基于流固耦合的叶片气动弹性分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
叶轮机气动弹性力学是流固耦合问题的重要分支。流场作用在弹性结构叶片上会产生气动力,气动力使得叶片振动产生变形,结构的变形又会改变流场分布,从而产生新的作用力。当振幅不断增加时,叶片就会产生颤振。
     本文对平板叶栅进行气动弹性稳定性试验研究,观察到颤振过程,分析了叶片颤振时叶尖上方壁面处压力脉动与叶片振动之间的关系。在对流固耦合原理和数值模拟求解过程进行详细分析的基础上,研究如何使用流体力学软件CFX,结构有限元分析软件ANSYS和两者间的耦合平台进行流固耦合计算。并应用这种方法对试验用平板叶片进行气动弹性数值模拟,得到叶片在不同来流速度下的位移响应和压力脉动响应,与试验结果进行对比,说明了这种方法的可行性。应用同样方法研究了NACA0012直叶片的气动弹性稳定性,得到其关于攻角和来流马赫数的颤振边界,并得出以下结论:叶尖上方壁面处静压响应与振动位移响应的变化趋势相同,并且压力脉动频率与颤振频率一致,均接近叶片的固有频率,这为叶片颤振预测提供了一种新思路。最后,对压气机转子叶片进行气动弹性数值仿真模拟,分析了定常流场特性、叶片耦合振动特性和叶片的动应力。
     本文所得到的叶片流固耦合问题数值计算方法研究和数值分析的结果,对预测叶片颤振和叶片气动弹性分析有参考价值。
The research for turbo-machinery aero-elasticity is an important part of the study of fluid solid coupling. Aero-elasticity is the phenomenon which exhibits distinct reciprocal interactions between aerodynamic force on blades and vibration deformation. Flutter will occur when vibrating amplitude of blades increases continually.
     In this paper, aero-elasticity stability experiment of a flat plate cascade is carried out. Flutter process is observed and relationship between wall pressure response on top of blade tip and vibrating response of the blade is analyzed. Exhaustive analysis of fluid solid coupling and the process of numeric simulation are presented here. A numeric simulation approach by using CFX, ANSYS and a coupling platform between the two soft wares was applied for studying the fluid solid coupling. The aero-elasticity stability of the flat blade used in the above experiment is simulated using the approach. With different inlet velocities, displacement and pressure response are obtained. Feasibility of this approach is testified by comparing the calculation results with experiment results. Meantime, aero-elasticity stability of NACA0012 straight blade is also simulated by using the same approach. Flutter boundaries of the blade are acquired by correlating attack angle with inlet Mach number. And following conclusions are reached: changing trend of fluid pressure response on top of the blade is consistent with vibrating response of the blade. And both of the response frequencies are the same, which are fairly close to natural frequency of the blade. This provides a new idea of blade flutter prediction. In the end, aero-elasticity stability of compressor rotors is simulated. Steady fluid field characteristic,the vibrating characteristic and stress of the blade are analyzed.
     In this paper, fluid solid coupling simulation of blades and calculation results are useful for reference on blade flutter prediction and aero-elasticity analysis.
引文
[1]施永强.三维叶片颤振与叶片设计关联性研究,[硕士学位论文].西安:西北工业大学,2006.
    [2]张兴国,刘峰,张陈安.基于CFD技术的叶片颤振分析.航空计算技术,2009,Vol.39,No.4:75-78.
    [3] Balakshin , B.G.Kukharenko , A.A.Khorikov.Identification of Turbine Blade Flutter.Journal of Machinery Manufacture and Realiability,2008,Vol.37,No.1:16-20.
    [4] Sanford Fleeter.Aeroelasticity Research for Turbomachine Applications.J.AIRCRAFT, 1979, Vol.16,No.5:320-326.
    [5]蒋福庆.风扇—压气机亚、跨音速失速颤振的发作机理及预测技术.航空发动机,1996,No.3:9-15.
    [6] A.A.Mikolajczak, R.A.Arnoldi, L.E.Snyder.Advances in Fan and Compressor Blade Flutter Analysis and Predictions. J.AIRCRAFT,1975, Vol.12,No.4:325-332.
    [7]施永强,杨青真,周新海.风扇/压气机叶型厚度对颤振特性的影响.航空学报,2009,Vol.30,No.6:979-984.
    [8]赵永辉.气动弹性力学与控制.北京:科学出版社,2007:1-5.
    [9]周盛.叶轮机气动弹性力学引论.北京,国防工业出版社,1989:1-32.
    [10]金琰,袁新.三维透平叶片扭转颤振问题的流固耦合数值研究.工程热物理学报,2004,Vol.25,No.1:41-44.
    [11] K.R.V.Kaza,O.Mehmed,G.V.Narayanan.Analytical Flutter Investigation of a Composite Profan Model.J.AIRCRAFT,1989, Vol.26,No.8:772-780.
    [12]周忠宁,李意民,谷勇霞等.基于流固耦合的叶片动力特性分析.中国矿业大学学报,2009,Vol.38,No.3:401-405.
    [13]张小伟,王延荣,张潇等.涡轮机械叶片的流固耦合数值计算.航空动力学报,2009,Vol.24,No.7:1622-1626.
    [14] C.J.Hwang,J.M.Fang.Flutter Analysis of Cascades Using an Euler/Navier-Stokes Solution-Adaptive Approach.Joural of Propulsion and Power,1999,Vol.15,No.1:54-63.
