用户名: 密码: 验证码:
铁基氧化物的制备与电极界面性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
简单过渡金属氧化物如MnO2、α-Fe2O3、Fe3O4、Cr2O3、Co3O4、MnO、Cu2O因能提供高达700mAh/g以上的可逆容量而受到广泛的关注,是极具潜力的新一代锂离子电池电极材料。其中,铁的氧化物(Fe2O3、Fe3O4)作为锂离子电池负极材料因具有较高的理论比容量和廉价、环境友好等优点受到较多的研究。但是铁的氧化物导电性能较差和在充放电过程中体积变化较大,用作负极时出现很差的循环性能和倍率性能,进而限制了铁的氧化物作为负极材料的应用。最常见的,也是最有效的解决方法是与碳材料进行复合或者制备具有特殊形貌结构的材料。基于以上两点,本文通过将不同种类的碳材料与铁的氧化物进行复合及制备特殊形貌结构铁的氧化物,旨在寻求此类高能密度正极材料的改性方案;重点运用电化学阻抗谱技术,探讨电极动力学过程及其电极界面的性能,寻求此类电极的容量衰减的机理。主要研究内容和结果如下:
     (1)利用高温固相反应法制备α-Fe2O3/C复合材料。运用X射线衍射(XRD)、扫描电子显微镜、充放电测试、电化学阻抗谱对其结构和电化学性能进行了表征。充放电测试结果显示,α-Fe2O3/C电极循环50周时可逆充电容量为935.3mAh/g,循环性能较商品化α-Fe2O3有显著改善。电化学阻抗谱测试结果显示,α-Fe2O3/C电极在首次嵌锂过程中分别出现了锂离子通过固体电解质相界面膜(SEI膜)的迁移、材料的电子电导率、电荷传递过程相关的半圆,并详细分析了它们的变化规律。
     (2)采用水热合成的方法分别制备了α-Fe2O3/GNS、α-Fe2O3/CNTs复合材料和亚微米颗粒α-Fe2O3,系统研究了不同碳源对α-Fe2O3的形貌、结构和电化学性能影响。测试结果表明,α-Fe2O3/GNS和α-Fe2O3/CNTs电极有较高的可逆容量、倍率性能及在大电流下较长的循环寿命。复合材料电化学性能的提高归结于三个方面:一方面碳材料可以缓解由体积变化产生的应力及活性颗粒团聚现象;另一方面,复合材料具有的较大的表面积,使得电极/电解液接触充分;此外,碳材料可以提高电极的电子电导率。
     (3)采用水热法制备了空心纳米结构的α-Fe2O3。随着反应时间的延长,α-Fe2O3出现了从棒状到管状的演变过程。通过对这一系列产物进行表征,得出管状的形成是由棒状从两端开始“溶解”再结晶的过程,且“溶解”的方向是沿着[001]晶向指数(C轴)。采用了不同反应物浓度(PO43-)制备α-Fe2O3,随着PO43-浓度的减少,α-Fe2O3出现了从桶状到环状的演变过程。通过对这一系列产物进行表征,得出阴离子(PO43-和SO42-)对产物形貌的调控作用是有所差别的。即,PO43-易于控制前驱体生长,SO42-更倾向于加速α-Fe2O3的“溶解”过程。对所制备的α-Fe2O3进行了电化学性能测试,表明管状的α-Fe2O3有最好的电化学性能。经过65周循环之后,纳米管状的α-Fe2O3电极可逆容量为1131mAh/g,容量保持率在83%。且在不同充放电电流下,管状的α-Fe2O3具有较好可逆容量和倍率性能,这与其特殊结构密切相关。
     (4)采用水热法制备了Fe@Fe2O3核壳纳米颗粒与GNS、CNTs复合材料,Fe@Fe2O3/GNS电极在100mA/g下经过90周循环后,仍有959.3mAh/g的可逆容量,容量保持率在86.4%。在大电流密度下,经过280周循环后,Fe@Fe2O3/GNS电极的可逆容量仍然有515mAh/g。电化学阻抗谱测试结果显示,在首次嵌锂过程中,EIS的Nyquist图出现三个半圆,即高频区域的一个圆弧(HFA),中频区域的一个半圆(MFS)和低频区域的一个半圆(LFS),并对每部分的归属进行了探讨,详细分析了它们的变化规律。
     在100mA/g下经过60周循环后,Fe@Fe2O3/CNTs电极仍有702.7mAh/g的可逆容量。Fe@Fe2O3/CNTs电极具有较好的倍率性能,且在大电流充放电下,仍然具有较好的可逆容量。电化学阻抗谱测试结果显示,金属Fe和CNTs的存在有利于降低锂离子通过SEI膜和电荷传递电阻,进而使得Fe@Fe2O3/CNTs复合材料具有较好的电化学性能。
     (5)采用溶剂热合成的方法合成了Fe3O4-HSs和Fe3O4-HSs/CNTs复合材料。在100mA/g下,Fe3O4-HSs/CNTs电极循环70周后,可逆容量高达1153.8mAh/g,容量保存率在87.8%;在10.0A/g大电流下,Fe3O4-HSs/CNTs电极经过350周长周期循环后,可逆容量仍然能够保持在552.7mAh/g。
     采用水热、固相烧结的合成方法分别制备了Fe3O4/CNTs和Fe3O4/C复合材料。充放电测试显示:Fe3O4/CNTs、Fe3O4/C和商品化Fe3O4电极的首次放电容量分别为1421mAh/g、1651mAh/g和2104mAh/g,循环到55周时可逆容量分别为1030mAh/g、513mAh/g和280mAh/g。EIS测试表明,Fe3O4/CNTs电极在首次放电过程中,出现了高频区域与SEI膜相关的一个半圆,中频区域与电荷传递过程相关的一个半圆,低频区域与相变电阻相关的一个圆弧。
Simple transition metal oxides (such as MnO2、α-Fe2O3、Fe3O4、Cr2O3、Co3O4、MnO、Cu2O) have long been intensively investigated as possible candidates for thenext generation anode materials in lithium ion batteries (LIBs), because of their highreversible capacities (700mAh/g). Among the transition metal oxides, iron oxides(α-Fe2O3、Fe3O4) are extensively investigated as anode materials for LIBs due to theirhigh theoretical capacity, inexpensive materials and environment friendly, and so on.However, the conductivity of the iron oxides is low, and the lithiation of iron oxidesusually leads to huge volume changes, and consequently, resulting in poor cyclingstability and rate capability, which hamper the applications of iron oxides as the anodematerials. To circumvent these obstacles, the most common and effective method is tosynthesis of iron oxides/carbon composites and iron oxides with special morphologies.Based on the above two points, the different types of carbon materials were mixedwith iron oxides, and iron oxides with special morphologies were synthesized in thispaper, in order to search for anode materials of high density. The electrochemicalimpedance spectroscopy (EIS) techniques were used to explore the electrode kineticprocesses and the electrode interface performance. The main research content andresults are as follows:
     (1) The α-Fe2O3/C composites were prepared by high-temperature solid-statereaction. The structure and electrochemical performance of the composites werecharacterized by X-ray diffraction (XRD), scanning electron miscroscopy (SEM),charge/discharge test and electrochemical impedance spectroscopy (EIS). Theelectrochemical test results indicated that the α-Fe2O3/C composites showed areversible charge capacity of935.3mAh/g after50cycles, and had better cycleperformance compared with commercial α-Fe2O3. Electrochemical impedancespectroscopy test indicated that there appeared three semicircles respectivelyrepresenting the Li-ion migration in solid electrolyte interface film (SEI film),electrical conductivity and charge transfer in the first lithiation, and their evolutiveprinciples were also investigated.
     (2) The α-Fe2O3/GNS、α-Fe2O3/CNTs hybrid materials and α-Fe2O3microparticleswere synthesized by a facile hydrothermal method, respectively, and the carbon motifefforts on the morphology, structure and electrochemical performance were studiedsystematically. The results showed that the α-Fe2O3/GNS、α-Fe2O3/CNTs electrodes exhibited a large reversible capacity and rate capability, especially excellent long-lifecycling performance at a high current. The improvements can be due to the CNTs inthe3D network, which several functions, including1) alleviating the mechanicalstress caused by the severe volume change and preventing the aggregation betweenthe active materials;2) providing large reaction surface and favoring the efficientelectrode/electrolyte interface contact;3) increasing the electronic conductivity ofelectrodes by forming3D conductive network.
     (3) The α-Fe2O3hollow nanostructures were prepared by a facile hydrothermalmethod. As the reaction time increases, α-Fe2O3underwent an evolution fromspindlelike precursors to nanotubes. Based on evidence from the abovetime-dependent morphology evolution evidence, the formation process of thenanotubes can be proposed as taking place by “dissolution” of the spindle-likeprecursors from the tips toward the interior along the axis, resulting in rod-likecrystals, semi-nanotubes and eventually hollow nanotubes, which follows apreferential dissolution along the [001] direction of nanotubes (C axis). Furthermore,the experiments were conducted with a fixed mass of sulfate ions and ferric ions butvarious quantities of phosphate ions (PO43-), and a series of nanostructure includingshort nanotubes, very short nanotubes, and nanorings were obtained. The resultsshowed that the roles that phosphate and sulfate ions played in the formation of thehollow nanostructure should be different, namely, phosphate ions played a moreimportant role than sulfate ions in the formation of the precursors in the early stage ofα-Fe2O3formation process, while sulfate ions favored the dissolution of α-Fe2O3dueto their coordination effect with ferric ions, resulting in the formation of ananostructure with hollow interior. Electrochemical measurements indicated that theα-Fe2O3nanotubes showed the best electrochemical performance, that the α-Fe2O3nanotubes displayed a large reversible capacity of1131mAh/g at100mA/g after65cycles, which was83%retention of the first charge capacity. Addition, the α-Fe2O3nanotubes presented the highest lithium storage capacity and best rate capacity atvarious rates, due to its special structure.
     (4) The Fe@Fe2O3core-shell nanoparticles anchored on graphene or CNTs hadbeen firstly synthesized by using a facile hydrothermal reaction. The galvanostaticcycling test showed that the Fe@Fe2O3/graphene electrode displayed a reversiblecharge capacity of959.3mAh/g up to90cycles at a current density of100mA/g,which was86.4%retention of the first charge capacity. At high current of5C, the Fe@Fe2O3/graphene electrode remained at515mAh/g after280cycles. Furthermore,the first lithiation process of Fe@Fe2O3/graphene electrode was studied byelectrochemical impedance spectroscopy (EIS) at different potentials. There appearedthree semicircles respectively representing the Li-ion migration in solid electrolyteinterface film (SEI film) and contact problems, electrical conductivity and chargetransfer in the first discharge process, and the change of kinetic parameters forlithiation process of Fe@Fe2O3/graphene electrode as a function of potential wasdiscussed in detail.
     The results showed that the Fe@Fe2O3/CNTs electrode exhibited a reversiblecapacity of702.7mAh/g up to60cycles at a current density of100mA/g, whichdisplayed much rate capability, especially, a large reversible capacity at high current.EIS tests showed that the Fe@Fe2O3/CNTs electrode had much smaller SEI resistanceand charge-transfer resistance due to the CNTs and Fe metal in the Fe@Fe2O3/CNTscomposites, resulting in the improvement of the electrochemical performance of theFe@Fe2O3/CNTs composites.
     (5) The Fe3O4-HSs and Fe3O4-HSs/CNTs hybrid materials were synthesized bysolvothermal method, respectively. After70cycles, the Fe3O4-HSs/CNTs electrodeexhibited a reversible capacity of1153.8mAh/g, which was87.8%retention of thefirst reversible capacity. Even at10.0A/g, the reversible capacity of Fe3O4-HSs/CNTselectrode remained552.7mAh/g after350cycles.
     The Fe3O4/CNTs hybrid material was synthesized by hydrothermal reaction.Charge-discharge tests showed that the initial discharge was1421mAh/g forFe3O4/CNTs composites,1651mAh/g for Fe3O4/C composites and2194mAh/g forcommercial Fe3O4, and the reversible capacity was1030mAh/g for Fe3O4/CNTscomposites,513mAh/g for Fe3O4/C composites and280mAh/g for commercialFe3O4after55cycles. The main Nyquist characteristic of Fe3O4/CNTs electroderecorded by EIS showed both high and middle frequency region, and an arc in thelow-frequency region, which respectively representing the Li-ion migration in solidelectrolyte interface film (SEI film), charge transfer and phase transformation in thefirst lithiation.
引文
[1]于锋;敬杰;王昌胤;袁静;杨岩峰;宋广智,锂离子电池正极材料的晶体结构及电化学性能[J].化学进展,2010,22(1):9-18.
    [2]周恒辉;慈云祥;刘昌炎,锂离子电池电极材料研究进展[J].化学进展,1998,10(1):85-94.
