轮轴过盈配合面的有限元分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
轮对是机车车辆走行部中最重要的部件之一,轴毂间配合的接触压力,不仅是研究微动损伤的重要参数,而且也是保证轮轴间扭矩的传递、抵抗轮轴相对运动的重要因素。因此,需要对轮轴配合部位的宏观接触应力状态进行研究,为校核零件强度、计算联接传动能力提供依据。
     本文以眉山车辆厂转K6型转向架所用轮轴结构为研究对象,采用有限元软件ABAQUS对轮轴压装法过盈装配进行模拟计算,应用ABAQUS强大的后置处理功能对轮轴过盈联接后应力的分布、变形的范围、装配时材料的应力变化进行直观的分析,具有十分重要的工程意义。
     对轮轴压装法过盈装配分别进行了弹性有限元模拟和弹塑性有限元模拟,计算装配过程中产生的应力、应变,确定高应力区的位置,讨论过盈量对轮轴配合面内应力分布及应力集中的影响。计算结果表明,过盈量变大时,车轮和车轴上的应力水平都明显提高,应力集中现象也越明显。将两种模拟方法的结果进行对比,可以得知弹塑性有限元法比弹性有限元法更具有指导意义和应用价值。
     在弹塑性模拟条件下研究车轴空心度对过盈装配所产生的影响,分析车轮与车轴的等效应力和接触应力的分布规律及轮轴塑性变形的特点,并将实心轴、平直型空心轴与扩大型空心轴压装后的计算结果进行对比分析,可以得知在同等条件下进行压装,空心轴与实心轴的计算结果并没有明显的差别,车轴内径的改变对轴孔处的应力影响比较大,对于轮毂和轴的接触位置尤其是应力集中位置的应力没太大影响,用空心轴进行替代是可行的。
The wheelset is one of the most important components in the running gear of locomotive. The contact pressure between axle and hub is not only the important parameter to study fretting damage, but also the important factor to ensure the transmission of torque and resisting relative slip on the fitting surfaces. Therefore, it's important to study the macroscopic stress state on the contact surfaces, and provide the research basis for checking the strength of components and calculating the transmission capacity of connectors.
     In this paper, take the wheelset structure of K6 bogie truck made by Meishan Rolling Stock Works as the study object, use the finite element software ABAQUS to simulate the shrink fitting process by press-fit method. With the strong post-processing function of ABAQUS, the stress distribution, deformation range and the variation of stresses when assembling can be observed visualized, which has practical significance on the field of engineering.
     The fitting process of wheelset is simulated respectively by using elastic FEM and elasto-plastic FEM. The stress and strain of every node on the contact surface between axle and hub could be exactly calculated during the assembly, and the region of high stress is also determined. The influence of shrink range on the stress distribution and stress concentration is discussed in detail, and the results indicate that with the increase of shrink range, the stress level of wheel and axle both increased, the stress concentration also become more obvious. By comparing the computing results of two simulation methods, the conclusion is that the elasto-plastic FEM is more significant and valuable than the elastic FEM.
     Using the elasto-plastic FEM, the influence of hollowness on shrink-fit is studied, then analyzed the distribution of equivalent stress and contact stress and the characteristic of plastic deformation on the contact surface. By comparing the simulating results among solid axle, hollow axle with straight hole and hollow axle with variable hole, the conclusion is that there is no significant difference in results when assembling under the same conditions. The structure of the inner hole has a large influence on the stresses around axle hole, and a small influence on the stresses on contact surface or stress concentration region. So the wheelset with hollow axle is applicable according to the present results.
引文
[1]卫凌云.轮对加装扣环方案的结构及温度场分析.武汉理工大学硕士论文.2005.10.
    [2]齐效文.铁路轮轨接触应力数值分析.燕山大学硕士论文.2001.4.
    [3]王冬.840D货车车轮辐板孔疲劳裂纹扩展仿真.北京交通大学硕士论文.2006.12.
