MW级风力发电机风轮叶片流固耦合场强度分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
风轮是风力发电机的主要部件之一,其力学特性和气动效率的好坏与风力发电机的性能有着密切的关系。本文主要以某一MW级水平轴风轮叶片为研究对象,运用Ansys与CFX基于Ansys Workbench软件平台对其进行流固耦合数值模拟,并分析在其过程中叶片的变形及应力变化情况。
     通过离散风轮叶根安装角范围来计算风轮的输出转矩,在叶根安装角范围内转矩输出的最大值,对应最佳叶根安装角。基于最佳叶根安装角对不同叶厚工况进行了流固耦合数值分析;替换叶片材料为复合材料并进行了流固耦合数值模拟;最后将流固耦合技术应用于轴流泵叶片的强度分析。
     结果显示,叶根最佳安装角为13度;不同叶厚工况均在叶片压力面靠近中部位置出现应力集中,容易引起疲劳断裂;叶尖变形较大,容易引起叶片挥舞;通过改变复合材料铺层可改善叶片的综合力学性能,实现风轮叶片的优化设计;轴流泵叶片最大应力的增长远大于泵轮转速的增长速度,叶片危险截面位于叶片根部,应力集中主要在叶片外表面。
Wind turbine is one of the main components of wind driven generator, the mechanical properties and aerodynamic efficiency of which have a close relationship with the performance of wind driven generator. A certain MW grade horizontal axis wind turbine blade was used as the main research model, the paper simulated its fluid solid interaction field by ANSYS and CFX based on ANSYS Workbench software platform and analyzed changes of blade deformation and stresses on the blade.
     The output torque of wind turbine was calculated under discrete range of pitch angle of blade root, which showed the only one maximum torque corresponded to the optimum pitch angle of blade root. Blades of different thickness were analyzed by fluid solid interaction simulation in conditions of the optimum pitch angle of blade root. Blade of composite material was analyzed by fluid solid interaction simulation. At the end, the paper analyzed the strength of an axis flow pump impeller based on fluid solid interaction technology.
     The result showed that optimum pitch angle of blade root is 13 degree. The stress concentrations of blades of different thickness all appeared at the middle of the blade side under compressive stress, which can easily lead to fatigue failure. And the blade tip had a quite large deformation which could cause the blade waving. The optimization design of wind turbine can be done through improving the comprehensive mechanics properties by changing the layers of composite material. The stress concentration of axial flow pump impeller occurred at the surface and the dangerous place of blade is at the root of joint. The growth rate of the maximum stress of impeller is higher than that of the rotate speed of axial flow pump.
引文
[1]周鹤良.我国风力发电产业发展前景与策略[J].上海电力,2007,(1):1-4
    [2]施鹏飞.2005年全球风能统计[R].中国风能,2006,5(1):17-21
    [3]郭新生.风能利用技术[M].北京:化学工业出版社,2007
    [4]潘艺,周鹏展,王进.风力发电机叶片技术发展概述[J].湖南工业大学学报,2007,21(3):48-51
    [5]宫靖远.风电场工程技术手册[M].北京:机械工业出版社,2004
    [6]邢景棠,周盛,崔尔杰等.流固耦合力学概述[J].力学进展,1997,27(1):19-38
    [7]管德.流固耦合试验[M].北京航空学院出版社,1986
    [8]周盛.叶轮机械流固耦合力学引论[M].国防工业出版,1988
    [9]牛山泉.风能技术[M].科学出版社,2009
    [10]赵国桥.管道系统流固耦合振动分析[J].炼油设计,1995,25(3):49-53
    [11]徐芝纶.弹性力学[M].高等教育出版社,1995
    [12]Leishman, J. G. Principles of Helicopter Aerodynamics[M]. Cambridge University Press, 2000
    [13]党小建,梁武科,陈丁文.水轮机流固耦合振动研究的发展趋势[J].西北水力发电,2004,20(1):15-18
    [14]吴文权.叶栅气动弹性离散涡数值仿真:Ⅱ.数值试验[J].工程热物理学报,1994,15(4):372-377
    [15]杨伟.基于RANS的结构风荷载和响应的数值模拟研究[D].上海:同济大学,2004
    [16]袁启铭.轴流泵叶片流固耦合振动特性分析[D].扬州大学,2009
