面向装备健康管理的可测性技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着装备维修保障模式的逐步转变和故障预测使能技术的不断成熟,装备健康管理(Equipment Health Management,EHM)必然成为未来装备设计、生成和使用的重要组成部分。EHM能力一方面依赖于信息的处理与决策,另一方面更依赖于信息的获取。随着装备复杂性的增加,有必要在装备设计研制一开始就根据EHM的需求考虑可测性问题,选择全面的测试项目、配置合理的传感器、制定科学的测试时机,并采用相应技术手段嵌入设计到装备中。目前的可测性理论与技术主要面向状态监控与故障诊断,没有考虑故障大小、故障演化和健康评估对可测性的需求。如何根据EHM需求,在装备早期设计阶段并行开展可测性设计是提高EHM能力进而提高维修决策能力的根本途径,也是目前我军装备发展中亟待解决的重要问题之一。
     本文针对目前可测性中融入EHM功能需求后内涵体系尚不明确、关键技术有待理清和突破等实际情况,从可测性指标、可测性模型、可测性优化设计等方面进行系统深入研究。论文的主要研究内容与成果包括:
     1.在当前可测性理论和框架下,根据EHM的功能需求明确了面向EHM的可测性内涵,提出了面向EHM的可测性技术体系。
     2.针对目前可测性指标主要用于故障可检测和故障可隔离能力评价,不能有效描述故障可预测和健康可评估能力的问题,在深入分析EHM对可测性的本质需求基础上,从“准确性”和“时效性”两个方面构建了面向EHM的可测性指标体系,并分析了指标间的关联关系。
     3.系统地分析了可测性中考虑EHM功能后的建模需求,建立了面向EHM的定量不确定分层模型。在系统层,通过定量有向图和功能故障分析建立故障—测试相关性,并以概率、模糊和不确定的形式定量描述故障属性、测试属性和传播属性;在组件层,通过失效物理模型或扩展故障模式、机理和影响分析构建故障演化—测试相关性。装备定量不确定分层模型可以表示成一个多元相关性矩阵,基于该矩阵可实现面向EHM的可测性分析与评估。
     4.分析了可测性中融入EHM后对测试项目的需求,提出了面向EHM的测试优化选择与传感器优化配置框架与方法。首先提出了测点初步布置的一般原则和方法,提出了面向EHM的测试优化选择模型和方法。在此基础上,从故障特性、传感器特性、故障与传感器之间的匹配特性系统地分析了传感器对故障检测的不确定性,然后基于故障可预测对传感器的需求以及传感器对故障检测的不确定性,建立了以传感器总代价最小为优化目标,以传感器不确定检测下的故障可检测率、故障可隔离率和故障可预测率为约束条件的传感器优化配置模型,并设计了遗传算法进行求解。
     5.基于可测性和EHM融合后的内涵和技术体系,分析了测试时机优化的必要性和新需求,提出了基于Markov理论的面向EHM的测试时机优化制定方法。首先,以贮存模式装备为背景研究并提出了基于Markov更新过程的周期测试时机优化技术。进一步地,以使用模式装备为背景分析了EHM对动态序贯测试的需求;根据动态序贯测试的特点,给出了部分可观半Markov决策过程的形式化描述;通过引入信念状态把部分可观半Markov决策过程转化为完全可观信念半Markov决策过程;在此基础上建立了以装备在长期运行条件下的平均费用率(主要包括维修费用、测试费用和停机损失费用)最低为优化目标的动态序贯测试时机优化模型。该模型以装备的健康状态为基础动态决策下次测试时机,并考虑了装备健康状态评估的不确定性,更符合EHM的功能需求。所研究的动态序贯测试优化模型同样适用于贮存模式装备。
     论文以典型机电伺服系统为案例贯穿各章节,验证所提模型与方法,构成了一个完整的工程案例,表明本文所提理论、模型与方法的正确性、可行性与有效性,具有很好的工程实践指导价值。
With the gradual transformation of equipment maintenance support modes and theever increasing maturity of fault prognostics technologies, equipment healthmanagement (EHM) is bound to become an important part in the design, production andusage of future equipments. On the one hand, EHM performance relies on informationprocessing and decision making, and is more dependent on information acquisition onthe other hand. With the increase of equipment complexity, it is necessary to taketestability into account according to EHM requirements at equipment design stage, e.g.,how to select comprehensive test items, configure rational sensors, make scientific testtiming and adopt the corresponding technologies to realize the testability design. Thecurrent testability theory and technology, which are mainly for condition monitoringand fault diagnostics, do not consider the requirements of fault size, fault evolution andhealth evaluation for testability. How to develop testability design concurrentlyaccording to EHM requirements at the early design stage is a fundamental way toimprove EHM performance and further improve maintenance decision ability, and isalso a problem urgently to be solved during the development of equipments.