    [4]黄继雄.加装扣环机车轮对的力学行为研究.武汉理工大学博士论文.2006.5.
    [5]罗曦春.铁道车辆轮对摩擦定位特性研究.西南交通大学硕士论文.2008.7.
    [6]文汉云.基于有限元带扣环轮对机械特性研究及应用.武汉理工大学博士论文.2007.11.
    [7]Ryo Takagi回眸高速铁路10年的发展.西铁科技,2005,04.
    [8]金履忠.轮轨技术是京沪高速铁路的必然选择.中国工程科学,2000,2(7):22-27.
    [9]肖新立.高速铁路轮轨与磁悬浮方案对比分析.交通科技,2004(3):87-90.
    [10]金学松,张雪珊,张剑等.轮轨关系研究中的力学问题.机械强度,2005,27(4):408-418.
    [11]C.Esveld高速铁路车辆轨道相互作用研究.铁道勘测与设计,2004,02.
    [12]金玉云.机车车辆/轨道系统垂向耦合动力学有限元分析的现状.铁道部科学研究院博士论文,2000.
    [13]万鹏.考虑轮对弹性时车辆系统动力学建模与仿真分析.西南交通大学硕士论文.2008.3.
    [14](苏)Л.A.沙杜尔等著,苏宝瑛等译.车辆构造理论与计算[M].北京:中国铁道出版社.1988.
    [15]孙玲芳.机车轮对有限元分析及优化设计.大连交通大学硕士论文.2005.12.
    [16]张伟.机车轮对轮箍加装扣环方案的力学性能分析.武汉理工大学硕士论文.2005.10.
    [17]郑伟生.国外轮轴技术发展综述(一).国外铁道车辆,1998(4):1-5.
    [18]冯明飞.C70铁路货车轮-轴疲劳可靠性分析.西南交通大学硕士论文.2009.6.
    [19]Wise S. Railway wheel-sets a critical review. Proceedings of the Mechanical Engineers. 1987,201(4):257.
    [20]C.H.KnoeneB各种制动厂况下整体辗钢车轮的温度场.国外铁道车辆,1996(4):18-20.
    [21]UI515-3/1993. Eisenbahnfahrzeuge/Drehgestelle-Laufwerke:Verfahren fur die Bereehnung von Radsatzwellen.1994.
    [22]The European Standard. EN13104:2001. Railway applieations-Wheel-sets and bogies Powered axles-Design method.2001.
    [23]丁辉.铁道车辆车轮强度分析和评定方法.铁道机车车辆,2003,23(4):12-14.
    [24]米彩盈,李芾.高速动力车车轮强度分析的工程方法.内燃机车,2005(9):11-13.
    [25]周张义,米彩盈,李芾.基于静力子结构技术对轮轴接触下车轮的强度分析.内燃机车,2006(9):16-21.
    [26]刘云.提速货车车轮的温度场及热应力场的数值模拟.北京:北京交通大学,2004.
    [27]刘会英,郑伟生.客货车车轮强度有限元计算.铁道车辆,1987(7):1-5.
    [28]郭荣生.谈国外关于车轴疲劳强度的研究.铁道车辆,1978(3):21-27.
    [29]王广杰.轨道车辆车轴的成形设备及工艺研究.吉林大学硕士论文.2008.5.
    [30]平川贤尔(日).高速路机车车辆车轴的疲劳设计.电力牵引快报,1997(3):12-15.
    [31]郭荣生.谈国外关于车轴疲劳强度的研究(续一).铁道车辆,1978(4):33-38.
    [32]Wirshing PH. Fatigue under wide band random stress using rainflow method. Jengng Mater Tech Trans ASME 1977:99.
    [33]Wirshing PH et al. Fatigue under wide band random stress. Struct Eng ASME 1980, Vol.106.