    [17]周忠宁.对旋轴流风机流固耦合特性研究及其基于非线性动力学的应用[D].徐州:中国矿业大学,2009
    [18]王营,陶智,杜发荣等.宽弦空心风扇叶片流固耦合作用下的叶片响应分析[J].航空动力学报,2008,23(12):2177-2183
    [19]王宏亮,席光.离心叶轮几何形变对气动性能的影响[J].西安交通大学学报,2009,43(5):46-50
    [20]黄欢明,高红,沈枫等.轴流泵内流场的数值模拟与实验[J].农业机械学报,2008,39(8):66-69
    [21]廖伟丽,徐斌,逯鹏等.部分负荷下混流式水轮机转轮叶片变形对流场的影响[J].机械工程学报,2006,42(6):55-59
    [22]裴吉,袁寿其,袁建平.流固耦合作用对离心泵内部流场影响的数值计算[J].农业机械学报,2009,40(2):107-111
    [23]JT Xing, WG Price, QH Du. Mixed finite element substructure-subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems [J]. Trans.R.Soc.Lond,1996, 354:259-295
    [24]Benra F-K, Dohmen H J. Comparison of pump impeller orbit curves obtained by measurement and FSI simulation[C].2007 ASME Pressure Vessels and Piping Division Conference,2007
    [25]Morand H J-P, Ohayon R. Fluid-structures interaction [M]. Chichester:John Wiley and Sons, 1995
    [26]黄典贵.理想流场中流固耦合作用下叶片的动态特性研究[J].气轮机技术,1998,40(4):235-238
    [27]李本立,安玉华.风力机气动弹性稳定性的分析[J].太阳能学报,1996,17(4):314-320
    [28]王介龙,陈彦,薛克宗.风力发电机耦合转子/机舱/塔架的气弹响应[J].清华大学学报(自然科学版),2002,2(2):211-215
    [29]窦修荣.水平轴风力机气动性能及结构动力学特性研究[M].山东:山东工业学,1995
    [30]卞于中.风力机叶片气动弹性实验研究[J].气动实验与测量控制,1994,8(3):40-47
    [31]H.D Joslyn, R.P Dring. Three-dimensional flow in an axial turbine[J]. ASME Journal of Turbo machinery,1992,114 (1):61-78
    [32]王福军.计算流体动力学分析[M].北京:清华大学出版社,2004
    [33]张仲柱,王会社,赵晓路等.水平轴风力机叶片气动性能研究[M].工程热物理学报.2007,28(5):781-783
    [34]Matthew M. Duquette, Kenneth D. Visser. Numercial Implications of Solidity and Blade Number on Roter Performance of Horizontal-Aixs Wind Turbines[J]. J. Sol Energy Eng, 2003,125(4):425-433
    [35]Laino, David J, Handsen etc. Vurrent efforts toward improved aerodynamic modeling using the AeroDyn subroutines[C]. AIAA Aerospace Sciences Meeting and Exhibit,2004,329-338
    [36]刘利先,曹淑珍.离心叶轮内二维湍流流场的LDV测量[J].航空动力学报,2002,17(3):287-291
    [37]勒古里雷斯(法).风力机的理论与设计[M].机械工业出版社,1987
    [38]J. F. Manwell, J. G. McGowan, A. L. Rogers. Wind Energy Explained:Theory Design and Application [M]. Chichester:John Wiley and Sons,2002
    [39]Ashwill, Tomas D. Innovative Design Approaches for Large Wind Turbine Blades[R]. US Department of Energy,2003
    [40]Bent F. Sorensen. Improved design of large wind turbine blade of fiber composites based on studies of scale effects (Phase 1) [C]. Risoe National Laboratory,2004
    [41]Det Norske Verita S, Copenhagen. Guidelines for Design of Wind Turbine [C]. Wind Energy Department Risoe National Laboratory,2002
    [42]张维智,李方洲.采用修改的Wilson方法对风力机叶片进行优化设计[C].全国第一届风能技术应用年会,2004,20-27
    [43]刘雄.风力机桨叶总体优化设计的复合形法[J].太阳能学报,2001
    [44]Riziotis. V. A., P. K. Chaviaropoulos, S. G. Voutsinas. Development of a state-of-the-art aeroelastic simulator for horizontal axis wind turbines.Part2.Aerodynamic aspects and application[C]. Wind Eng.,1996,20 (6):423-440
    [45]Guanpeng Xu,Lakshmi N.Sankar. Computational Study of Horizontal Axis Wind Turbines [C]. J. Soul. Energy,2000,122(1):35-40
    [46]张玉良.水平轴大功率高速风力机风轮空气动力学计算[D].甘肃:兰州理工大学,2006
    [47]潘艺,周鹏展,王进.风力发电机叶片技术发展概述[J].湖南工业大学学报,2007,21(3):48-51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700