若干可压缩非牛顿流的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
流体力学是力学的一门分支,是研究流体现象以及相关力学行为的科学.目前为止,流体力学和其他学科之间的相互浸透和融合,已经形成了许多分支,很多物理学家和数学家都在致力于这方面的研究.
     经典的牛顿流体力学认为,在平行流动中,剪切力与剪切速率是成正比的,其比例系数称为粘性系数.在此基础上,可以得到著名的Navier-Stokes方程.近年来,人们对非牛顿流体的重要特性有了越来越多的认识.人们发现,日常生活中存在着大量的不服从牛顿常粘度定律的流体,即非牛顿流体.在自然界中非牛顿流体是普遍存在的.对于这类流体,在应力作用下,它将连续改变其运动状态,它的本构关系与牛顿常粘度定律有显著区别.然而,目前关于这方面的结果还很少,因此对非牛顿流的研究是很有必要的.
     本文我们主要讨论了几类可压缩非牛顿流.在第二章中,我们研究了一维有界区间上的带有位势的可压缩非牛顿流具有下列初边值条件其中ΩT=I×(0,T),I=(0,1),初始密度ρ0≥0,4/3     由于方程具有强耦合性、奇异性,同时我们允许真空的出现,这些都给我们直接证明带来了很大的困难.为了克服此困难我们先对具有奇异性的粘性项进行了正则化处理,证明无真空情形下解的存在性,再通过取极限的过程回到原问题,进而证明了问题强解的存在唯一性.具体定理如下:
     定理0.0.1.假设(ρ0,u0,f)满足下列条件且满足函数g∈L2(I),使得初始值满足下列相容性条件
     则存在一个时间T*∈(0,+∞),问题(1)-(2)存在唯一强解(ρ,u,(?)),并具有下列性质:在第三章中,我们研究了带有粒子作用的非牛顿流剪切变稠流
     具有下列初边值条件
     其中未知量ρ,u,η,P(ρ)=aργ分别代表流体密度、速度、混合物中粒子的密度和压力,a>0,γ>1,μ0>0,p>2,给定函数(?)(x)代表外部势能(例如重力和浮力).特殊地,如果中是重力势,则中=cx,其中c是重力常数.λ>0是粘性系数,β≠0是一个常数.对上述问题,我们证明了强解的存在唯一性.主要结果叙述如下:
     定理0.0.2.令μ0>0是一个正常数且(?)∈C2(Ω),假设初值(ρ0,u0,η0)满足下面条件以及相容性条件
     其中g∈L2((Ω).则存在一个时间T*∈(0,+∞),问题(5)-(6)存在唯一的强解(ρ,u,η),且满足在第四章中,我们研究了带有粒子作用的非牛顿流剪切变稀流
     具有下列初边值条件
     其中未知量ρ,u,η,P(ρ)=aργ分别代表流体密度、速度、混合物中粒子的密度和压力,a>0,γ>1,4/30是粘性系数,β≠0是一个常数.
     对上述问题,由于方程具有强耦合性、奇异性,类似于第二章的证明方法,我们先对具有奇异性的粘性项进行了正则化处理,证明无真空情形下解的存在性,再通极限过程证明了问题强解的存在唯一性.我们得到如下结果:
     定理0.0.3.令(?)∈C2((Ω),假设初值(ρ0,u0,η0)满足下面条件
     以及相容性条件
     其中g∈L2((Ω).则存在一个时间T*∈(0,+∞),使得问题(9)-(10)存在唯一的强解(ρ,u,η),且满足
Fluid mechanics is a branch of physics which studies the phenomenon and behaviorof fluids in the associate field. So far, Fluid mechanics has formed many branches betweenother sciences, many physicists and mathematicians have devoted in this field.
     In classical newtonian mechanics, in parallel flow, shear stress is proportional to theshear rate. The coefcient of proportionality is called viscous coefcient. On this basis,one can get the famous Navier-Stokes equation.
     In recent years, with the growing awareness of the important characteristics of nonNewtonian fluid, one found that, in daily life, there are a lot of fluids do not obey theconstant viscosity of Newtonian law, namely the non Newtonian fluid. Non-Newtonianfluid is universal in nature. For this type of fluid, under stress, will continue to changeits state of motion, its constitutive relationship with Newton viscosity law have obviousdiferences. However, there are few results about this type of fluids. So it is necessary tostudy the non Newtonian fluids.
     This thesis is devoted to study several classes of compressible non-Newtonian fluid
     models. In chapter2, we consider the following system in one-dimensional bounded interval
     with the initial and boundary conditions
     where ΩT=I x (0,T),I=(0,1), the initial density p0≥0,4/3<p, q<2are given constants.The unknown variables p,u,P,Φ denote the density, velocity, pressure and the non-Newtonian gravitational potential, respectively.