    [15]郑赟.基于非结构网格的气动弹性数值方法研究.航空动力学报,2009,Vol.24,No.9:2069-2077.
    [16] P.S.Murthy,V.S.Holla,H.Kamath.Unsteady Navier-Stokes solutions for a NACA 0012 airfoil.Computer methods in applied mechanics and engineering,2000,No.186:85-99.
    [17] Peretz Friedmann,C.Yuan.Effect of Modified Aerodynamic Strip Theories on Rotor Blade Aeroelastic Stability.AIAA Journal,1977, Vol.15,No.7:932-940.
    [18] G.Barakos , D.Drikakis.An Implicit Unfactored Method for Unsteady Turbulent Compressible Flows with Moving Boundaries.Computers&Fluids,1999,Vol.28:899-922.
    [19] Joseph M.Verdon.Review of Unsteady Aerodynamic Method for Turbomachinery Aeroelastic and Aeroacoustic Applications.AIAA Journal,1993,Vol.31,No.2:235-250.
    [20]唐智明,周盛.轴流压气机叶片堵塞颤振的数值预测.力学学报,1983,No.5:434-443.
    [21] Ni,R.H.,Non一Stationary Aerodynamics of Arbitrary Cascades in Compressible Flow,PhD Thesis,Stevens Institute of Technology,1974.
    [22] Hall,K.C.,Crawley.Calculation of Unsteady flows in Turbomachinery Using the Linearized Euler Equations,AIAA Journal,1989,Vol.27,No.6:777.
    [23] Clark,W.S.,K.C.A Numerical Model of Stall Flutter in Cascades.ASME Paper 95-GT-377,presented at the 40th ASME International Gas Turbine and Aeroengine Congress&Exposition,Houston,TX,June 5-9,1995.
    [24] L.He.An Euler Solution for Unsteady Flows Around Oscillating Blades.ASME, Vol.112,1990.
    [25] Mcbean,L.,Liu.A Three-Dimensional Navier-Stokes Code for Aeroelasticity in Turbomachinery.9th Internation Symposium on Unsteady Aerodynamics,Aeroacoustics and Aeroelasticity of Turbomachines,Lyon,France,2000.
    [26]胡运聪.振动叶栅非定常流场数值模拟与颤振分析,[博士学位论文].西安:西北工业大学,2003.
    [27] Volker Carstens, Ralf Kemme, Stefan Schmitt.Coupled simulation of flow-structure interaction in turbomachinery.Aerospace Science and Technology.2003, No.7:298-306.
    [28] L.He.Flow-Structure Coupled Approach , Rotating Stall Flutter Calculation.VKI Lecture Series“Unsteady Flows in Turbomachines”,1996:11-15.
    [29]杨青真,肖军,周新海.基于气/固耦合非定常流动的叶栅颤振分析.推进技术,2005,vol.26,No.6:526-530.
    [30]曾强.压气机转子叶片流固耦合计算及软件集成研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [31]邢景棠,周盛,崔尔杰.流固耦合力学概述.力学进展,1997,vol.27,No.1:19-38.
    [32]王征,吴虎,贾海军.流固耦合力学的数值研究方法的发展及软件应用概述.机床与液压,2008,vol.36,No,4:192-195.
    [33]袁启铭.轴流泵叶片流固耦合振动特性分析,[硕士学位论文].扬州:扬州大学,2009.
    [34]刘德民.基于流固耦合的水轮机振动的数值研究,[硕士学位论文].成都:西华大学,2008.
    [35]黄典贵.理想流场中流固耦合作用下叶片的动态特性研究.汽轮机技术,1998,Vol.40,No.4:235-241.
    [36]王营,陶智,杜发荣,郝勇.宽弦空心风扇叶片流固耦合作用下的叶片响应分析.航空动力学报,2008,Vol.23,No.12:2177-2183.
    [37]商威,廖伟丽,郑小波.考虑流固耦合的轴流式叶片强度分析.河海大学学报(自然科学版),2009,Vol.37,No.4:441-445.
    [38]杨立国.北京地铁轴流风机内流场及叶片气动弹性的数值模拟研究,[硕士学位论文].北京:北京交通大学,2007.
    [39]刘志远,郑源,张文佳.ANSYS-CFX单向流固耦合分析的方法.水利水电工程设计,2009,Vol.28,No.2:29-31.
    [40]胡海岩,孙久厚,陈怀海.机械振动与冲击.北京:航空工业出版社,2002:60-80.
    [41]曾军,向传国,程信华.跨声速涡轮叶栅三维流场的数值模拟.航空动力学报,2007,Vol.22,No.11:1915-1920.
    [42] P.F. Galpin, R.B. Broberg,B.R. Hutchinson. Three-dimensional Navier Stokes predictions of steady state rotor / stator interaction with pitch change, 3rd Annual conference of the CFD, Society of Canada, Banff, Alberta, Canada, Advanced Scientific Computing Ltd, June 25-27, 1995.
    [43]黎少辉.风机叶片流固耦合特性分析与故障诊断,[博士学位论文].北京:中国矿业大学,2009.
    [44] K.K.Y.Tsang, R.M.C.So, R.C.L.Leung. Dynamic stall behavior from unsteady force measurements. Journal of Fluid and Structures.2008,No.24:129-150.
    [45]彭泽琰,刘刚,桂幸民.航空燃气轮机原理.北京:国防工业出版社,2008:29-33.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700