     In view of the fact that after considering EHM requirements in testability, theconnotations and architecture are not yet clear and the key technologies still await to bebreakthrough, this dissertation conducts in-depth studies on testability index, testabilitymodel and testability optimization design. The main content and outcomes are listed asfollows:
     1. Based on the current testability theory and framework and according to thefunctional requirements of EHM, the connotation of testability for EHM is defined andthe technology architecture of testability for EHM is proposed.
     2. To address the problems that the current testability indices are mainly used toevaluate fault detectability level and fault isolability level and are unable to describetestability level for EHM comprehensively, based on the qualitative intrinsicrequirements analysis of EHM for testability, testability indices architecture for EHM isconstructed from the aspects of “accuracy” and “timelines”, and the relationshipsbetween the indices are further analyzed.
     3. The modeling requirements after considering EHM functions in testability areanalyzed systematically and a quantified uncertainty hierarchical model (QUHM) isconstructed. At the system level, fault-test dependency is modeled through quantifieddirected graph and functional fault analysis; meanwhile fault attributes, test attributesand fault propagation attributes are assigned to the nodes and directed edges in the formof probability, fuzziness and uncertainty. At the component level, fault evolution-testdependency is obtained by physics-of-failure models or extended failure modes, mechanisms and effects analysis. The QUHM can be represented by a multipledependency matrix, based on which testability analysis and evaluation for EHM can berealized.
     4. The requirements of test item for EHM are analyzed, and a general process fortest optimization selection and sensor optimization configuration is proposed. Based onthe process, test preliminary selection rules and approaches are presented firstly. Then, atest selection and optimization model for EHM is formulated and a Boolean logic-basedoptimization method is also designed. Finally, fault detection uncertainty is analyzedsystematically from fault attributes, sensor attributes and fault-sensor matchingattributes. Based on the framework and fault detection uncertainty analysis, a sensoroptimization configuration model is formulated, which takes total sensor cost asoptimization object and the testability indices under uncertain detection as constraintconditions. Due to NP-hard property of the model, a genetic algorithm is designed toobtain the optimal sensor configuration.
     5. Based on the connotations and technology architecture of testability for EHM,the necessity and new requirements of test timing optimization are analyzed, and aMarkov-based test timing optimization method is studied. Firstly, for the storageequipments, a periodic test timing optimization approach based on Markov renewalprocess is presented. Further, for the usage equipments, the requirements of EHM fordynamic sequential test (DST) are analyzed. According to the characteristics of DST,the partially observable semi-Markov decision processes (POSMDP) is formulated.Then, POSMDP is converted to be completely observable belief semi-Markov decisionprocesses, based on which a dynamic sequential test timing optimization model isconstructed. The goal is to minimize the long-run expected average cost per unit time.The proposed method, which decides the next test timing based on equipment healthstate and considers the health evaluation uncertainty, is more suitable for the functionalrequirements of EHM. The DST is also applicable to storage equipments.
     A typical electromechanical servo system is taken as an example to verify andvalidate the proposed models and methods in the corresponding sections. The resultsshow that the testability indexes, testability model and testability design methods arefeasible, reasonable and available, and are of great engineering significance.
引文
[1] Department of Defense. MIL-STD-2165A,Military standard testability programfor systems and equipments [S].1993.
    [2] GJB2547-95.装备测试性大纲[S].1995.
    [3]曾天翔.电子设备测试性及诊断技术[M].北京:航空工业出版社,1996:7-9.
    [4]田仲,石君友.系统测试性设计分析与验证[M].北京:北京航空航天大学出版社,2003:21-25.
    [5] Department of Defense. MIL-STD-1309D, Military standard definitions of termsfor testing, measurement and diagnostics[S].1992.
    [6] Chae M. J., Yoo H. S., Kim J. Y., et al. Development of a wireless sensornetwork system for suspension bridge health monitoring[J]. Automation inConstruction,2012,21:237-252.