     Since the second equation (13) has singularity, and the vacuum may appear, We first regularized the viscous term, then by using the iterative method we prove the local existence and uniqueness of strong solutions based on some compatibility condition. We obtain the following theorem:
     Theorem0.0.1. If (p0,u0, f) satisfies the following conditions and if there is a function g E L2(I), such that the initial data satisfy the following compatibility condition:
     Then there exist a time T*∈(0,+∞) and a unique strong solution (p, u,Φ) to (13)-(14) such that
     In chapter3,we consider the following system in one-dimensional bounded interval
     with the initial and boundary conditions
     where p,u,δη,P(p)=apγ denotes the fluid density, velocity, the density of particle in the mixture and pressure respectively, a>0,γ>1,μ0>0,p>2, the given function Φ(χ) denotes the external potential (typically incorporating gravity and buoyancy). In particular, if Φ is the gravitational potential, then Φ=cx, where c is the gravitational constant.γ>0is the viscosity coefficient and β≠0is a constant.
     We obtain the local existence and uniqueness of strong solutions based on some compatibility condition. Our main result is stated in the following theorem
     Theorem0.0.2. Let μ0>0be a positive constant and Φ∈C2(Ω),and assume that the initial data(p0,u0,η0) satisfy the following conditions and the compatibility condition ((u0x2+μ0)(p-2)/2u0χ)χ-(p(ρ0)+η0)χ-η0Φχ=ρ0(g+βΦχ),(19) for some g∈L2(Ω).Then there exist a T*∈(0,+∞) and unique strong solution (ρ,u,η)to(17)-(18such than
     In chapter4,we consider the following system in one-dimensional bounded interval with the initial and boundary conditions
     where p,u,η,P(ρ)=aργ denotes the fluid density,velocity,the density of particle in the mixture and pressure respectively,a>0,γ>1,4/30is the viscosity coefficient and β≠0is a constant.
     Similar to the method in chapter2,Firstly we regularized the viscous term,then by using the iterative method, the local existence and uniqueness of strong solutions was proved.we have the following theorem:
     Theorem0.0.3. LetΦ∈C2(Ω),and assume that the initial data (po,uo,ηo) satisfy the following conditions and the compatibility condition for some g∈L2(Ω). Then there exist a time T*∈(0,+∞) and a unique strong solution (p,u,η) to (21)-(22)such that
引文
[1] Adams R A. Sobolev Space[M]. Academic Press, New York,1975.
    [2] Baranger C, Boudin L, Jabin P E, Mancini S, A modeling of biospray for the upperairways. CEMRACS2004-mathematics and applications to biology and medicine[J].ESAIM Proc.,2005,14:41-47.
    [3] Bellout H, Bloom F, Neˇcas J, Existence, niqueness and stability of solutions tothe initial boundary value problem for bipolar viscous fluids[J]. Diferential IntegralEquations1994,8:453-464.
    [4] Berres S, Bu¨rger R, Karlsen K H, and Tory E M, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression[J].SIAM J. Appl. Math.,2003,64:41-80.
    [5] Bo¨hme G, Non-Newtonian Fluid Mechanics[M]. Appl. Math. Mech., North-Holland,Amsterdam,(1987).
    [6] Carrillo J A, and Goudon T, Stability and asymptotic analysis of a fluid-particleinteraction model[J]. Commun. Partial Difer. Equ.,2006,31:1349-1379.
    [7] Carrillo J A, Karper T, and Trivisa K, On the dynamics of a fluid-particle model:the bubbling regime[J]. Nonlinear Analysis,2011,74:2778-2801.
    [8] Chhabra R P, Bubbles, Drops, and Particles in Non-Newtonian Fluids, SecondEdition[M]. Talor&Francis, New York,(2007).
    [9] Choe H, Kim H, Strong solutions of the Navier-Stokes equations for isentropiccompressible fluids[J]. J.Diferential Equations,2003,190:504-523.
    [10] Choe Y, Choe H, Kim. H, Unique solvability of the initial boundary value problemsfor compressible viscous fluids[J]. Journal de Math′ematiques Pures et Applqu′ees,2004,83:243-275.
    [11] Cho Y, and Kim H, Existence results for viscous polytropic fluids with vacuum[J].J. Diferential Equations,2006,228:377-411.
    [12] Ding S, Wen H, Yao L, Zhu C, Global solutions to one-dimensional compress-ible Navier-Stokes-Poisson equations with density-dependent viscosity[J]. J. Math.Phys.,2009,50:023101.
    [13] Ducomet B, A remark about global existence for the Navier-Stokes-Poisson sys-tem[J]. Appl. Math. Lett.,1999,12:31-37.