    [3]张胜利;余仲宝;韩周祥,锂离子电池的研究与发展[J].电池工业,1999,4(l):26-28.
    [4] Whittingham, M. S., Electrical energy storage and intercalation chemistry [J]. Science,1976,192(4244):1126-1127.
    [5]Armand, M. B., Materials for advanced battery [M]. New York: Plenum press,1980.
    [6] Mizushima, K.; Jones, P. C.; Wiseman P. J.; Goodenough. J, B., LixCoO2(0    [7]郭炳坤;徐徽;王先友;肖立新,锂离子电池[M].长沙:中南大学出版社,2002.
    [8]郑洪河,锂离子电池电解质[M].北京:化学工业出版社,2007.
    [9] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M., Nano-sized transition-metaloxides as negative-electrode materials for lithium-ion batteries [J]. Nature,2000,407:496-499.
    [10] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M., Searching for new anodematerials for the Li-ion technology time to deviate from the usual path [J]. Journal of PowerSources,2001,97-98:235-239.
    [11] Debart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M., A transmission electronmicroscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium [J].Journal of The Electrochemical Society,2001,148(11):A1266-A1274.
    [12] Larcher, D.; Sudant, G.; Leriche, J. B.; Chabre, Y.; Tarascon, J. M., The electrochemicalreduction of Co3O4in a lithium cell [J]. Journal of The Electrochemical Society,2002,149(3):A234-A241.
    [13] Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarascon, J. M., On the origin ofthe extra electrochemical capacity displayed by MO/Li cells at low potential [J]. Journal ofThe Electrochemical Society,2002,149(5):A627-A634.
    [14] Poizot, P.; Laruelle, S.; Grugeon, S.; Tarascon, J. M., Rationalization of the low-potentialreactivity of3d-metal-based inorganic compounds toward li [J]. Journal of The ElectrochemicalSociety,2002,149(9):A1212-A1217.
    [15] Fu, Z. W.; Wang, Y.; Yue, X. L.; Zhao, S. L.; Qin, Q. Z., Electrochemical reactions of lithium withtransition metal nitride electrodes [J]. Journal of Physical Chemistry B,2004,108:2236-2244.
    [16] Wang, Y.; Fu, Z. W.; Yue, X. L.; Qin, Q. Z., Electrochemical reactivity mechanism of Ni3N withlithium [J]. Journal of The Electrochemical Society,2004,151(4): E162-E167.
    [17]陈敬波;胡国荣;彭忠东;陈艳玲;桂阳海,锂离子电池氧化物负极材料研究进展[J].电池,2003,33(3):183-186.
    [18]张颖;张海芳;韩恩山;汪大云,锂离子电池氧化物负极材料的研究进展[J].无机盐工业,2009,41(1):1-4.
    [19] Maier, J., Nanoionics: ion transport and electrochemical storage in confined systems [J]. NatureMaterials,2005,4:805-815.
    [20] Jamnik, J.; Maier, J., Nanocrystallinity effects in lithium battery materials [J]. Physical ChemistryChemical Physics,2003,5:5215-5220.
    [21]Armand, M.; Tarascon, J. M., Buiding better batteries [J]. Nature,2008,451:652-657.
    [22] Gao, X. P.; Yang, H. X., Multi-electron reaction materials for high energy density batteries [J].Energy&Environmental Science.2010,3(2):174-189.
    [23] Hochbaum, A. H.; Yang, P. D., Semicaonductor nanowires for energy conversion [J]. ChemicalReviews,2010,110(1):527-546.
    [24] Vasquez, Y.; Henkes, A. E.; Bauer, J. C.; Schaak, R. E., Nanocrystal conversion chemistry: Aunified and materials-general strategy for the template-based synthesis of nanocrystalline solids[J]. Journal of Solid State Chemistry,2008,181:1509-1523.
    [25] Henkes, A. E.; Schaak, R. E., Trioctyphosphine: A general phosphorus source for thelow-temperature conversion of metals into metal phosphides [J]. Chemistry of Materials,2007,19(17):4234-4242.
    [26] Cai, C.; Wang, Y., Novel nanocomposites materials for advanced li-ion rechargeable batteries [J].Materials,2009,2:1205-1238
    [27] Zhang, H.; Zhou, Y. N.; Sun, Q.; Fu, Z. W., Nanostructured nickel fluoride thin film as a new listorage material [J]. Solid State Sciences,2008,10(9):1166-1172.
    [28] Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V., Nanostructured materialsfor advanced energy conversion and storage devices [J]. Nature Materials,2005,4:366-377.
    [29]王欣;王先友;伍文;王国宝;曹俊棋,锂二次电池金属氟化物正极材料研究进展[J].电池技术,2009,33(3):231-235.
    [30] Conway, B. E., Two-dimensional and quasi-two-dimensional isotherms for li intercalation and updprocesses at surfaces [J]. Electrochimica Acta,1993,38(9):1249-1258.
    [31] Engelsmann. K.; Lorenz, W. J.; Schmidt, E., Underpotential deposition of lead on polycrystallineand single-crystal gold surfaces [J]. Journal of Electroanalytical Chemistry,1980,144:1-10.
    [32] Beaulieu, L. Y.; Larcher, D.; Dunlap, R. A.; Dahn, J. R., Reaction of li with grain-boundary atomsin nanostructured compounds [J]. Journal of Electrochemical Society,2000,147(9):3206-3212.
    [33] Yamakawa, N.; Jiang, M.; Key, B.; Grey, C. P., Indentifying the local structures formed duringlithiation of the conversion materials, iron fluoride, in a li ion battery: a solid-state nmr, x-raydiffraction, and pair distribution function analysis study [J]. Journal ofAmerican Chemical Society,2009,131:10525-10536.
    [34] Grugeon, S.; Laruelle, S.; Urbina, R. H; Dupont, L.; Poizot, P.; Tarascon, J. M., Particle sizeeffects on the electrochemical performance of copper oxides toward lithium [J]. Journal ofElectrochemical Society,2001,148(4):A285-A292.
    [35] Kim, M. G.; Cho, J., Reversible and high-capacity nanostructured electrode materials for li-ionbatteries [J].Advanced Functional Materials,2009,19:1497-1514.
    [36] Liao, P.; MacDonald, B. L.; Dunlap, R. A., Combinatorially prepared [LiF]1-xFexnanocompositesfor positive electrode materials in li-ion batteries [J]. Chemistry of Materials,2008,20:454-461.
    [37] Cosandey, F.; Al-Sharab, J. F.; Badway, F.; Amatucci, G. G.; Stadelmann, P., EELS spectroscopyof iron fluorides and FeFx/C nanocomposites electrodes used in li-ion batteries [J]. Microscopyand Microanalysis,2007,13:87-95.
    [38] Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M., Form the vanadates to3d-metaloxides negative electrodes [J]. Ionics,2000,6:321-330.
    [39] Zhou, Y. N.; Liu, W. Y.; Xue, M. Z.; Yu, L.; Wu, C. L.; Wu, X. J.; Fu, Z. W., LiF/Conanocomposites as a new li storage material [J]. Electrochemical and Solid-State Letters,2006,9(3):A147-A150.
    [40] Zhou, Y. N.; Wu, C. L.; Zhang, H.; Wu, X. J.; Fu, Z. W., The electrochemical properties of LiF-Ninanocomposites thin film [J].Acta Physico-Chimical Sinica,2006,22(9):1111-1115.
    [41] Boyanaov, S.; Annou, K.; Villevieille, C.; Pelosi, M.; Zitoun, D.; Monconduit, L., Nanostructuredtransition metal phosphide as negative electrode for lithium-ion batteries [J]. Ionics,2008,14:183-190.
    [42] Zhukovskii, Y. F.; Kotomin, E. A.; Balaya, P.; Maier, J., Enhanced interfacial lithium storage innano composites of transition metals with LiF and Li2O: Comparison of DFT calculations andexperimental studies [J]. Solid State Sciences,2008,10:491-495.
    [43] Pralong, V.; Souza, D. C. S.; Leung, K. T.; Nazar, L. F., Reversible lithium uptake by CoP3at lowpotential: role of the anion [J]. Electrochemistry Communnications,2002,4:516-520.
    [44] Jiang, C. H.; Hosono, E.; Zhou, H. S., Nanomaterials for lithium ion batteries [J]. Nano Today,2006,1(4):28-33.
    [45]李泓;王兆翔;黄学杰;陈立泉,锂离子电池中的尺寸效应与表界面问题研究[J].物理,2008,37(6):416-420.
    [46] Amatucci, G. G.; Pereira, N., Fluoride based electrode materials for advanced energy storagedevices [J]. Journal of Fluorine Chemistry,2007,128:243-262.
    [47] Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries [J].Nature,2001,414(6861):359-367.
    [48] Laik, B.; Poizot, P.; Tarascon, J. M., The electrochemical quartz crystal microbalance as a meansfor studying the reactivity of Cu2O toward lithium [J]. Journal of The Electrochemical Society,2002,149(3):A251-A255.
    [49] Morcrette, M.; Pozier, P.; Dupont, L.; Mugnier, E.; Sannier, L.; Galy, J.; Tarascon, J. M., Areversible copper extrusion-insertion electrode for rechargeable li batteries [J]. Nature Materials,2003,2(11):755-761.
    [50] Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M.,Effect of particle size on lithium intercalation into α-Fe2O3[J]. Journal of The EletrochemicalSociety,2003,150(1):A133-A139.
    [51] Dedryvere, R.; Laruell,e S.; Grugeon, S.; Poizot, P.; Gonbeau, D.; Tarascon, J. M., Contribution ofx-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO towardlithium [J]. Chemistry of Materials,2004,16(6):1056-1061.
    [52] Grugeon, S.; Laruelle, S.; Dupont, L.; Chevallier, F.; Taberna, P. L.; Simon, P.; Gireaud, L.;Lascaud, S.; Vidal, E.; Yrieix, B.; Tarascon, J. M., Combining electrochemistry and metallurgy fornew electrode designs in li-ion batteries [J]. Chemistry of Materials,2005,17(20):5041-5047.
    [53] Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M., High rate capabilities Fe3O4-basedCu nano-architectured electrodes for lithium-ion battery applications [J]. Nature Materials,2006,5(7):567-573.
    [54] Wu, M. S.; chiang, P. C. J.; Lee, J. T.; Lin, J. C., Synthesis of manganese oxide electrodes withinterconnected nanowire structure as an anode material for rechargeable lithium ion batteries [J].Journal of Physical Chemistry B,2005,109(49):23279-23284.
    [55] Liu, D.; Zhang, Q. F.; Xiao, P.; Garcia, B. B.; Guo, Q.; Champion, R.; Cao, G. Z., Hydrousmanganese dioxide nanowall arrays growth and their Li+ions intercalation electrochemicalproperties [J]. Chemistry of Materials,2008,20(4):1376-1382.
    [56] Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L., α-Fe2O3nanotubes in gas sensor and lithium-ion batteryapplications [J].Advanced Materials,2005,17(5):582-586.
    [57] Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Rao, G. V. S.; Chowdari, B. V. R.,α-Fe2O3nanoflakes as an anode material for li-ion batteries [J]. Advanced Functional Materials,2007,17(15):2792-2799.
    [58] Cui, Z. M.; Jiang, L. Y.; Song, W. G.; Guo, Y. G., High-yield gas-liquid interfacial synthesis ofhighly dispersed Fe3O4nanocrystals and their application in lithium-ion batteries [J]. Chemistry ofMaterials,2009,21(6):1162-1166.
    [59] Nam, K. T.; Kim, D. W.; Yoo, P. J.; Chiang, C. Y.; Meethong, N.; Hammond, P. T.; Chiang, Y. M.;Belcher, A. M., Virus-enabled synthesis and assembly of nanowires for lithium ion batteryelectrodes [J]. Science,2006,312(5775):885-888.
    [60] Li, W. Y.; Xu, L. N.; Chen, J., Co3O4nanomaterials in lithium-ion batteries and gas sensors [J].Advanced Functional Materials,2005,15(5):851-857.
    [61] Wang, Y.; Fu, Z. W.; Qin, Q. Z., A nanocrystalline Co3O4thin film electrode for li-ion batteries [J].Thin Solid Films,2003,441(1-2):19-24.
    [62] Yuan, L.; Guo, Z. P.; Konstantinov, K.; Munroe, P.; Liu, H. K., Spherical clusters of NiOnanoshafts for lithium-ion battery [J]. Electrochemical and Solid-State Letters,2006,9(11):A524-A528.
    [63] Needham, S. A.; Wang, G. X.; Liu, H. K., Syntheisi of NiO nanotubes for use as negativeelectrodes in lithium ion batteries [J]. Journal of Power Sources,2006,159(1):254-257.