    [34]Hongwei Shen, Jizhong Lin, Ensheng Mu. Probabilistic model on stochastic fatigue damage. International Journal of Fatigue,2000, Vol.22:569-572.
    [35]J.Vogwell. Analysis of a vehicle wheel shaft faiure. Engineering Failure Analysis,1998, Vol.5. No.4.
    [36]N.Gravier, J.J.Viet, A.Leluan. Predicting the life if railway vehicle axles. Weixing Hou.12th International wheelset congress proceedings. Qindao, China,1998. China Railway Society,1998:133-145.
    [37]K.Hirakawa, K.Toyama, M.Kubotat. The analysis and prevention of failure in railway axles. Fatigue,1998,20(2).
    [38]商跃进,赵邦华.货车车轴疲劳寿命可靠性预测与分析.兰州铁道学院学报,1997,16(2):83-88.
    [39]Gerhard Fischer, Dring. Service-life durability approval of wheelsets. Weixing Hou.12th International wheelset congress proceedings. Qindao, China,1998. China Railway Society,1998:59-67.
    [40]Makoto Akama. Bayesian analysis for the results of fatigue test using full-scale models to obtain the failure probabilities of the shinkansen vehicle axle. Reliability Engineering and system Safety.2002, Vol.75.
    [41]Peter J. Heyes,林晓斌译.基于有限元的疲劳设计分析系统MSC/FATIGUE中国机械工程,1998,9(11):12-15.
    [42]许小强,赵洪伦.铁道车辆轮轴装配应力的接触非线性有限元分析.上海铁道大学学报,1999,20(12):76-79.
    [43]刘建新.无孔辐板轮对的结构强度分析.电力机车技术,2000(1):17-21.
    [44]余红英,樊永生.火车车轮非线性有限元热应力分析.华北工学院学报,2001,22(1):25-28.
    [45]王宗彦,余红英,刘卫玲.复杂载荷下火车轮轴的有限元分析.华北工学院学报,2002,23(5):318-321.
    [46]章巧芳,贾虹.轮轴过盈联接有限元分析.机械强度,2006,28(4):543-546.
    [47]Liu Y, B. Stratman, S.Mahadevan. Fatigue crack initiation life prediction of railroad wheels. International Journal of Fatigue,2006,28(7):747-756.
    [48]田合强,王建斌,邬平波.基于有限元的轮对强度计算及评定.设计与研究,2007,34(5):11-13.
    [49]Taizo Makino, Miyuki Yamamoto, Kenji Hirakawa. Fracture Mechanics Approach to the Fretting Fatigue Strength of Axle Assemblies Symposium on Fretting Fatigue. Current Technology and Practices, Salt Lake City, Utah on Aug.31,1998.
    [50]Ekberg. A Fretting fatigue of railway axles-a review of predictive methods and outline of a finite element model. PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART F-JOURNAL OF RAIL AND RAPID TRANSIT 218(4):299-316 DEC 2004.
    [51]Kubota M, Niho S, Sakae C, Kondo Y. Effect of understress on fretting fatigue crack initiation of press-fitted axle. JSME INTERNATIONAL JOURNAL SERIES A-SOLID MECHANICS AND MATERIAL ENGINEERING 46(3):297-302 JUL 2003.
    [52]郑伟生.国外轮轴技术发展综述(二).国外铁道车辆,1998(5):7-13.
    [53]Ishizuka Hiromichi. The Method of Lighting Axle. Foreign Rolling Stock,1992(1): 35-39.
    [54]Joseph P. Domblesky, Rajiv Shivpuri, Brett Painter. Application of the finite-element method to the radial forging of large diameter tubes. Journal of Materials processing Technology,1995(49):57-74.
    [55]A. Showky, T. Rosenberger, M. Elbestawi. In-process monitoring and control of thickness error in machining hollow shafts. Mechatronics,1998(8):301-322.
