large eddy simulation of turbulent channel flow by 1-equation model[J], In Finite Approximations in Fluid Mech.,1985:119-134
    94. ChangY K, Vakilli A D. Dynmaics of vortex rings in crossflow[J], Phys.fluids,1995, 7:1583-1597.
    95. Yakhot A and Orszag S A. Renormalization group analysis of thrbulenee.I.Basic thery[J], J.Sci.Computing,1986:3-51.
    96. Moin P,Squires K,Cabot W H.and Lee S,A dynamic subgrid-scale model for compressible turbulence and scalar transport[J], Phys.Fluids,1991,A3(11):2746-2757.
    97. Poimelli U. High Reynolds number calculations using the dynamic sub-grid scale stress model[J], Phys.Fluids,1993, A5(6):1484-1490.
    98. Lesieur M, Metais O. New trends in large-eddy simulations of turbulence[J], Annu.Rev.Fluid Mech.,1996,28:45-82.
    99. Bardina J, Ferziger J H, Reynolds W C, Improved subgrid scale models for large eddy simulation, AAIA,1980:80-135.
    100.Germano M, Pimoelli U, Moin P and Cabot W H, A dynamic subgrid-scale eddy viscosity model[J], Phys.fluids,1991, A3:1760-1765.
    101.余利仁,陈达卫.三维隔板方腔中流体流动的数值计算[J],计算物理,1993,10(3):273-278
    102.樊世川,李宝宽,赫冀成.多管真空循环脱气系统循环流动模型[J],金属学报,2001,37(10):1100-1106
    103.张政译.Pantankar S V著.数值传热与流体流动[M],北京:科学出版社,1985:91-126
    104.陶文铨.数值传热学[M],西安:西安交通大学出版社,1988:439-448
    105.陶文铨.计算传热学的近代进展[M],北京:科学出版社,2000:159-162
    106.Asai S. Recent activities of electromagnetic processing of Materials[J], ISIJ International, 1989,29(12):981-992.
    107.钟云波任钟鸣邓康等.金属电磁净化技术中金属液流动的成因分析[J],上海有色金属,1999,7(2):5-9.
    108. Grants I, Gerbeth G Stability of melt flow due to a traveling magnetic field in a closed ampoule [J], J. Crystal Growth.2004,269:630-638.
    109.张琦 王同敏 李廷举 金俊泽。连铸空心管坯内置行波磁场对凝固组织的影响[J],稀有金属材料与工程,2007,26(9):1566-1569.
    110. Volz M P, Mazuruk K. Lorentz body force induced by travelling magnetic fields [J], Magnitnaya Gidrodinamika,2004,40(2):117-127.
    111.Galindo V, Grants I, Lantzsch T. Numerical and experimental modeling of the melt flow in a traveling magnetic field for vertical gradient freeze crystal growth [J], Journal of Crystal Growth.,2007,303:258-261.
    112.Gelfgat A Y. On three-dimensional instability of a traveling magnetic field driven flow in a cylindrical container[J], J. Crystal Growth,2005,279:276-284.
    113.Galindo V, Grants I, Lantzsch T. Numerical and experimental modeling of the melt flow in a traveling magnetic field for vertical gradient freeze crystal growth [J], Journal of Crystal Growth.2007,303:258-261.
    114.Mclean A. The Turbulent Tundish-Container or Refiner[A], Steelmaking Conference Proceedings,1988:3-23
    115.詹树华,欧俭平,萧泽强.底吹气连铸中间包内气液两相流的数值模拟[J],过程工程学报.2005,6:233-240
    116.程乃良,朱苗勇,萧泽强.非稳态双流连铸中间包内钢液的流动与传热特征[J],钢铁研究学报,2001,36(10):23-25
    117.张建平,龚志翔,刘国平等.马钢90tLF精炼炉电磁搅拌混合特性的水模型研究,安徽冶金,2001,1:1-15
    118.Masaki. Advanced ladle refining technology for the high-quality steel[J],Scandinject V part I,Lulea,Sweden,1989:625-633
    119.李东辉,李宝宽,赫冀成.中间包底吹气过程去除夹杂物效果的模拟研究[J],金属学报,2000,36(4):411-416
    120.李东辉,李宝宽,赫冀成.中间包双板多孔挡墙流动控制去除夹杂物效果的模拟研究[J],金属学报,1999,35(10):1107-1221
    121.Dmale C, Sahai Y. The effect of tracer density on melt flow charaeterization in Continuous Casting Tundishes[J], ISIJ Intemational,1995,35(2):163-169
    122.彭世恒,王建军,杨卫宏,等.广钢高效连铸改造的中间包内型优化[J],中南工业大学学报(自然科学版),1998,29(1):141-144
    123.盛东源,倪满森,邓开文.中间包内钢液流动、温度控制和夹杂物行为的数学模拟[J],金属学报,1996,32(7):742-748
    124.De J, Barreto J and R D Morales. Physical and mathematical modeling of steel flow and heat transfer in tundishes under non-isothermal and non-adiabatic conditions[J], ISIJ International,1996,136(5):543-552
    125. Miki Y, Kitaoka H, Sakuraya T, Fujii T. Mechanism for separation inclusions from molten steel stirred with a rotating electro-magnetic field[J], ISIJ International,1992, 32(1):142-149.