    [64] Alcantara, R.; Jaraba, M.; Lavela, P.; Tirado, J. L.; Jumas, J. C.; Olivier-Fourcade, J., Changes inoxidation state and magnetic order of iron atoms during the electrochemical reaction of lithiumwith NiFe2O4[J]. Electrochemistry Communications,2003,5(1):16-21.
    [65] Wang, C.; Wang, D. L.; Dai, C. S., High-rate capability and enhanced cyclability of rechargeablelithium batteries using foam lithium anode [J]. Journal of The Electrochemical Society,2006,9(8):A390-A394.
    [66] Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R., Li-storage and cyclability of ureacombustion derived ZnFe2O4as anode for li-ion batteries [J]. Electrochimica Acta,2008,53(5):2380-2385.
    [67] Sharma, Y.; Sharma, N.; Rao, G. V. S.; Chowdari, B. V. R., Nanophase ZnCo2O4as a highperformance anode material for li-ion batteries [J]. Advanced Functional Materials,2007,17(5):2855-2861.
    [68] Lavela, P.; Ortiz, G. F.; Tirado, J. L.; Zhecheva, E.; Stoyanova, R.; Ivanova, S., High-performancetransition metal mixed oxides in conversion electrodes: A combined spectroscopic andelectrochemical study [J]. Journal of Physical Chemistry C,2007,111(38):14238-14246.
    [69] Pietro, B. D.; Patriarca, M.; Scrosati, B., On the use of rocking chair configurations for cyclablelithium organic electrolyte batteries [J]. Journal of Power Sources,1982,8(2):289-299.
    [70] Thackeray, M. M.; David, W. I. F.; Goodenough, J. B., Structural characterization of the lithiatediron oxides LixFe3O4and LixFe2O3(0    [71] Morzilli, S.; Scrosati, B.; Sgarlata, F., Iron oxide electrodes in lithium organic electrolyterechargeable batteries [J]. Electrochimical Acta,1985,30(10):1271-1288.
    [72] Abraham, K. M.; Pasquariello, D. M.; Willstaedt, E. B., Preparation and characterization of somelithium insertion anodes for secondary lithium batteries [J]. Journal of The ElectrochemicalSociety,1990,137(3):743-749.
    [73] Jain, G.; Balasubramanian, M.; Xu, J. J., Structural studies of lithium intercalation in a nanocrystalline α-Fe2O3compound [J]. Chemistry of Materials,2006,18:423-434.
    [74] Nuli, Y. N.; Zeng, R.; Zhang, P.; Guo, Z. P.; Liu, H. K., Controlled synthesis of α-Fe2O3nanostructures and their size-dependent electrochemical properties for lithium-ion batteries [J].Journal of Power Sources,2008,184:456-461.
    [75] Liu, H.; Wang, G. X.; Park, J.; Wang, J. Z.; Liu, H. K.; Zhang, C., Electrochemical performance ofα-Fe2O3nanorods as anode material for lithium-ion cells [J]. Electrochimica Acta,2009,54(6):1733-1736.
    [76] Chun, L.; Wu, X. Z.; Lou, X. M.; Zhang, Y. X., Hematite nanoflakes as anode electrode materialsfor rechargeable lithium-ion batteries [J]. ElectrochimicaActa,2010,55(9):3089-3092.
    [77] Muraliganth, T.; Murugan, A. V.; Manthiram, A., Facile synthesis of carbon-decoratedsingle-crystalline Fe3O4nanowires and their application as high performance anode in lithium-ionbatteries [J]. Chemical Communication,2009,7360:7360-7362.
    [78] Piao, Y.; Kim, H. S.; Sung, Y. E.; Hyeon, T., Facile scalable synthesis of magnetite nanocrystalsembedded in carbon matrix as superior anode materials for lithium-ion batteries [J]. ChemicalCommunnication,2010,46:118-120.
    [79] Liu, H.; Wang, X. L.; Hu, J. S.; Wexler, D., Magnetite/carbon core-shell nanorods as anodematerials for lithium-ion batteries [J]. Electrochemistry Communnications,2008,10:1879-1882.
    [80] Wang, F. B.; Chen, J.; Huang, K. L.; Lu, S. Q., Preparation and electrochemical performance ofspherical Fe3O4as anode materials for Li-ion batteries [J]. Science in China Series E:Technological Sciences,2009,52(11):3219-3223.
    [81] Chen, Y. X.; He, L. H.; Shang, P. J.; Tang, Q. L.; Liu, Z. Q.; Liu, H. B.; Zhou, L. P., Micro-sizedand nano-sized Fe3O4particles as anode materials for lithium-ion batteries [J]. Journal ofMaterials Science and Technology,2011,27(1):41-45.
    [82] Gao, M. X.; Zhou, P.; Wang, P.; Wang, J. H.; Liang, C.; Zhang, J. L.; Liu, Y. F., FeO/C anodematerials of high capacity and cycle stability for lithium-ion batteries synthesized by carbothermalreduction [J]. Journal ofAlloys and Compounds,2013,565:97-103.
    [83] Zhao, X. Y.; Xia, D. G.; Zheng, K., An Fe3O4-FeO-Fe@C composites and its application as anodefor lithium-ion battery [J]. Journal ofAlloys and Compounds,2012,513:460-465.
    [84] Shaju, K. M.; Jiao, F.; Debart, A.; Bruce, P. G., Mesoporous and nanowire Co3O4as negativeelectrodes for rechargeable lithium batteries [J]. Physical Chemistry Chemical Physics,2007,9:1837-1842.
    [85] Li, C. C.; Yin, X. M.; Chen, L. B.; Li, Q. H.; Wang, T. H., Synthesis of cobalt ion-basedcoordination polymer nanowires and their conversion into porous Co3O4nanowires with goodlithium storage properties [J]. Chemistry-A European Journal,2010,16:5215-5221.
    [86] Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N., Synthesis andlithium storage properties of Co3O4nanosheet-assembled multishelled hollow spheres [J].Advanced Functional Materials,2010,20:1680-1686.
    [87] Guo, B.; Li, C. S.; Yuan, Z. Y., Nanostructured Co3O4materials: synthesis, characterization, andelectrochemical behaviors as anode reactants in rechargeable lithium ion batteries [J]. The Journalof Physical Chemistry C,2010,114(29):12805-12817.
    [88] Ikeda, H.; Narukawa, S., Behaviour of various cathode materials for nonaqueous lithium cells [J].Journal of Power Sources,1983,9:329-334.
    [89] Mauvernay, B.; Bichat, M. P.; Favier, F.; Monconduit, L.; Morcrette, M.; Doublet, M. L., Progressin the lithium insertion mechanism in CuP [J]. Ionics,2005,11:36-45.
    [90] Novak, P., CuO cathode in lithium cess [J]. Electrochimica Acta,1985,30(12):1687-1692.
    [91] Wang, S. Q.; Zhang, J. Y.; Ding, N.; Chen, C. H., Synthesis of nanobelt-tangled spheroids ofcopper (Ⅱ) oxide at room temperature and their application for lithium-ion batteries [J]. ScriptaMaterialia,2009,60(12):1117-1120.
    [92] Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M., An update on the reactivity of nanoparticlesCo-based compounds towards Li [J]. Solid State Sciences,2003,5:895-904.
    [93] Dupont, L.; Grugeon, S.; Laruelle, S.; Tarascon, J. M., Structure, texture and reactivity versuslithium of chromium-based oxides films as revealed by TEM investigations [J]. Journal of PowerSources,2007,164:839-848.
    [94] Dupont, L.; Laruelle, S.; Grugeon, S.; Dickinson, C.; Zhou, W.; Tarascon, J. M., MesoporousCr2O3as negative electrode in lithium batteries: TEM study of the texture effect on the polymericlayer formation [J]. Journal of Power Sources,2008,175(1):502-509.
    [95] Arai, H.; Okada, S.; Sakurai, Y.; Yamaki, J. I., Cathode performance and voltage estimation ofmetal trihalides [J]. Journal of Power Sources,1997,68:716-719.
    [96] Li, H.; Balaya, P.; Maier, J., Li-storage via heterogeneous reaction in selected binary metalfluorides and oxides [J]. Journal of Electrochemical Society,2004,151(11): A1878-A1885.
    [97] Badway, F.; Cosandey, F.; Pereira, N.; Amatucci G. G., Carbon metal fluoride nanocompositeshigh-capacity reversible metal fluoride conversion materials as rechargeable positive electrodesfor li batteries [J]. Journal of Electrochemical Society,2003,150(10): A1318-A1327.
    [98] Badway, F.; Pereira, N.; Cosandey, F.; Amatucci, G. G., Carbon-metal fluoride nanocompositesstructure and electrochemical of FeF3: C [J]. Journal of Electrochemical Society,2003,150(9):A1209-A1218.
    [99] Makimura, Y.; Rougier, A.; Laffont, L.; Womes, M.; Jumas, J. C.; Leriche, J. B.; Tarascon, J. M.,Electrochemical behavior of low temperature grown iron fluoride thin films [J]. ElectrochemistryCommunications,2006,8:1769-1774.
    [100] Li, T.; Li, L.; Cao, Y. L.; Ai, X. P.; Yang, H. X., Reversible three-electron redox behaviors of FeF3nanocrystals as high-capacity cathode-active materials for li-ion batteries [J]. Journal of PhysicalChemistry C,2010,114(7):3190-3195.
    [101] Doe, R. E.; Persson, K. A.; Meng, Y. S.; Ceder, G., First-principles investigation of the Li-Fe-Fphase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides withlithium [J]. Chemistry of Materials,2008,20:5274-5283.
    [102] Fu, Z. W.; Li, C. L.; Liu, W. Y.; Ma, J.; Wang, Y.; Qin, Q. Z., Electrochemical reaction of lithiumwith cobalt fluoride thin film electrode [J]. Journal of The Electeochemical Society,2005,152(2):E50-E55.
    [103] Ma, J.; Liu, W. Y.; Li, C. L.; Fu, Z. W., Electrochemical and quantum chemical studies of thereactions of transition metals M (M=Co, Fe and Ni) with LiF and Li2O [J]. Electrochimica Acta,2006,51(10):2030-2041.
    [104] Badway, F.; Mansour, A. N.; Pereira, N.; Al-Sharab, J. F.; Cosandey, F.; Plitz, I.; Amatucci, G. G.,Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conductingmatrices [J]. Chemistry of Materials,2007,19(17):4129-4141.
    [105]张华;周永宁;吴晓京;傅正文,脉冲激光沉积CuF2薄膜的电化学性能[J].物理化学学报,2008,24(7):1287-1291.
    [106] Buqa, H.; Wursig, A.; Vetter, J.; Spahr, M. E.; Krumeich, F.; Novak, P., SEI film formation onhighly crystalline graphitic materials in lithium-ion batteries [J]. Journal of Power Sources,2006,153(2):385-390.
    [107] Fiordiponti, P.; Panero, S.; Pistoia, G.; Temperoni, C., Nonaqueous batteries with BiF3cathodes [J]. Journal of Electrochemical Society,1978,125(4):511-515.
    [108] Bervas, M.; Badway, F.; Klein, L. C.; Amatucci, G. G., Bismuth fluoride nanocomposites as apositive electrode material for rechargeable lithium batteries [J]. Electrochemical and Solid-StateLetters,2005,8(4):A179-A183.
    [109] Li, H.; Richter, G.; Maier, J., Reversible Formation and decomposition of LiF clusters usingtransition metal fluorides as precursors and their application in rechargeable li batteries [J].Advanced Materials,2003,15(9):736-739.
    [110] Souza, D. C. S.; Pralong, V.; Jacobson, A. J.; Nazar, L. F., A reversible solid-state crystallinetransformation in a metal phosphide induced by redox chemistry [J]. Science,2002,296:2012-2015.
    [111] Boyanov, S.; Womes, M.; Jumas, J. C.; Monconduit, L.,57Fe m ssbauer study of theelectrochemical reaction of Li with FePy(y=1,2)[J]. Hypwefine Interact,2008,187:57-69.
    [112] Silva, D. C. C.; Crosnier, O.; Ouvrard, G.; Greedan, J.; Safa-Sefat, A.; Nazar, L. F., Reversiblelithium uptake by FeP2[J]. Electrochemical and Solid-State Letters,2003,6(8):A162-A165.
    [113] Boyanov, S.; Zitoun, D.; Menetrier, M.; Jumas, J. C.; Womes, M.; Monconduit, L., Comparisonof the electrochemical lithiation/delithiation mechanis of FePx(x=1,2,4) based electrodes inli-ion batteries [J]. Journal of Physical Chemistry C,2009,113(51):21441-21452.