    [56]D.Y.Jang, J.H.Liou. Study of stress development in axi-symmetric products processed by radial forging using a 3-D non-linear finite-element method. Journal of Materials Processing Technology,1998(74):74-82.
    [57]曹志礼,王勤忠.高速客车空心车轴的研究.铁道车辆,1995,33(7):5-9.
    [58]黄志辉.我国首台高速动力车空心车轴结构设计及工艺.机械设计,1998(5):25-27.
    [59]顾一新.轮对内空心轴加工方法探讨.电力机车技术,1996(2):27-29.
    [60]秦敏,李继光,房娃等.工艺参数对空心车轴锻造成形的影响.科技情报开发与经济,2008,18(16):127-129.
    [61]杨广雪,谢基龙,周素霞等.车轴设计参数对轴毂配合接触压力影响的研究.铁道学报,2009,31(3):31-35.
    [62]卓家寿.弹性力学中的有限元法[M].北京:高等教育出版社,1987.9.
    [63]程选生,张少波.弹性力学与有限元法教程[M].北京:中国计量出版社,2008.
    [64]陆明万,张雄,葛东云.工程弹性力学与有限元法[M].北京:清华大学出版社,2005.
    [65]曾攀.有限元分析及应用[M].北京:清华大学出版社,2004.
    [66]G.斯特朗,G.J.费克斯(著),崔俊芝,宫著铭(译).有限元法分析[M].北京:科学出版社,1993.
    [67]王国强.实用工程数值模拟技术及其在ANSYS上的实践[M].西安:西北工业大学出版社,1999.
    [68]庄茁,张帆,岑松.ABAQUS非线性有限元分析与实例[M].北京:科学出版社.2005.
    [69]石亦平,周玉蓉ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006.
    [70]刘展ABAQUS6.6基础教程与实例详解[M].北京:中国水利水电出版社,2008.
    [71]赵华,何翠微,刘建新.机车轮对装配应力的数值分析.铁道学报,1998,20(1):45-51.
    [72]邓荣兵,李世芸,李华.轴毂过盈联接的有限元分析.机电工程,2005,22(1):52-54.
    [73]过盈配合.合成纤维.1974(03).
    [74]陈道礼.过盈联接的有限元分析.机械设计,2001(2):46-48.
    [75]小松英雄著,曹志礼译.关于提高车轴配合部位疲劳极限的研究[M].北京:中国铁道出版社,1990.
    [76]Scurria N V, Doyle J F. Photoelastic analysis of contact stresses in the presence of maching irregularities. Experimental Mechanics,1982(22):342-347.
    [77]王忠祥,苗德华.塑性状态过盈配合联接的承载能力计算.天津轻工业学院学报.1995(2):39-43.
    [78]郑元荣.过盈配合件装配力的估算.机械工艺师,1992(7):27-28.
    [79]吴家龙.弹性力学[M].上海:同济大学出版社,1993.
    [80]魏延刚.轴毂过盈联接的应力分析和接触边缘效应.机械设计,2004,21(1):36-39.
    [81]王华.弹塑性过盈配合的计算方法.试验技术与试验机,1997,37(12):26-27.
    [82]郝伟,张洪,郝永福.有限元法在接触问题中的应用.机械管理开发,2005,83(2):49-50.
    [83]温卫东,高德平.接触问题数值分析方法的研究现状与发展.南京航空航天大学学报,1994,26(5):664-675.
    [84]冯登泰.接触力学的发展概况.力学进展,1989,17(4):431-446.
    [85]彭克俭,盛元生,郑光华.固体力学接触问题综述.沈阳航空工业学院学报,1989(1):95-101.
    [86]谈卓君,廖日东,左正兴等.接触条件下组合结构的动力学分析.机械强度,2006,28(5):658-663.
    [87]颜云辉,谢里阳,韩清凯.结构分析中的有限单元法及其应用[M].沈阳:东北大学出版社,2000.