    [14] Evans L C, Partial difrential equations.//Graduate Studies in Math.[M]. vol.19.Providence: Amer. Math. Soc.,1998.
    [15] Fang D Y, Zi R Z, and Zhang T, Global classical large solutions to a1D fluid-particleinteraction model: The bubbling regime[J]. J. Math. Phys.,2012,53:033706.
    [16] Feireisl E, and Petzeltov′a H, Large time behavior of solutions to the Navier-Stokesequations of compressible flow[J]. Arch. Ration. Mech. Anal.,1999,150:77-96.
    [17] Feireisl E, Novotny′A, and Petzeltov′a H, On the existence of globally defined weaksolution to the Navier-Stokes equations[J]. J.Math.Fluid Mech.,2001,3:358-392.
    [18] Gajewski H, Groger K, Zacharias K. Nichtlineare operatorgleichungen und opera-tordiferentialgleichungen[M]. Akademie-Verlag, Berlin,1974.
    [19] Goudon T, Jabin P E, Vasseur A, Hydrodynamic limit for the Vlasov-Navier-Stokesequations. I. Light particles regime[J]. Indiana Univ. Math. J.,2004,53(6):1495-1515.
    [20] Goudon T, Jabin P E, Vasseur A, Hydrodynamic limit for the Vlasov-Navier-Stokesequations. II. Fine particles regime[J]. Indiana Univ. Math. J.,2004,53(6):1517-1536.
    [21] Guo B, Zhu P, Partial regularity of suitable weak solutions to the system of theincompressible non-Newtonian fluids[J]. J.Diferential Equations,2002,178:281-297.
    [22] Hamdache K, Global existence and large time behaviour of solutions for the Vlasov-Stokes equations[J]. Japan J. Indust. Appl. Math.,1998,15:51-74.
    [23] Hao C, Li H, Global existence for compressible Navier-Stokes-Poission equations inthree and higher dimensions[J]. J.Difrential Equations,2009,246:4791-4812.
    [24] Hof D. Global existence for1D compressible, isentropic Navier Stokes equationswith large initial data[J]. Trans. Amer. Math. Soc.,1987,303:169181.
    [25] Hof D. Spherically symmetric solutions of the Navier-Stokes equations for com-pressible, isothermal flow with large, discontinuous initial data[J]. Indiana Univ.Math. J.,1992,41(4):12251302.
    [26] Hof D. Discontinuous solutions of the Navier Stokes equations for multidimen-sional flows of heat conducting fluids[J]. Arch. Rational Mech. Anal.,1997,139(4):303354.
    [27] Hof D, Smoller J. Non-formation of vacuum states for Navier Stokes equations[J].Commun. Math. Phys.,2001,216(2):255276.
    [28] Huang X D, Li J, Xin Z, Global Well-Posedness of Classical Solutions with LargeOscillations and Vacuum to the Three-Dimensional Isentropic Compressible Navier-Stokes Equations[J]. Comm.Pure Appl.Math,2012,65:549-585.
    [29] Huilgol R R, Continuum Mechanics of Viscoelastic Liquids[M]. Hindustan Publish-ing Corporation, Delhi (1975).
    [30] Itaya N, On the Cauchy problem for the system of fundamental equations describingthe movement of compressible viscous fluids[J]. Kodai Math.Sem.Rep.,1971,23:60-120.
    [31] Jiang S, Zhang P, On spherically symmetric solutions of the compressible isentropicNavier-Stokes equations[J]. Communications in Mathematical Physics,2001,215:559-581.
    [32] Jiang S, Zhang P, Axisymmetric solutions of the3D Navier-Stokes equations forcompressible isentropic fluids[J]. Journal de Math′ematiques Pures et Applqu′ees,2003,82:949-973.
    [33] Kufner A, John O, Fu′c′k S. Function Space[M]. Academia, Prague,1977.
    [34] Ladyzhenskaya O A, The Mathematical Theory of Viscous Incompressible flow,2ndEnglish Ed.[M]. Gordon and Breach, New York (1969).
    [35] Ladyzhenskaya O A, New equations for the description of viscous incompressiblefluids and solvability in the large of the boundary value problems for them. InBoundary Value Problems of Mathematical Physics[M]. vol. V, Amer. Math. Soc.,Providence, RI.,(1970).
    [36] Li H, Matsumura A, Zhang G, Optimal decay rate of the compressible Navier-Stokes-Poisson system in R3, Arch. Rational Mech. Anal.,2010,196:681-713.
    [37] Lions J L, Quelques M′ethods de R′esolution des Problemes aux Limites Non-lin′eaires[M]. Dunod, Paris (1969).