    [114] Gillot, F.; Boyanov, S.; Dupont, L.; Doublet, M. L.; Morcrette, M.; Monconduit, L.; Tarascon, J.M., Electrochemical reactivity and design of NiP2negative electrodes for secondary li-ionbatteries [J]. Chemistry of Materials,2005,17:6327-6337.
    [115] Leon, B.; Corredor, J. I.; Tirado, J. L.; Perez-Vicente, C., On the mechanism of theelectrochemical reaction of tin phosphide with lithium [J]. Journal of Electrochemical Society,2006,153(10):A1829-A1834.
    [116] Zhou, W. C.; Yang, H. X.; Shao, S. Y.; Ai, X. P.; Cao, Y. L., Superior high rate capability of tinphosphide used as high capacity anode for aqueous primary batteries [J]. ElectrochemistryCommunication,2006,8(1):55-59.
    [117] Kim, Y. U.; Lee, C. K.; Sohn, H. J.; Kang, T., Reaction mechanism of tin phosphide anode bymechanochemical method for lithium secondary batteries [J]. Journal of Electrochemical Society,2004,151: A933-A937.
    [118] Kim, Y.; Hwang, H.; Yoon, C. S.; Kim, M. G.; Cho, J., Reversible lithium intercalation inteardrop-shaped ultrafine SnP0.94particles: an anode materials for lithium-ion batteries [J].Advanced Materials,2007,19:92-96.
    [119] Kim, Y. U.; Lee, S. I.; Lee, C. K.; Sohn, H. J., Enhancement of capacity and cycle-life of Sn4+δP3(0≤δ≤1) anode for lithium secondary batteries [J]. Journal of Power Sources,2005,141(1):163-166.
    [120] Wu, J. J.; Fu, Z. W., Pulsed-laser-deposited Sn4P3electrodes for lithium-ion batteries [J]. Journalof The Electrochemical Society,2009,156(1):A22-A26.
    [121] Gillot, F.; Monconduit, L.; Morcrette, M.; Doublet, M. L.; Dupont, L.; Tarascon, J. M., On thereactivity of Li8-yMnyP4toward lithium [J]. Chemistry of Materials,2005,17:3627-3635.
    [122] Zhang, Z. S.; Yang, J.; Nuli, Y. N.; Wang, B. F.; Xu, J. Q., CoPxsynthesis and lithiation byball-milling for anode materials of lithium ion cell [J]. Solid State Ionics,2005,176(7-8):693-697.
    [123] Alcantara, R.; Tirado, J. L.; Jumas, J. C.; Monconduit, L.; Olivier-Fourcade, J., Electrochemicalreaction of lithium with CoP3[J]. Journal of Power Sources,2002,109:308-312.
    [124] Mauvernay, B.; Doublet, M. L.; Monconduit, L., Redox mechanism in binary transition metalphosphide Cu3P [J]. Journal of Physics Chemistry of Solids,2006,67:1252-1257.
    [125] Mauvernay, B.; Bichat, M. P.; Favier, F.; Monconduit, L.; Morcrette, M.; Doublet, M. L.,Progress in the lithium insertion mechanism in Cu3P [J]. Ionics,2005,11:36-45.
    [126] Wang, K.; Yang, J.; Xie, J. Y.; Wang, B. F.; Wen, Z. S., Electrochemical reactions of lithium withCuP2and Li1.75Cu1.25P2synthesized by ballmilling [J]. Electrochemistry Communications,2003,5:480-483.
    [127] Pfeiffer, H.; Tancret, F.; Bichat, M. P.; Monconduit, L.; Favier, F.; Brousse, T., Air stable copperphosphide (Cu3P): a possible negative electrode material for lithium batteries [J].Electrochemistry Communication,2004,6(3):263-267.
    [128] Bichat, M. P.; Pascal, J. L.; Gillot, F.; Favier, F., Electrochemical lithium insertion in Zn3P2zincphosphide [J]. Journal of Physics and Chemistry Solids,2006,67:1233-1237.
    [129] Hwang, H.; Kim, M. G.; Kim, Y.; Martin, S. W.; Cho, J., The electrochemical lithium reactions ofmonoclinic ZnP2material [J]. Journal of Materials Chemistry,2007,17:3161-3166.
    [130] Woo, S. G.; Jung, J. H.; Kim, H.; Kim, M. G.; Lee, C. K.; Sohn, H. J.; Cho, B. W.,Electrochemical characteristics of Ti-P composites prepared by mechanochemical synthesis [J].Journal of The Electrochemical Society,2006,153(10):A1979-A1983.
    [131] Gillot, F.; Bichat, M. P.; Favier, F.; Morcrette, M.; Doublet, M. L.; Monconduit, L., The LixMPn4phases (M/Pn=Ti/P, V/As): new negative electrode materials for lithium ion rechargeablebatteries [J]. Electrochimical Acta,2004,49:2325-2332.
    [132] Bichat, M. P.; Gillot, F.; Monconduit, L.; Favier, F.; Morcrette, M.; Lemoigno, F.; Doublet, M. L.,Redox-induced structural change in anode materials based on tetrahedral (MPn4)x-transitionmetal pnictides [J]. Chemistry of Materials,2004,16(6):1002-1013.
    [133] Cabana, J.; Monconduit, L.; Larcher, D.; Palacin, M. R., Beyond intercalation-based li-ionbatteries: The state of the art and challenges of electrode materials reacting through conversionreactions [J]. Advanced energy Materials,2010,22(35): E1-E23.
    [134] Bichat, M. P.; Politova, T.; Pascal, J. L.; Favier, F.; Monconduit, L., Electrochemical reactivity ofCu3P with lithium [J]. Journal of The Electrochemical Society,2004,151(12):A2074-A2081.
    [135] Boyanov, S.; Bernardi, J.; Bekaert E.; Menetrier, M.; Doublet, M. L.; Monconduit, L., P-redoxmechanism at the origin of the high lithium storage in NiP2[J]. Chemistry of Materials,2009,21:298-308.
    [136] Hayashi, A.; Inoue, A.; Tatsumisago, M., Electrochemical performance of NiP2negativeelectrodes in all-solid state lithium secondary batteries [J]. Journal of Power Sources,2009,189(1):669-671.
    [137] Boyanov, S.; Gillot, F.; Monconduit, L., The electrochemical reactivity of the NiP3skutterudite-type phase with lithium [J]. Ionics,2008,14:125-130.
    [138] Boyanov, S.; Bernardi, J.; Gillot, F.; Dupont, L.; Womes, M.; Tarascon, J. M.; Monconduit, L.;Doublet, M. L., FeP: Another attractive anode for the li-ion battery enlisting a reversible two-stepinertion/conversion process [J]. Chemistry of Materials,2006,18:3531-3538.
    [139] Julien, C. M., Lithium intercalated compounds–charge transfer and related properties [J].Materials Science&Engineering R,2003,40:47-102.
    [140] Wang, Q.; Li, J. H., Facilitated lithium storage in MoS2overlayers supported on coaxial carbonnanotubes [J]. The Journal of Physical Chemistry C,2007,111:1675-1682.
    [141] Li, H.; Li, W. J.; Ma, L.; Chen, W. X.; Wang, J. M., Electrochemical lithiation/delithiationperformances of3D flowerlike MoS2powders prepared by ionic liquid assisted hydrothermalroute [J]. Journal ofAlloys and Compounds,2009,471:442-447.
    [142] Feng, C. Q.; Ma, J.; Li, H.; Zeng, R.; Guo, Z. P.; Liu, H. K., Synthesis of molybdenum disulfide(MoS2) for lithium ion battery applications [J]. Materials Research Bulletin,2009,44:1811-1815.
    [143] Wang, G. X.; Bewlay, S.; Yao, J.; Liu, H. K.; Dou, S. X., Tungsten disulfide nanotubes forlithium storage [J]. Electrochemical and Solid-State Letters,2004,7(10):A321-A323.
    [144] Han, S.; Kim, H.; Song, M.; Lee, P. S.; Lee, J.; Ahn, H., Electrochemical properties of NiS as acathode material for rechargeable lithium batteries prepared by mechanical alloying [J]. JournalofAlloys and Compounds,2003,349:290-296.
    [145] Ling, C. C.; Barnette, L. H., A high energy density solid-state battery system [J]. Journal of TheElectrochemical Society,1976,123(4):453-458.
    [146] Dusheiko, V. A.; Lipkin, M. S., Synthesis of sulfide cathodic materials and study of theirphysicochemical properties and electrochemical activity [J]. Journal of Power Sources,1995,54:264-267.
    [147] Gabano, J. P.; Dechenaux, V.; Gerbier, G.; Jammet, J., D-size lithium cupric sulfide cells [J].Journal of The Electrochemical Society,1972,19:459.
    [148] Kaun, T. D.; Nelson, P. A.; Redey, L.; Vissers, D. R.; Henriksen, G. L., High temperaturelithium/sulfide batteries [J]. Electrochimica Acta,1993,38(9):1269-1287.
    [149] Preto, S. K.; Tomczuk, Z.; Winbush, S.; Roche, M. F., Reactions of FeS2, CoS2, and NiS2electrodes in molten LiCl-KCl electrolytes [J]. Journal of The Electrochemical Society,1983,130(2):264-273.
    [150] Henriksen, G. L.; Vissers, D. R., Lithium-aluminum/iron sulfide batteries [J]. Journal of PowerSources,1994,51(1-2):115-128.
    [151] Fong, R.; Dahn, J. R.; Jones, C. H. W., Electrochemistry of pyrite-based cathodes for ambienttemperature lithium batteries [J]. Journal of The Electrochemical Society,1989,136(11):3206-3210.
    [152] Brec, R.; Prouzet, E.; Ouvrard, G., Redox processes in the LixFeS2/Li electrochemical systemstudied through crystal, Mossbauer, and EXAFS analyses [J]. Journal of Power Sources,1989,26(3-4):325-332.
    [153] Fong, R.; Jones, C. H. W.; Dahn, J. R., A study of pyrite-based cathodes for ambient temperaturelithium batteries by in situ57Mossbauer spectroscopy [J]. Journal of Power Sources,1989,26(3-4):333-339.
    [154] Tryk, D. A.; Kim, S.; Hu, Y. N.; Xing, W. N.; Scherson, D. A.; Antonio, M. R.; Leger, V. Z.;Blomgren, G. E., Electrochemical inertion of lithium into pyrite from nonaqueous electrolytes atroom temperature: An in situ Fe K-edge X-ray absorption fine structure study [J]. Journal ofPhysical Chemistry,1995,99(11):3732-3735.
    [155] Strauss, E.; Golodnitsky, D.; Peled, E., Study of phase changes during500full cycles ofLi/composites polymer electrolyte/FeS2battery [J]. Electrochimmica Acta,2000,45:1519-1525.
    [156] Kim, B. C.; Takada, K.; Ohta, N.; Seino, Y.; Zhang, L. Q.; Wada, H.; Sasaki, T., All solid stateLi-ion secondary battery with FeS anode [J]. Solid State Ionics,2005,176:2383-2397.
    [157] Takada, K.; Lwamoto, K.; Kondo, S., Lithium iron sulfide as an electrode material in a solid statelithium battery [J]. Solid State Ionics,1999,117:273-276.
    [158] Yan, J. M.; Huang, H. Z.; Zhang, J.; Liu, Z. J.; Yang, Y., A study of novel anode material CoS2forlithium ion battery [J] Journal of Powe Sources,2005,146:264-269.
    [159] Wang, J.; Ng, S. H.; Wang, G. X.; Chen, J.; Zhao, L.; Chen, Y.; Liu, H. K., Synthesis andcharacterization of nanosize cobalt sulfide for rechargeable lithium batteries [J]. Journal of PowerSources,2006,159:287-290.
    [160] Debart, A.; Dupont, L.; Patrice, R.; Tarascon, J. M., Reactivity of transition metal (Co, Ni, Cu)sulphides versus lithium: The intriguing case of the copper sulphide [J]. Solid State Sciences,2006,8:640-651.
    [161] Dampier, F. W., Insoluble sulfide positive electrodes for organic electrolyte lithium secondarybatteries [J]. Journal of The Electrochemical Society,1981,128(12):2501-2506.
    [162] Han, S.; Kim, H.; Song, M.; Kim, J.; Ahn, H.; Lee, J., Nickel sulfide synthesized by ball millingas an attractive cathode material for rechargeable batteries [J]. Journal of Alloys and Compounds,2003,351:273-278.
    [163] Wang, J.; Chew, S. Y.; Wexler, D.; Wang, G. X.; Ng, S. H.; Zhong, S.; Liu, H. K., Nanostructurednickel sulfide synthesized via a polyol route as a cathode material for rechargeable lithiumbattery [J]. Electrochemistry Communications,2007,9:1877-1880.