    126.Miki Y, Kitaoka H, Fujii T, Saito S, Komamura K. Proceedings of electromagnetic processing of materials [J], Nagoya, ISIJ International,1994:217-223.
    127.Miki Y, Kitaoka H, Bessho N, Sakuraya T, Ogura S, Kuga M. Inclusion separation from molten steel in tundish with rotating electro-magnetic field[J], Tetsu-to-Hagane,1996, 82(6):40-45.
    128..Sahai Y, Emi T. Criteria for water modeling of melt flow and inclusion removal in continuous casting tundish[J], ISIJ International,1996,136(9):1166-1173
    129.Head R A.Modeling flow in the high volume horizontal continuous casting tundish[J], I &SM,1992,(1):51-56.
    130..Lowry ML, Sahai Y. Modeling of thermal effects in liquid steel flow in tundishes[J], Steelmaking Conference Proceedings,1991,P505-511
    131.Moin P, Kim J. Numerical investigation of turbulent channel flow [J], J. Fluid Mech., 1982,118:341-377.
    132.Thomas B G, Zhang L F. Mathematical modeling of fluid flow in continuous casting [J], ISIJ International,2001,41(10):1181-1193.
    133.Thomas J R Hughes, Assad A Oberai, Luca MAzzev. Large eddy simulation of turbulent channel flows by the variational multiscale method [J]. Physics of Fluids,2001,13(6): 1784-1799.
    134.Yuan Q, Thomas B G, Vanka S P. Study of transient flow and particle transport in continuous steel caster molds:Part 1.Fluid flow [J], Metallurgical and Materials Transactions B,2004,35:685-702.
    135.Smagorinsky J. General circulation experiments with the primitive equations,1. The basic experiment [J], Monthly Weather Review,1963,91:99-164.
    136.Yokoya S,Westhoff R,Asako Y,Hara S and Szekely J. Numerical analysis of immersion zozzle outlet flow pattern through using swirling flow in continuous casting [J], 铁と钢, 1994,80(10):25-30
    137.Li T J,Zhao Y H,Wen B and Jin J Z. Experimental and computational study of nozzle eElectromagnetic stirring and its effects on solidification structure [J], Ironmaking and Steelmaking,2002,29(5):337-340
    138.刘薇,胡林,谢茂昭.连铸工艺中的电磁搅拌技术[J],炼钢,1999,15(1):54-56
    139.Spitzer K H,Dubke M and Schwerdtfeger K. Rotational electromagnetic stirring in continuous casting of round strands [J], Metall.Trans.,1986,17 B:119-131
    140.. Gorbachev L P,.Nikitin V N, Ustinov A L. Secondary flows of a liquid between rotating coaxial cylinders of finite length in the axial magnetic field[J], Magnetohydrodynamics, 10(1974):406.
    141.. Nikrityuk P A, Eckert S, Eckert K. Spin-up and spin-down dynamics driven by a single rotating magnetic field pulse[J], European Journal of mechanics B/Fluid,10(2007):1016.
    142.Van Driest E R. On turbulent flow near a wall [J], Journal of the Aeronautical Sciences, 1956,23:1007-1011.
    143.Sarghini F, Piomelli U, Balaras E. Scale-similar models for large eddy simulations [J], Physics of Fluids,1999,11(6):1596-1610.
    144.Nkanaishi K,Fujii T,Szekely J. Possible relationship bweteen energy dissipation andagitation in steel proeessing operations[J], lromnkaing&Steelmkaing,1975,2(4): 193-197
    145.周俐,戴朝珊,王建军等.LF钢包精炼炉试验研究[J],炼钢,1996,1:35-39
    146.何平.ANS-OB钢包浸罩内底吹排渣试验研究[J],钢铁研究学报,1997,9(3):6-10
    147.何平,谢计卫.钢包底吹液面产生液峰高度的水模型研究[J],钢铁研究,1996,4(4):3-6

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700