    [38] Lions P L, Mathematical topics in fluid dynamics, Vol.2, Compressible models[M].Oxford University Press, Oxford (1998).
    [39] M′alek J, Necˇas J, Rokyta M, Ru˙zˇicˇka M, Weak and Measure-Valued Solutions toEvolutionary PDEs[M]. Chapman and Hall, New York,(1996).
    [40] Mamontov A E, Global regularity estimates for multidimensional equations of com-pressible non-Newtonian fluids[J]. Ann. Univ. Ferrara-Sez. VII-Sc. Mat,2000,139-160.
    [41] Mellet A, and Vasseur A, Asymptotic analysis for a Vlasov-Fokker-Planck/compressible Navier-Stokes system of equations[J]. Commun. Math.Phys.,2008,281:573-596.
    [42] Qin Y M, Liu X and Yang X G, Global existence and exponential stability ofsolutions to the one-dimensional full non-Newtonian fluids[J]. Nonlinear Analysis:Real world Applications,2012,13:607-633.
    [43] Rozanova O, Nonexistence results for a compressible non-Newtonian fluid withmagnetic efects in the whole space[J]. J. Math. Anal. Appl.,2010,371:190-194.
    [44] Sartory W. K, Three-component analysis of blood sedimentation by the method ofcharacteristics[J]. Math. Biosci.,1977,33:145-165.
    [45] Schwalter W R, Mechanics of Non-Newtonian Fluid[M]. Pergamon Press, New York,NY (1978).
    [46] Solonnikov V A, Evolution free boundary problem for equations of motion of viscouscompressible selfgravitating fluid[J]. SAACM,1993,3:257-275.
    [47] Spannenberg A and Galvin K P, Continuous diferential sedimentation of a binarysuspension[J]. Chem. Eng. Aust.,1996,21:7-11.
    [48] Tory E M, Karlsen K H, Bu¨rger R, and Berres S, Strongly degenerate parabolic-hyperbolic systems modeling polydisperse sedimentation with compression[J].SIAM J. Appl. Math.,2003,64:4180.
    [49] Williams F A, Combustion Theory,2nd ed[M]. Benjamin Cummings Publ.(1985).
    [50] Williams F A, Spray combustion and atomization[J]. Phys. Fluids,1958,1:541-555.
    [51] Wu Z, Zhu C. Vacuum problem for1D compressible Navier-Stokes equations withgravity and general pressure law[J]. Z. Angew. Math. Phys.,2009,60(2):246-270.
    [52] Wu Z, Regularity and asymptotic behavior of1D compressible Navier-Stokes-Poisson equations with free boundary[J]. J.Math.Anal.Appl.,2011,374:29-48.
    [53] Wu Z, Yin J, Wang C, Elliptic and Parabolic Equations[M]. World Scientific,2006.
    [54] Xin Z, Blow up of smooth solutions to the compressible Navier-Stokes equationwith compact density[J]. Comm.Pure Appl.Math,1998,51:229-240.
    [55]Yin J, Tan Z, Global Existence of Strong Solutions of Navier Stokes Poisson Equations for One-Dimensional Isentropic Compressible Fluids [J]. Chin.Ann.Math.Ser.B,2008,29(4):441-458.
    [56]Yin J, Tan Z, Local existence of the strong solutions for the full Navier-Stokes-Poisson equations [J]. Nonlinear Anal.,2009,71:2397-2415.
    [57]Yuan H, XU X, Existence and uniqueness of solutions for a class of non-Newtonian fluids with singularity and vacuum[J]. J. Differential Equations,2008,245(10):2871-2916.
    [58]Zhang Y, Tan Z, On the existence of solutions to the Navier Stokes Poisson equa-tions of a two-dimensional compressible flow[J]. Math.Methods Appl.Sci.,2007,30:305-329.
    [59]Zhao C, Zhou S, Li Y, Trajectory attractor and global attractor for a two-dimensional incompressible non-Newtonian fluid [J]. J.Math.Anal. Appl.,2007,325:1350-1362.
    [60]Zeidler E. Nonlinear fnctional analysis Ⅱ/B-Nonlinera Monotone operators[M]. Springer-Verlag, Berlin-heidelberg-New York,1990.
    [61]韩式方,非牛顿流体连续介质力学[M].四川科学技术出版社,成都,1988.
    [62]李大潜,秦铁虎,物理学与偏微分方程(第2版)(上、下册)[M].北京:高等教育出版社,2005.
    [63]王长佳,某些可压缩完全非牛顿流模型强解的存在唯一性[D].长春:吉林大学数学学院,2010.
    [64]许孝精,一类具有真空的可压缩非牛顿流[D].长春:吉林大学数学学院,2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700