    [164] Nishion, Y.; Kitaura, H.; Hayashi, A.; Tatsumisago, M., All-solid-state lithium secondary batteriesusing nanocomposites of NiS electrode/Li2S-P2S5electrolyte prepared via mechanochemicalreaction [J]. Journal of Power Sources,2009,189:629-632.
    [165] Zhu, X. J.; Wen, Z. Y.; Gu, Z. H.; Huang, S. H., Room-temperature mechanosynthesis of Ni3S2ascathode material for rechargeable lithium polymer batteries [J]. Journal of The ElectrohemicalSociety,2006,153(3):A504-A507.
    [166] Matsumura, T.; Nakano, K.; Kanno, R.; Hirano, A.; Imanishi, N.; Takeda, Y., Nickel sulfides as acathode for all-solid-state ceramic lithium batteries [J]. Journal of Power Sources,2007,174:632-636.
    [167] Wang, J.; Chou, S.; Chew, S.; Sun, J.; Forsyth, M.; Macfarlane, D. R.; Liu, H., Nickel sulfidecathode in combination with an ionic liquid-based electrolyte for rechargeable lithium batteries[J]. Solid State Ionics,2008,179:2379-2382.
    [168] Takeuchi, T.; Sakaebe, H.; Kageyama, H.; Sakai, T.; Tatsumi, K., Preparation of NiS2usingspark-plasma-sintering process and its electrochemical properties [J]. Journal of TheElectrochemical Society,2008,155:A679-A684.
    [169] Han, S.; Kim, K.; Ahn, H.; Ahn, H.; Lee, J., Charge-discharge mechanism of mechanicallyalloyed NiS used as a cathode in rechargeable lithium batteries [J]. Journal of Alloys andCompounds,2003,361:247-251.
    [170] Wang, Q.; Gao, R.; Li, J. H., Porous, self-supported Ni3S2/Ni nanoarchitectured electrodeoperating through efficient lithium-driven conversion reactions [J].Applied Physics Letters,2007,90:143107.
    [171] Jasinski, R., A summary of patents on organic electrolyte batteries [J]. Journal ofElectroanalytical Chemistry,1970,26(2-3):189-194.
    [172] Okamoto, K.; Kawai, S., Electrical conduction and phase transition of copper sulfides [J].Japanese Journal ofApplied Physics,1973,12:1130-1138.
    [173] Etienne, A., Electrochemical method to measure the copper ionic diffusivity in a copper sulfidescale [J]. Journal of The Electrochemical Society,1970,117(7):870-874.
    [174] Bonino, F.; Lazzari, M.; Rivolta, B.; Scrosati, B., Electrochemical behavior of solid cathodematerials in organic electrolyte lithium batteries: copper sulfides [J]. Journal of TheElectrochemical Society,1984,131(7):1498-1502.
    [175] Chung, J.; Sohn, H., Electrochemical behaviors of CuS as a cathode material for lithiumsecondary batteries [J]. Journal of Power Sources,2002,108:226-231.
    [176] Hayashi, A.; Ohtomo, T.; Mizuno, F.; Tadanaga, K.; Tatsumisago, M., Rechargeable lithiumbatteries, using sulfur-based cathode materials and Li2S-P2S5glass-ceramic electrolytes [J].ElectrochimicaActa,2004,50:893-897.
    [177] Indris, S.; Cabana, J.; Rutt, O. J.; Clarke, S. J.; Grey, C. P., Layered oxysulfidesSr2MnO2Cu2m-0.5Sm+1(m=1,2, and3) as insertion hosts for li ion batteries [J]. Journal of theAmerican Chemical Society,2006,128:13354-13355.
    [178] Sun, Q.; Fu, Z. W., An anode material of CrN for lithium-ion batteries [J]. Electrochemical andSolid-State Letters,2007,10(8):A189-A193.
    [179] Sun, Q.; Fu, Z. W., Cr1-xFexN (0≦x≦1) ternary transition-metal nitride as anode materials forlithium-ion batteries [J]. Electrochemical and Solid-State Letters,2008,11(12):A233-A237.
    [180] Das, B.; Reddy, M. V.; Malar, P.; Osipowicz, T.; Rao, G. V. S.; Chowdari, B. V. R., NanoflakeCoN as a high capacity anode for li-ion batteries [J]. Solid State Ionics,2009,180(17-19):1061-1068.
    [181] Mitra, S.; Poizot, P.; Finke, A.; Tarascon, J. M., Growth and electrochemical characterizationversus lithium of Fe3O4electrodes made via electrodeposition [J]. Advanced FunctionalMaterials,2006,16(17):2281-2287.
    [182] Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X., Research on advanced materials for li-ion batteries[J].Advanced Materials,2009,21(45):4593-4607.
    [183] Hu, J.; Li, H.; Huang, X. J.; Chen, L. Q., Improve the electrochemical performances of Cr2O3anode for lithium ion batteries [J]. Solid State Ionics,2006,177(26-32):2791-2799.
    [184] Hu, J.; Li, H.; Huang, X. J., Cr2O3-based anode materials for li-ion batteries [J]. Electrochemicaland Solid-State Letters,2005,8(1):A66-A69.
    [185] Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J., Carbon coated Fe3O4nanospindles asa superior anode material for lithium-ion batteries [J]. Advanced Functional Materials,2008,18(24):3941-3946.
    [186] Huang, X. H.; Tu, J. P.; Zhang, C. Q.; Chen, X. T.; Yuan, Y. F.; Wu, H. M., Spherical NiO-Ccomposites for anode material of lithium ion batteries [J]. Electrochimica Acta,2007,52(12):4177-4181.
    [187] Balaya, P.; Li, H.; Kienle, L.; Maier, J., Fully reversible homogeneous and heterogeneous listorage in RuO2with high capacity [J].Advanced Functional Materials,2003,13(8):621-625.
    [188] Nuli, Y. N.; Chu, Y. Q.; Qin, Q. Z., Nanocrystalline ZnFe2O4and Ag-Doped ZnFe2O4films usedas new anode materials for li-ion batteries [J]. Journal of The Electrochemical Society,2004,151(7):A1077-A1083.
    [189] Kang, Y. M.; Kim, K. T.; Lee, K. Y.; Lee, S. J.; Jung, J. H.; Lee, J. Y., Improvement of initialcoulombic efficiency of Co3O4by ballmilling using Ni as an additive [J] Journal ofElectrochemical Society,2003,150(11):A1538-A1543.
    [190] Kang, Y. M.; Kim, K. T.; Kim, J. H.; Kim, H. S.; Lee, P. S.; Lee, J. Y.; Liu, H. K.; Dou, S. X.,Electrochemical properties of Co3O4, Ni-Co3O mixture and Ni-Co3O4composites as anodematerials for li ion secondary batteries [J]. Journal of Power Sources,2004,133(2):252-259.
    [191] Kang, Y. M.; Song, M. S.; Kim, J. H.; Kim, H. S.; Park, M. S.; Lee, J. Y.; Liu, H. K.; Dou, S. X.,A study on the charge-discharge mechanism of Co3O4as an anode for the li ion secondary battery[J]. Eectrochimical Acta,2005,50(18):3667-3673.
    [192] Yu, Y.; Chen, C. H.; Shui, J. L.; Xie, S., Nickel-foam-supported reticular CoO-Li2O compositesanode materials for lithium ion batteries [J]. Angewandte Chemie International Edition,2005,44(43):7085-7089.
    [193] Yu, Y.; Shi, Y.; Chen, C. H., Effect of Lithia and substrate on the electrochemical performance ofa Lithia/cobalt oxide composites thin-film anode [J]. Asian Journal of Chemistry,2006,1(6):826-831.
    [194] Yu, Y.; Shi, Y.; Chen, C. H.; Wang, C. L., Facile electrochemical synthesis of single-crystallinecopper nanospheres, pyramids, and truncated pyramidal nanoparticles from Lithia/cuprous oxidecomposites thin films [J]. The Journal of Physical Chemistry C,2008,112(11):4176-4179.
    [195] Xiang, J. Y.; Tu, J. P.; Yuan, Y. F.; Wang, X. L.; Huang, X. H.; Zeng, Z. Y., Electrochemicalinvestigation on nanoflower-like CuO/Ni composites film as anode for lithium ion batteries [J].ElectrochimicaActa,2009,54(4):1160-1165.
    [196] Ke, F. S.; Huang, L.; Zhang, Bo.; Wei G. Z.; Xue, L. J.; Li, J. T.; Sun, S. G., NanoarchitecturedFe3O array electrode and its excellent lithium storage performance [J]. Electrochimica Acta,2012,78:585-591.
    [197] Wang, Y.; Zhang, Y. F.; Liu, H. R.; Yu, S. J.; Qin, Q. Z., Nanocrystalline NiO thin film anode withMgO coating for li-ion batteries [J]. Electrochimca. Acta,2003,48(28):4253-4259.
    [198] Yoon, T.; Chae, C.; Sun, Y.; Zhao, X.; Kung, H. H.; Lee, J. K., Bottom-up in situ formation ofFe3O4nanocrystals in a porous carbon foam for lithium-ion battery anodes [J]. Journal ofMaterials Chemistry,2011,21:17325-17330.
    [199] Wu, W.; Wang, X. Y.; Wang, X.; Yang, S. Y.; Liu, X. M.; Chen, Q. Q., Effects of MoS2doping onthe electrochemical performance of FeF3cathode materials for lithium-ion batteries [J]. MaterialsLetters,2009,63(21):1788-1790.
    [200] Wu, W.; Wang, Y.; Wang, X. Y.; Chen, Q. Q.; Wang, X.; Yang, S. Y.; Liu, X. M.; Guo, J.; Yang, Z.H., Structure and electrochemical performance of FeF3/V2O5composites cathode material forlithium-ion battery [J]. Journal ofAlloys and Compounds,2009,486(1-2):93-96.
    [201] Geim, A. K.; Novoselov, K. S., The rise of graphene [J]. Nature Materials,2007,6:183-191.
    [202] Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S.; Govindaraj, A., Graphene: The newtwo-dimensional nanomaterial [J]. Angewandte Chemie International Edition,2009,48:7752-7777.
    [203] Allen, M. J.; Tung, V. C.; Kaner, R. B., Honeycomb carbon: A revies of graphene [J]. ChemicalReviews,2010,110(1):132-145.
    [204] Yang, S. B.; Cui, G. G.; Pang, S. P.; Cao, Q.; Kolb, U.; Feng, X. L.; Maier, J.; Mullen, K.,Fabrication of cobalt and cobalt oxide/graphene composites: towards high-performance anodematerials for lithium ion batteries [J]. ChemSusChem,2010,3:236-239.
    [205] Tian, L. L; Zhuang, Q. C.; Li, J.; Wu, C.; Shi, Y. L.; Sun, S. G., The production of self-assembledFe2O3-graphene hybrid materials by a hydrothermal process for improved Li-cycling,ElectrochimicaActa,2012,65:153-158.
    [206] Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H.M., Graphene anchored with Co3O4nanoparticles as anode of lithium ion batteries with enhancedreversible capacity and cyclic performance [J].ACSnano,2010,4(6):3187-3194.
    [207] Xu, C.; Wang, X.; Yang, L. C.; Wu, Y. P., Fabrication of a graphene-cuprous oxide composites [J].Journal of Solid State Chemistry,2009,182:2486-2490.
    [208] Barsoukov, E.; Kim, J. H.; Kim J. H.; Yoon, C. O.; Lee, H., Kinetics of lithium intercalation intocarbon anodes: in situ impedance investigation of thickness and potential dependence [J]. SolidState Ionics,1999,116:249-261.
    [209] Barsoukov, E.; Kim, D. H.; Lee, H. S.; Lee, H.; Yakovleva, M.; Gao, Y.; Engel, J. F., Comparisonof kinetic properties of LiCoO2and LiTi0.5Mg0.05Ni0.7Co0.2O2by impedance spectroscopy [J],Solid State Ionics,2003,161:19-29.
    [210] Zhuang, Q. C.; Wei, T.; Du, L. L.; Cui, Y. L.; Fang, L.; Sun, S. G., An electrochemical impedancespectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4[J]. TheJournal of Physical Chemistry C,2010,114(18):8614-8621.
    [211]庄全超;陈作峰;董全峰;姜艳霞;黄令;孙世刚,石墨负极首次阴极极化过程的电化学阻抗谱研究[J].科学通报,2006,51:17-20.
    [212]庄全超;徐金梅;樊小勇;姜艳霞;董全峰;黄令;孙世刚, Li2CoO2正极材料电子和离子传输特性的电化学阻抗谱研究[J].科学通报,2007,52:147-153.
    [213]庄全超;魏涛;魏国祯;董全峰;孙世刚,尖晶石LiMn2O4中锂离子嵌入脱出过程的电化学阻抗谱研究[J].化学学报,2009,67:2184-2192.