    [88]董美云,宋亚昕,魏延刚.机车轮对过盈配合温差法装配的有限元模拟.大连铁道学院学报,2003,24(4):21-24.
    [89]雷先明.齿轮组合圆柱面过盈配合联接设计分析.机械设计与研究,2001,17(1):59-60.
    [90]陈连,吴宗泽.圆柱面过盈联接可靠度优化与可靠性优化设计.机械设计与制造,2000,12(6):5-7.
    [91]魏延刚,宋亚昕.机车轮对压装过程弹塑性模拟.机械设计,2004,21(9):46-48.
    [92]Mack W, Bengeri M. The influence of the temperature dependence of the yield stress on the stress distribution in a thermally assembled elastic-plastic shrink fit. Acta Mechanics, 1994,103(1-4):103-113.
    [93]Mack W, Bengeri M. Thermal assembly of an elastic-plastic shrink fit with solid inclusion. International Journal of Mechanical Science,1994,36(8):699-705.
    [94]Gamer U. The shrink fit with nonlinearly hardening elastic-plastic hub. Transaction of ASME,1987,54:474-476.
    [95]Guven U. Stress distribution in shrink fit with elastic-plastic hub exhibiting variable thickness. International Journal of Mechanical Science,1993,35(1):39-46.
    [96]Sen S, Aksakal B. Stress analysis of interference fitted shaft-hub system under transient heat transfer conditions. Materials and Design,2004,25:407-417.
    [97]李伟建,潘存云.圆柱面过盈连接的应力分析.机械科学与技术,2008,27(3):313-317.
    [98]尹桂江.铁道车辆轮对及轴承的结构与检修[M].北京:中国铁道出版社,1995.
    [99]TB/T1718-2003铁道车辆轮对组装技术条件[S].北京:中华人民共和国铁道部行业标准,2003.
    [100]美国ABAQUS Inc,庄茁主译.ABAQUS有限元软件6.4版入门指南[M].北京:清华大学出版社,2004.
    [101]Hibbitt, Karlsson & Sorensen, INC.庄茁主译.ABAQUS/Standard有限元软件入门指南.
    [102]罗玉胜,李俊发.轮对加工组装对防止车轴早期断裂失效的重要性.铁道车辆,2001,39(5):27-29.
    [103]张忠.过盈量在轮对压装中的重要性分析.机械工程师,2010(1):148-149.
    [104]梁红琴.随机载荷作用下的货车车轴疲劳可靠性研究.西南交通大学硕士论文.2004.3.
    [105]郭建,邱之静,龚惠芳.整体铸钢车轮断裂力学性能研究.铁道物资科学管理,1995,13(6):28-30.
    [106]TB/T2817-1997铁道车辆用辗钢整体车轮技术条件[S].北京:中华人民共和国铁道部行业标准,1997.
    [107]TB/T1013-1999碳素钢铸钢车轮技术条件[S].北京:中华人民共和国铁道部行业标准,1999.
    [108]安涛,李胜祗,李小宇.重载车轮对机械性能要求的研究.铁道车辆,2006,44(11):1-5.
    [109]魏延刚,宋亚听.过盈配合接触边缘效应与应力集中.大连铁道学院学报,2003,24(3):4-8.
    [110]陈胜利.铁路轮轴配合有限元分析.铁道车辆,2003,41(5):16-19.
    [111]Zhang Y, McClain B, Fang X D. Design of Interference Fits via Finite Element Method. Mechanical Sciences,2000(9):1835-1850.
    [112]李桐.苏联铁路的空心车轴.中国铁路,1982(03):39.
    [113]B.B.HOBHKOB. The Hollow Axle with an Axle Load of 25t. Foreign Rolling Stock, 2003,40(4):39-41.
    [114]廖焰,刘建生,陈慧琴.新型空心火车车轴重要结构参数有限元分析.太原科技大学学报,2007,28(6):446-450.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700