    [214]庄全超;许金梅;田景华;樊小勇;董全峰;孙世刚,石墨负极电化学扫描循环过程的EIS、Raman光谱和XRD研究[J].高等学校化学学报,2008,29:973-976.
    [1] Tarascon, J. M.; Armand, M., Issues and challenges facing rechargeable lithium batteries [J]. Nature,2001,414(6861):359-367.
    [2] Laik, B.; Poizot, P.; Tarascon, J. M., The electrochemical quartz crystal microbalance as a means forstudying the reactivity of Cu2O toward lithium [J]. Journal of The Electrochemical Society,2002,149(3):A251-A255.
    [3] Morcrette, M.; Pozier, P.; Dupont, L.; Mugnier, E.; Sannier, L.; Galy, J.; Tarascon, J. M., Areversible copper extrusion-insertion electrode for rechargeable li batteries [J]. Nature Materials,2003,2(11):755-761.
    [4] Larcher, D.; Masquelier, C.; Bonnin, D.; Chabre, Y.; Masson, V.; Leriche, J. B.; Tarascon, J. M.,Effect of particle size on lithium intercalation into α-Fe2O3[J]. Journal of The EletrochemicalSociety,2003,150(1):A133-A139.
    [5] Dedryvere, R.; Laruell,e S.; Grugeon, S.; Poizot, P.; Gonbeau, D.; Tarascon, J. M., Contribution ofx-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO towardlithium [J]. Chemistry of Materials,2004,16(6):1056-1061.
    [6] Grugeon, S.; Laruelle, S.; Dupont, L.; Chevallier, F.; Taberna, P. L.; Simon, P.; Gireaud, L.; Lascaud,S.; Vidal, E.; Yrieix, B.; Tarascon, J. M., Combining electrochemistry and metallurgy for newelectrode designs in li-ion batteries [J]. Chemistry of Materials,2005,17(20):5041-5047.
    [7] Taberna, P. L.; Mitra, S.; Poizot, P.; Simon, P.; Tarascon, J. M., High rate capabilities Fe3O4-basedCu nano-architectured electrodes for lithium-ion battery applications [J]. Nature Materials,2006,5(7):567-573.
    [8]赵铁鹏;高德淑;雷钢铁;李朝晖,三维有序大孔α-Fe2O3的制备及电化学性能研究[J].化学学报,2009,67(17):1957-1961.
    [9] Doe, R. E.; Persson, K. A.; Meng, Y. S.; Ceder, G., First-principles investigation of the Li-Fe-Fphase diagram and equilibrium and nonequilibrium conversion reactions of iron fluorides withlithium [J]. Chemistry of Materials,2008,20:5274-5283.
    [10] Mitra, S.; Poizot, P.; Finke, A.; Tarascon, J. M., Growth and electrochemical characterizationversus lithium of Fe3O4electrodes made via electrodeposition [J]. Advanced Functional Materials,2006,16(17):2281-2287.
    [11] Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X., Research on advanced materials for li-ionbatteries [J].Advanced Materials,2009,21(45):4593-4607.
    [12] Bui, T. H.; Shigeto, O.; Yamaki, J., Effect of binder content on the cycle performance ofnano-sized Fe2O3-loaded carbon for use as a lithium battery negative electrode [J]. Journal ofPower Sources,2008,178:402-408.
    [13] Bui, T. H.; Takayuki, D.; Shigeto, O.; Yamaki, J., Effect of carbonaceous materials onelectrochemical properties of nano-sized Fe2O3-loaded carbon as a lithium battery negativeelectrode [J]. Journal of Power Sources,2007,174:493-500.
    [14] Bui, T. H.; Izumi, W.; Takayuki, D.; Shigeto, O.; Yamaki, J., Electrochemical properties ofnano-sized Fe2O3-loaded carbon as a lithium battery anode [J]. Journal of Power Sources,2006,161:1281-1287.
    [15] Sun, B.; Horvat, J.; Kim, H. S.; Kim, W. S.; Ahn, J.; Wang, G., Synthesis of mesoporous α-Fe2O3nanostructures for highly sensitive gas sensors and high capacity anode materials in lithium ionbatteries [J]. The Journal of Physical Chemistry C,2010,114:18753-18761.
    [16] Li, J.; Dahn, H. M.; Krause, L. J.; Le, D. B.; Dahn, J. R., Impact of binder choice on theperformance of α-Fe2O3as a negative electrode [J]. The journal of The Eletrochemical Society,2008,155(11): A812-A816.
    [17] Liu, H.; Wang, G. X.; Park, J.; Wang, J. Z.; Liu, H. K.; Zhang, C., Electrochemical performance ofα-Fe2O3nanorods as anode material for lithium-ion cells [J]. Electrochimica Acta,2009,54(6):1733-1736.
    [18] Jamnik, J.; Maier, J., Nanocrystallinity effects in lithium battery materials [J]. Physical ChemistryChemical Physics,2003,5:5215-5220.
    [19] Zhukovskii, Y. F.; Kotomin, E. A.; Balaya, P.; Maier, J., Enhanced interfacial lithium storage innano composites of transition metals with LiF and Li2O: Comparison of DFT calculations andexperimental studies [J]. Solid State Sciences,2008,10:491-495.
    [20] Zhuang, Q. C.; Wei, T.; Du, L. L.; Cui, Y. L.; Fang, L.; Sun, S. G., An electrochemical impedancespectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4[J]. TheJournal of Physical Chemistry C,2010,114(18):8614-8621.
    [21] Mitra, S.; Poizot, P.; Finke, A.; Tarascon, J. M., Growth and electrochemical characterizationversus lithium of Fe3O4electrodes made via electrodeposition [J]. Advanced Functional Materials,2006,16(17):2281-2287.
    [22] Sarradin, J.; Guessous, A.; Ribes, M., Synthesis and characterization of lithium intercalationelectrodes based on iron oxide thin films [J]. Journal of Power Sources,1996,62:149-154.
    [23] Sarradin, J.; Ribes, M.; Guessous, A.; Elkacemi, K., Study of Fe2O3-based thin film electrodes forlithium-ion batteries [J]. Solid State Ionics,1998,112:35-40.
    [24]庄全超;陈作锋;董全峰;姜艳霞;黄令;孙世刚,石墨负极首次阴极极化过程的电化学阻抗谱研究[J].科学通报,2006,51:17-20.
    [1] Cao, Z. Y.; Wei, B. Q., α-Fe2O3/single-walled carbon nanotube hybrid films as high-performanceanodes for rechargeable lithium-ion batteries [J]. Journal of Power Sources,2013,241:330-340.
    [2] Zou, Y. Q.; Kan, J.; Wang, Y., α-Fe2O3-graphene rice-on-sheet nanocomposites for high and fastlithium ion storage [J]. The Journal of Physical Chemistry C,2011,115:20747-20753.
    [3] Yu, W. J.; Hou, P. X.; Li, F.; Liu, C., Improved electrochemical performance of α-Fe2O3nanoparticles confined in carbon nanotubes [J]. Journal of Materials Chemistry,2012,22:13756-13761.
    [4] Kim, Ⅱ. T.; Nunnery, G. A.; Jacob, K.; Schwartz, J.; Liu, X. T.; Tannenbaum, R., Synthesis,characterization, and alignment of magnetic carbon nanotubes tethered with maghemitenanoparticles [J]. The Journal of Physical Chemistry C,2010,114:6944-6951.
    [5] Zhao, Y.; Li, J. X.; Ding, Y. H.; Guan, L. H., Enhancing the lithium storage performance of ironoxide composites through partial substitution with Ni2+or Co2+[J]. Journal of Materials Chemistry,2011,21:19101-19105.
    [6] Hu, X. L.; Yu, J. C.; Gong, J. M., Fast production of self-assembled hierarachical α-Fe2O3nanoarchitectures [J]. The Journal of Physical Chemistry C,2007,111:11180-11185.
    [7] An, Z. G.; Zhang, J. J.; Pan, S. L.; Yu, F., Facile-free synthesis and characterization of ellipticα-Fe2O3superstructures [J]. The Journal of Physical Chemistry C,2009,113:8092-8096.
    [8] Zhou, J. S.; Song, H. H.; Ma, L. L.; Chen, X. H., Magnetite/graphene nanosheet composites:interfacial interaction and its impact on the durable high-rate performance in lithium-ionbatteries [J]. RSC Advances,2011,1:782-791.
    [9] Su, J.; Cao, M. H.; Ren, L.; Hu, C. W., Fe3O4-graphene nanocomposites with improved lithiumstorage and magnetism properties [J]. The Journal of Physical Chemistry C,2011,115:14469-14477.
    [10] Sun, B.; Horvat, J.; Kim, H. S.; Kim, W. S.; Ahn, J.; Wang, G. X., Synthesis of mesoporousα-Fe2O3nanostructures for highly sensitive gas sensors and high capacity anode materials inlithium ion batteries [J]. The Journal of Physical Chemistry C,2010,114:18753-18761.
    [11] Wu, X. L., Guo, Y. G.; Wan, L. J.; Hu, C. W., α-Fe2O3nanostructures: inorganic salt-controlledsynthesis and their electrochemical performance toward lithium storage [J]. The Journal ofPhysical Chemistry C,2008,112:16824-16829.
    [12] Lin, Y. M.; Abel, P. R.; Heller, A.; Mullins, C. B., α-Fe2O3nanorods as anode material for lithiumion batteries [J]. Journal of Physical and Chemistry Letters,2011,2:2885-2891.
    [13] Tian, L. L; Zhuang, Q. C.; Li, J.; Wu, C.; Shi, Y. L.; Sun, S. G., The production of self-assembledFe2O3-graphene hybrid materials by a hydrothermal process for improved Li-cycling [J].Electrochimica Acta,2012,65:153-158.
    [1] Wang, Z. Y.; Zhou, L.; Lou, X. W., Metal oxide hollow nanostructures for lithium-ion batteries [J].Advanced Materials,2012,24:1903-1911.
    [2] Liu, C.; Wang, A. L.; Yin, H. B.; Shen, Y. T.; Jiang, T. S., Preparation of nanosized hollow silicaspheres from Na2SiO3using Fe3O4nanoparticles as templates [J]. Particuology,2012,10:352-358.
    [3] Yang, C. M.; Li, H. Y.; Xiong, D. B.; Cao, Z. Y., Hollow polyaniline/Fe3O4microsphere composites:Preparation characterization, and applications in microwave absorption [J]. Reactive&FunctionalPolymers,2009,69:137-144.
    [4]曾涑源, α-Fe2O3纳米结构的液相合成及性能表征[D].合肥:中国科学技术大学,2008.
    [5]苏昌华, α-Fe2O3微/纳米材料的控制合成、生长机理与储氢性质研究[D].西安:西北大学,2011.
    [6] Jia, C. J.; Sun, L. D.; Yan, Z. G.; You, L. P.; Luo, F.; Han, X. D.; Pang, Y. C.; Zhang, Z.; Yan, C. H.,Single-crystalline iron oxide nanotubes [J]. Angewandte Chemie International Edition,2005,44:4328-4333.
    [7] Lou, X. W.; Li, C. M.; Archer, L. A., Designed synthesis of coaxial SnO2@carbon hollownanospheres for highly reversible lithium storage [J].Advanced Materials,2009,21:2536-2539.
    [8] Zhang, C. F.; Wu, H. B.; Yuan, C. Z.; Guo, Z. P.; Lou, X. W., Confining sulfur in double-shelledhollow carbon spheres for lithium-sulfur batteries [J]. Angewandte Chemie International Edition,2012,51:9592-9595.
    [9] Zhou, L.; Zhao, D. Y.; Lou, X. W., Double-shelled CoMn2O4hollow microcubes as high-capacityanodes for lithium-ion batteries [J].Advanced Materials,2012,24:745-748.
    [10] Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W., Fast formation of SnO2nanoboxes withenhanced lithium storage capability [J]. Journal of the American Chemiacal Society,2011,133:4738-4741.
    [11] Zhang, L.; Wu, H. B.; Madhavi, S.; Hng, H. H.; Lou, X. W., Formation of Fe2O3microboxes withhierarchical shell structures from metal-organic frameworks and their lithium storage properties[J]. Journal of the American Chemiacal Society,2012,134:17388-17391.
    [12] Wang, Z. Y.; Lou, X. W., TiO2nanocages: Fast synthesis, Interior functionalization and improvedlithium storage properties [J].Advanced Materials,2012,24:4124-4129.
    [13] Yu, J. X.; Huang, B. B.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Wang, P., Self-template synthesis ofCdIn2O4hollow spheres and effects of Cd/In molar ratios on its morphologies [J]. InorganicChemistry,2009,48:10548-10552.
    [14] Cheng, H. F.; Huang, B. B.; Wang, Z. Y.; Qin, X. Y.; Zhang, X. Y.; Dai, Y., One-potminiemulsion-mediated route to biobr hollow microspheres with highly efficient photocatalyticactivity [J]. Chemistry-A European. Journal,2011,17:8039-8043.
    [15] Wang, Y.; Zhu, Q. S.; Tao, L., Fabrication and growth mechanism of hierarchical porous Fe3O4hollow sub-microspheres and their magnetic properties [J]. CrystEngComm,2011,13:4652-4657.
    [16] Wu, Z. C.; Yu, K.; Zhang, S. D.; Xie, Y., Hematite hollow spheres with a mesoporous shell:Controlled synthesis and applications in gas sensor and lithium ion batteries [J]. The Journal ofPhysical Chemistry C,2008,112:11307-11313.
    [17] Zhong, J. Y.; Cao, C. B.; Liu, Y. Y.; Li, Y. N.; Khan, W. S., Hollow core-shell η-Fe2O3microspheres with excellent lithium-storage and gas-sensing properties [J]. ChemicalCommunications,2010,46:3869-3871.
    [18] Lou, X. W.; Yuan, C. L.; Zhang, Q.; Archer, L. A., Platinum-functionalized octahedral silicananocages: Synthesis and characterization [J]. Angewandte Chemie International Edition,2006,45:3825-3829.
    [19] Liu, J.; Wan, Y. L.; Liu, C. P.; Liu, W.; Ji, S. M.; Zhou, Y. C.; Wang, J. B., Solvothermal synthesisof uniform Co3O4/C hollow quasi-nanospheres for enhanced lithium ion intercalation applications[J]. European Journal of Inorganic Chemistry,2012,24:3825-3829.
    [20] Lou, X. W.; Wang, Y.; Yuan, C. L.; Lee, J. Y.; Archer, L. A., Template-Free Synthesis of SnO2hollow nanostructures with high lithium storage capacity [J]. Advanced Materials,2006,18:2325-2329.
    [21] Pan, A. Q.; Zhu, T.; Wu, H. B.; Lou, X. W., Template-free synthesis of hierarchicalvanadium-glycolate hollow microspheres and their conversion to V2O5with improved lithiumstorage capability [J]. Chemistry-A European Journal,2013,19:494-500.
    [22] Yu, H. G.; Yu, J. G.; Liu, S. W.; Mann, S., Template-free hydrothermal synthesis of CuO/Cu2Ocomposites hollow microspheres [J]. Chemistry of Materials,2007,19:4327-4334.
    [23] Needham, S. A.; Wang, G. X.; Liu, H. K., Synthesis of NiO nanotubes for use as negativeelectrodes in lithium ion batteries [J]. Journal of Power Sources,2006,159:254-257.
    [24] Li, L. H.; Nan, C. Y.; Lu, J.; Peng, Q.; Li, Y. D., α-MnO2nanotubes: high surface area andenhanced lithium battery properties [J]. Chemical Communications,2012,48:6945-6947.
    [25] Han, F. D.; Bai, Y. J.; Liu, R.; Yao, B.; Qi, Y. X.; Lun, N.; Zhang, J. X., Template-free synthesis ofinterconnected hollow carbon nanospheres for high-performance anode material in lithium-ionbatteries [J].Advanced energy materials,2011,1:798-801.
    [26] Sun, B.; Horvat, J.; Kim, H. S.; Kim, W. S.; Ahn, J.; Wang, G. X., Synthesis of mesoporousα-Fe2O3nanostructures for highly sensitive gas sensors and high capacity anode materials inlithium ion batteries [J]. The Journal of Physical Chemistry C,2010,114:18753-18761.
    [27] Wang, B.; Chen, J. S.; Wu, H. B.; Wang, Z. Y.; Lou, X. W., Quasiemulsion-templated formation ofα-Fe2O3hollow spheres with enhanced lithium storage properties [J]. Journal of the AmericanChemical Society,2011,133:17146-17148.
    [28] An, Z. G.; Zhang, J. J.; Pan, S.L.; Yu, F., Facile-free synthesis and characterization of ellipticα-Fe2O3superstructures [J]. The Journal of Physical Chemistry C,2009,113:8092-8096.
    [29] Tian, L. L; Zhuang, Q. C.; Li, J.; Wu, C.; Shi, Y. L.; Sun, S. G., The production of self-assembledFe2O3-graphene hybrid materials by a hydrothermal process for improved Li-cycling [J].Electrochimica Acta,2012,65:153-158.
    [30] Li, F.; Ding, Y.; Gao, P. X.; Xin, X. Q.; Wang, Z. L., Single-crystal hexagonal disks and rings ofZnO: Low-temperature, large-scale synthesis and growth mechanism [J]. Angewandte Chemie,2004,116:5350-5354.
    [31] Wu, W.; Xiao, X. H.; Zhang, S. F.; Zhou, J.; Fan, L. X.; Ren, F.; Jiang, C. Z., Large-scale andcontrolled synthesis of iron oxide magnetic short nanotubes: shape evolution, growth mechanism,and magnetic properties [J]. The Journal of Physical Chemistry C,2010,114:16092-16103.
    [32] Li, L. L.; Chu, Y.; Liu, Y.; Dong, L. H., Template-free synthesis and photocatalytic properties ofnovel Fe2O3hollow spheres [J]. The Journal of Physical Chemistry C,2007,111:2123-2127.
    [33] Chen, L.; Xu, H. Y.; Li, L.; Wu, F. F.; Yang, J.; Qian, Y. T., A comparative study of lithium-storageperformances of hematite: nanotubes vs. nanorods [J]. Journal of Power Sources,2014,245:429-435.
    [34] Chaudhari, S.; Srinivasan, M.,1D hollow Fe2O3electrospun nanofibers as high performance anodematerial for lithium ion batteries [J]. Journal of Materials Chemistry,2012,22:23049-23056.
    [35] Wu, X. L.; Guo, Y. G.; Wan, L. J.; Hu, C. W., Fe2O3nanostructures: Inorganic salt-controlledsynthesis and their electrochemical performance toward lithium storage [J]. The Journal ofPhysical Chemistry C,2008,112:16824-16829.
    [36] Li, F.; Zhuang, Q. C.; Qiu, X. Y.; Sun, Z., Investigation of lithiation mechanism of LiCr3O8aspotential anode materials for lithium-ion batteries [J]. International Journal of electrochemicalscience,2013,8:3551-3563.
    [37] Hassan, M. F.; Guo, Z. P.; Chen, Z. X.; Liu, H. K., Fe2O3as an anode material with capacity riseand high rate capability for lithium-ion batteries [J]. Materials Research Bulletin,2011,46:858-864.
    [38] Hassan, M. F.; Rahman, M. M.; Guo, Z. P.; Chen, Z. X.; Liu, H. K., Solvent-assisted molten saltprocess: A new route to synthesis Fe2O3/C nanocomposites and its electrochemical performance inlithium-ion batteries [J]. ElectrochimicaActa,2010,55:5006-5013.
    [39] Lin, Y. M.; Abel, P. R.; Heller,A.; Mullins, C. B., Fe2O3nanorods as anode material for lithium ionbatteries [J]. The Journal of Physical and Chemistry Letters,2011,2:2885-2891.
    [40] Reddy, M. V.; Yu, T.; Sow, C. H.; Shen, Z. X.; Lim, C. T.; Rao, G. V. S.; Chowdari, B. V. R.,α-Fe2O3nanoflakes as an anode material for li-ion batteries [J]. Advanced Functional Materials,2007,17:2792-2799.
    [41] NuLi, Y. N.; Zeng, R.; Zhang, P.; Guo, Z. P.; Liu, H. K., Controlled synthesis of α-Fe2O3nanostructures and their size-dependent electrochemical properties for lithium-ion batteries [J]Journal of Power Sources,2008,184:456-461.
    [42] Jia, C. J.; Sun, L. D.; Luo, F.; Han, X. D.; Heyderman, L. J.; Yan, Z. G.; Yan, C. H.; Zheng, K.;Zhang, Z.; Takano, M.; Hayashi, N.; Eltschka, M.; Klaui, M.; Rudiger, U.; Kasama, T.;Cervera-Gontard, L.; Dunin-Borkowski, R. E.; Tzvetkov, G.; Raabe, J., Large-scale synthesis ofsingle-crystalline iron oxide magnetic nanorings [J]. Journal of American Chemical Society,2008,130:16968-16977.
    [1]王静;赵海雷;何见超;王春梅,锂离子电池核壳结构负极材料的进展[J].电池,2010,40(5):289-292.
    [2] Chen, M.; Yamamuro, S.; Farrell, D.; Majetich, S. A., Gold-coated iron nanoparticles forbiomedical applications [J]. Journal ofApplied Physics,2003,93:7551-7553.
    [3] Son, S. U.; Jang, Y.; Park, J.; Na, H. B.; Park, H. M.; Yun, H. J.; Lee, J.; Hyeon, T., Designedsynthesis of atom-economical Pd/Ni bimetallic nanoparticle based catalysts for sonogashiracoupling reactions [J]. Journal of The American Chemical Society,2004,126:5026-5027.
    [4] Schartl, W., Current directions in core-shell nanoparticle design [J]. Nanoscale,2010,2:829-843.
    [5] Caruso, F., Nanoengineering of Particle Surfaces [J].Advanced Materials,2001,13:11-22.
    [6] Su, L. W.; Zhou, Z.; Shen, P. W., Core-shell Fe@Fe3C/C nanocomposites as anode materials for Liion batteries [J]. ElectrochimicaActa,2013,87:180-185.
    [7] Hwang, T. H.; Lee, Y. M.; Kong, B. S.; Seo, J. S.; Choi, J. W., Electrospun core-shell fibers forrobust silicon nanoparticles-based lithium ion battery anodes [J]. Nano Letters,2012,12:802-807.
    [8] Sun, X. M.; Liu, J. F.; Li, Y. D., Oxides@C core-shell nanostructures: one-pot synthesis, rationalconversion, and li storage property [J]. Chemistry of Materials,2006,18:3486-3494.
    [9] Rao, C. N. R.; Sood, A. K.; Subrahmanyam, K. S., Graphene: The new two-dimensionalnanomaterial [J].Angewandte Chemie International Edition,2009,48(42):7752-7778.
    [10] Yoo, E. J.; Kim, J.; Hosono, E., Large reversible Li storage of grapheme nanosheet famllies for usein rechargeable lithium ion batteries [J]. Nano Letters,2008,8(8):2277-2282.
    [11] Blomgren, G. E., Electrolytes for advanced batteries [J]. Journal of Power Sources,1999,81-82:112-118.
    [12] Peled, E., The electrochemical behavior of alkali and alkaline earth metals in nonaqueous batterysystems—the solid electrolyte interphase model [J]. Journal of The Electrochemical Society,1979,126(12):2047-2051.
    [13] Badway, F.; Mansour, A. N.; Pereira, N.; Al-Sharab, J. F.; Cosandey, F.; Plitz, I.; Amatucci, G. G.,Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conductingmatrices [J]. Chemistry of Materials,2007,19(17):4129-4141.
    [14] Zielinski, J.; Zglinicka, I.; Znak, L.; Kaszkur, Z., Reduction of Fe2O3with hydrogen [J]. AppliedCatalysis A: General,2010,381:191-196.
    [15] Zhang, X.; Alloul, O.; He, Q. L.; Zhu, J. H.; Verde, M. J.; Li, Y. T.; Wei, S. Y.; Guo, Z. H.,Strengthened magnetic epoxy nanocomposites with protruding nanoparticles on the graphenenanosheets [J]. Polymer,2013,54:3594-3604.
    [16] Li, H.; Richter, G.; Maier, J., Reversible Formation and decomposition of LiF clusters usingtransition metal fluorides as precursors and their application in rechargeable li batteries [J].Advanced Materials,2003,15(9):736-739.
    [17] Tarascon, J. M.; Grugeon, S.; Mocrette, M.; Laruelle, S.; Rozier, P.; Poizot, P., New concepts forthe search of better electrode materials for rechargeable lithium batteries [J]. Comptes RendusChimie,2005,8:9-15.
    [18] Debart, A.; Dupont, L.; Poizot, P.; Leriche, J. B.; Tarascon, J. M., A transmission electronmicroscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium [J].Journal of The Electrochemical Society,2001,148(11):A1266-A1274.
    [19] Balaya, P.; Li, H.; Kienle, L.; Maier, J., Fully reversible homogeneous and heterogeneous listorage in RuO2with high capacity [J].Advanced Functional Materials,2003,13(8):621-625.
    [20] Grugeon, S.; Laruelle, S.; Dupont, L.; Tarascon, J. M., An update on the reactivity of nanoparticlesCo-based compounds towards Li [J]. Solid State Sciences,2003,5:895-904.
    [21]钟军华;王兴庆;马均耀;李悦,纳米氧化铁粉制取微细铁粉的研究[J].粉末冶金工业,2006,16(2):19-22.
    [22] Tian, L. L; Zhuang, Q. C.; Li, J.; Wu, C.; Shi, Y. L.; Sun, S. G., The production of self-assembledFe2O3-graphene hybrid materials by a hydrothermal process for improved Li-cycling [J].Electrochimica Acta,2012,65:153-158.
    [23] Chen, S. Q.; Bao, P. T.; Wang, G. X., Synthesis of Fe2O3-CNT-graphene hybrid materials with anopen three-dimensional nanostructure for high capacity lithium storage [J]. Nano Energy,2013,2:425-434.
    [24] Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ruoff, R. S., Oxide/Fe2O3composites as ahigh-performance anode material forlithium ion batteries [J].ACS Nano,2011,5:3333-3338.
    [25] Xue, X. Y.; Ma, C. H.; Cui, C. X.; Xing, L. L., High lithium storage performance ofα-Fe2O3/graphene nanocomposites as lithium-ion battery anodes [J]. Solid State Sciences,2011,13:1526.
    [26] Wang, G.; Liu, T.; Luo, Y. J.; Zhao, Y.; Ren, Z. Y.; Bai, J. B.; Wang, H., Preparation ofFe2O3/graphene composites and its electrochemical performance as an anode material for lithiumion batteries [J]. Journal ofAlloys and Compounds,2011,24: L216-L220.
    [27] Hochella, M. F.; Lower, S. K.; Maurice, P.A.; Penn, R. L.; Sahai, N.; Sparks, D. L.; Twining, B. S.,Nanominerals, mineral nanoparticles, and earth systems [J]. Science,2008,319:1631-1634.
    [28] Bai, S.; Chen, S. Q.; Shen, X. P.; Zhu, G. X.; Wang, G. X., Nanocomposites of hematite (Fe2O3)nanospindles with crumpled reduced graphene oxide nanosheets as high-performance anodematerial for lithium-ion batteries [J]. RSC Advances,2012,2:10977-10984.
    [29] Sun, Y. M.; Hu, X. L.; Luo, W.; Xia, F. F.; Huang, Y. H., Reconstruction of conformal nanoscaleMnO on graphene as a high-capacity and long-life anode material for lithium ion batteries [J].Advanced Functional Materials,2013,23:2436-2444.
    [30] Hassan, M. F.; Rahman, M. M.; Guo, Z. P.; Chen, Z. X.; Liu, H. K., Solvent-assisted molten saltprocess: A new route to synthesis α-Fe2O3/C nanocomposites and its electrochemical performancein lithium-ion batteries [J]. Electrochimica Acta,2010,55:5006-5013.
    [31] Laruelle, S.; Grugeon, S.; Poizot, P.; Dolle, M.; Dupont, L.; Tarascon, J. M., On the origin of theextra electrochemical capacity displayed by MO/Li cells at low potential [J]. Journal of TheElectrochemical Society,2002,149(5):A627-A634.
    [32] Zhukovskii, Y. F.; Kotomin, E. A.; Balaya, P.; Maier, J., Enhanced interfacial lithium storage innano composites of transition metals with LiF and Li2O: Comparison of DFT calculations andexperimental studies [J]. Solid State Sciences,2008,10:491-495.
    [33] Li, H.; Balaya, P.; Maier, J., Li-storage via heterogeneous reaction in selected binary metalfluorides and oxides [J]. Journal of Electrochemical Society,2004,151(11):A1878-A1885.
    [34] Jamnik, J.; Maier, J., Nanocrystallinity effects in lithium battery materials aspects of nano-ionics[J]. Physical Chemistry Chemical Physics,2003,5:5215-5220.
    [35] Zhuang, Q. C.; Wei, T.; Du, L. L.; Cui, Y. L.; Fang, L.; Sun, S. G., An electrochemical impedancespectroscopic study of the electronic and ionic transport properties of spinel LiMn2O4[J]. TheJournal of Physical Chemistry C,2010,114:8614-8621.
    [36] Qiu, X. Y.; Zhuang, Q. C.; Zhang, Q. Q.; Cao, R.; Ying, P. Z.; Qiang, Y. H.; Sun, S. G.,Electrochemical and electronic properties of LiCoO2cathode investigated by galvanostatic cyclingand EIS [J]. Physical Chemistry Chemical Physics,2012,14:2617-2630.
    [37] Bao, W. J.; Zhuang, Q. C.; Xu, S. D.; Cui, Y. L.; Shi, Y. L.; Qiang, Y. H., Investigation ofelectronic and ionic transport properties in α-MoO3cathode material by electrochemicalimpedance spectroscopy [J]. Ionics,2013,19:1005-1013.
    [38] Xiao, Y. H.; Liu, S. J.; Fang, S. M.; Jia, D. Z.; Su, H. Q.; Zhou, W. L.; Wiley, J. B.; Li, F.,Plum-like and octahedral Co3O4single crystals on and around carbon nanotubes: large scalesynthesis and formation mechanism [J]. RSC Advances,2012,2:3496-3501.
    [39] Aurbach, D.; Weissman, I.; Zaban, A.; Dan, P., On the role of water contamination in rechargeableli batteries [J]. Electrochimica Acta,1999,45:1135-1140.
    [1] Yoon, T.; Chae, C.; Sun, Y. K.; Zhao, X.; Kung, H. H.; Lee, J. K., Bottom-up in situ formation ofFe3O4nanocrystals in a porous carbon foam for lithium-ion battery anodes [J]. Journal of MaterialsChemistry,2011,21:17325-17330.
    [2] Zhang, W. M.; Wu, X. L.; Hu, J. S.; Guo, Y. G.; Wan, L. J., Carbon coated Fe3O4nanospindles as asuperior anode materials for lithium-ion batteries [J]. Advanced Functional Materials,2008,18:3941-3946.
    [3] Su, J.; Cao, M. H.; Ren, L.; Hu, C. W., Fe3O4-graphene nanocomposites with improved lithiumstorage and magnetism properties [J]. The Journal of Physical Chemistry C,2011,115:14469-14477.
    [4] Chen, Y. X.; He, L. H.; Shang, P. J.; Tang, Q. L.; Liu, Z. Q.; Liu, H. B.; Zhou, L. P., Micro-sized andnano-sized Fe3O4particles as anode materials for lithium-ion batteries [J]. Journal of MaterialsScience&Technology,2011,27(1):41-45.
    [5] Zhang, Q. M.; Shi, Z. C.; Deng, Y. F.; Zheng, J.; Liu, G. C.; Chen, G. H., Hollow Fe3O4/C spheresas superior lithium storage materials [J]. Journal of Power Sources,2012,197:305-309.
    [6] Xiong, Q. Q.; Tu, J. P.; Lu, Y.; Chen, J.; Yu, Y. X.; Qiao, Y. Q.; Wang, X. L.; Gu, C. D., Magnetite(Fe3O4) microspheres: The highly powerful storage versus lithium as an anode for lithium ionbatteries [J]. The Journal of Physical chemistry C,2012,116:6495-6502.
    [7] Sahoo, Y.; Goodarzi, A.; Swihart, M. T.; Ohulchanskyy, T. Y.; Kaur, N.; Furlani, E. P.; Prasad, P. N.,Aqueous ferrofluid of magnetite nanoparticles: fluorescence labeling and magnetophoretic control[J]. The Journal of Physical chemistry B,2005,109:3879-3885.
    [8] Qian, Z.; Zhang, Z. C.; Chen, Y. J., A novel preparation of surface-modified paramagneticmagnetite/polystyrene nanocomposites microspheres by radiation-induced miniemulsionpolymerization [J]. Journal of Colloid and Interface Science,2008,327:354-361.
    [9] Xu, S. J.; Zhu, Y. J.; Chen, F., Solvothermal synthesis, characterization and magnetic properties ofα-Fe2O3and Fe3O4flower-like hollow microspheres [J]. Journal of Solid State Chemistry,2013,119:204-208.
    [10] Jamnik, J.; Maier, J., Nanocrystallinity effects in lithium battery materials aspects of nano-ionics[J]. Physical Chemistry Chemical Physics,2003,5:5215-5220.
    [11] Yao, X. Y.; Tang, C. L.; Yuan, G. X.; Cui, P.; Xu, X. X.; Liu, Z. P., Porous hematite (α-Fe2O3)nanorods as an anode material with enhanced rate capability in lithium-ion batteries [J].Electrochemistry Communications,2011,13:1439-1442.
    [12] Wu, Y.; Wei, Y.; Wang, J. P.; Jiang, K. L.; Fan, S. S., Conformal Fe3O4sheath on aligned carbonnanotubes scaffolds as high-performance anodes for lithium ion batteries [J]. Nano Letters,2013,13:818-823.
    [13] He, Y.; Huang, L.; Cai, J. S.; Zheng, X. M.; Sun, S. G., Structure and electrochemical performanceof nanostructured Fe3O4/carbon nanotubes composites as anodes for lithium ion batteries [J].Electrochimica Acta,2010,55:1140-1144.
    [14] Ban, C. M.; Wu, Z. C.; Gillaspie, D. T.; Chen, L.; Yan, Y. F.; Blackburn, J. L.; Dillon, A. C.,Nanostructured Fe3O4/SWNT electrode: Binder-free and high-rate li-ion anode [J]. AdvancedMaterials,2010,22: E145-E149.
    [15] Wu, P.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R., Carbon nanocapsules as nanoreactors forcontrollable synthesis of encapsulated iron and iron oxides: magnetic properties and reversiblelithium storage [J]. The Journal of Physical Chemistry C,2011,115:3612-3620.
    [16] Hwang, J. K.; Lim, H. S.; Sun, Y. K.; Suh, K. D., Monodispersed hollow carbon/Fe3O4compositesmicrospheres for high performance anode materials in lithium-ion batteries [J]. Journal of PowerSources,2013,244:538-543.
    [17] Behera, S. K., Enhanced rate performance and cyclic stability of Fe3O4-graphene nanocompositesfor li ion battery anodes [J]. Chemical Communications,2011,47:10371-10373.
    [18] Merel, P.; Tabbal, M.; Chaker, M.; Moisa, S.; Margot, J., Direct evaluation of the sp3content indiamond-like-carbon films [J].Applied Surface Science,136:105-110.
    [19] Edwards, E. R.; Antunes, E. F.; Botelho, E. C.; Baldan, M. R.; Corat. E. J., Evaluation of residualiron in carbon nanotubes purified by acid treatments [J]. Applied Surface Science,2011,258:641-648.
    [20] Puziy, A. M.; Poddubnaya, O. I.; Socha, R. P.; Gurgul, J.; Wisniewski, M., XPS and NMR studiesof phosphoric acid activated carbons [J]. Carbon,2008,46:2113-2123.
    [21] Piao, Y. Z.; Kim, H. S.; Sung, Y. E.; Hyeon, T., Facile scalable synthesis of magnetitenanocrystals embedded in carbon matrix as superior anode materials for lithium-ion batteries [J].Chemical Communications,2010,46:118-120.
    [22] Xiong, Q. Q.; Lu, Y.; Wang, X. L.; Gu, C. D.; Qiao, Y. Q.; Tu, J. P., Improved electrochemicalperformance of porous Fe3O4/carbon core/shell nanorods as an anode for lithium-ion batteries [J].Journal ofAlloys and Compounds,2012,536:219-225.
    [23] Wang, L.; Yu, Y.; Chen, P. C.; Zhang, D. W.; Chen, C. H., Electrospining synthesis of C/Fe3O4composites nanofibers and their application for high performance lithium-ion batteries [J]. Journalof Power Sources,2008,183:717-723.
    [24] Jin, S. L.; Deng, H. G.; Long, D. H.; Liu, X. J.; Zhao, L.; Liang, X. Y.; Qiao, W. M.; Ling, L. C.,Facile synthesis of hierarchically structured Fe3O4/carbon microflowers and their application tolithium-ion battery anodes [J]. Journal of Power Sources,2011,196:3887-3893.
    [25] Barsoukov, E.; Kim, J. H.; Kim, D. H.; Hwang, K. S.; Yoon, C. O.; Lee, H., Parametric analysisusing impedance spectroscopy: relationship between material properties and battery performance[J]. Journal of New Materials for Electrochemical Systems,2000,3:303-310.
    [26]樊小勇;庄全超;魏国祯;柯福生;黄令;董全峰;孙世刚,以多孔铜为集流体制备Cu6Sn5合金负极及其性能[J].物理化学学报,2009,25:611-616.
    [27]杜莉莉;庄全超;魏涛;史月丽;强颖怀;孙世刚, Si/C复合材料电极首次嵌锂过程的电化学阻抗谱研究[J].化学学报,2011,69:2641-2647.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700