    [7] Flynn E. B., Todd M. D. A Bayesian approach to optimal sensor placement forstructural health monitoring with application to active sensing[J]. MechanicalSystems and Signal Processing,2010,24(4):891-903.
    [8] Zhang N., Tang J., Li Q.S. Optimal sensor locations for structural vibrationmeasurements [J]. Applied Acoustics,2004,65(8):807-818.
    [9] Hess A., Galvello G., Dabney T.. PHM a key enabler for the JSF autonomiclogistics support concept[C].2004Aerospace Conference,2004:3543-3550.
    [10] Orsagh R. F., Brown D. W., Kalgren P. W., Byington C. S. Prognostic healthmanagement for avionic systems[C]. Proceedings of the IEEE AerospaceConference, Big Sky, Montana, USA,2006:1-7.
    [11] Lau D., Fong B. Special issue on prognostics and health management[J].Microelectronics Reliability,2011,51(2):253-254.
    [12] Sandborn P. A., Wilkinson C. A maintenance planning and business casedevelopment model for the application of prognostics and health management(PHM) to electronic systems[J]. Microelectronics Reliability,2007,47(12):1889-1901.
    [13] Pecht M., Jaai R. A prognostics and health management roadmap for informationand electronics-rich systems[J]. Microelectronics Reliability,2010,50(3):317-323.
    [14] Scanff E., Feldman K. L., Ghelam S., et al. Life cycle cost impact of usingprognostic health management (PHM) for helicopter avionics[J].Microelectronics Reliability,2007,47(12):1857-1864.
    [15] Hess A., Fila L. The joint strike figher (JSF) PHM concept: potential impact onaging aircraft problems[C]. Aerospace Conference Proceedings,2002:3021-3026.
    [16] Michael G. P. Prognostics and health management of electronics[M]. John Wiley&Sons. Inc., New Jersey,2008:72-75.
    [17] Smeulers M., Zeelen R., Bos A. PROMIS-a generic PHM methodology appliedto aircraft subsystems[C]. IEEE Aerospace Conference Proceedings,2002:3153-3159.
    [18] Kalgren P. W., Byington C. S., Roemer M. J. Defining PHM-a lexical evolutionof maintenance and logistics[C]. Systems Readiness Technology Conference,2006:353-358.
    [19] Garbos-Sanders R. Melvin L. Childers B. Jambor B. System healthmanagement/vehicle health management for future manned space systems[C].Digital Avionics Systems Conference,16th DASC., AIAA/IEEE,1997:8-17.
    [20] Deidre P. Investigation of integrated vehicle health management approaches[R].Department of Engineering, Clark Atlanta University,2004.
    [21] Datta K., Squires D. A methodology to quantify some IVHM requirementsduring RLV conceptual design[C]. Reliability and Maintainability, AnnualSymposium-RAMS,2004:485-491.
    [22] Paris D. E., Trevino L. C., Watson M. D. A framework for integration of IVHMtechnologies for intelligent integration for vehicle management [C]. IEEEAerospace Conference,2005:3843-3852.
    [23] Dunsdon J., Harrington M. The Application of open system architecture forcondition based maintenance to complete IVHM [C]. IEEE AerospaceConference,2008:1-9.
    [24] Buderath M., Huster H., Bannister M., et al. Integration of SHM into the IVHMarchitecture[C]. IET Seminar on, Aircraft Health Management for NewOperational and Enterprise Solutions,2008:1-9.
    [25] Mackey R., Iverson D., Pisanich G., Toberman M. Integrated system healthmanagement (ISHM) technology demonstration project final report[R].NASA/TM-213482,2006:45-51.
    [26] Reichard K. M., Crow E. C., Rogan C. Integrated system health management inunmanned and autonmous systems[R]. Rohnert Park, California: AIAA2007-2962,2007:1-11.
    [27] Hoyle C., Mehr A., Turner I., Chen W. On quantifying cost-benefit of ISHM inaerospace systems[C]. IEEE Aerospace Conference,2007:1-7.
    [28] Figueroa F., Holland R., Schmalzel J., Duncavage D. Integrated system healthmanagement (ISHM): systematic capability implementation[C]. Proceedings ofthe Sensors Applications Symposium,2006:202-206.
    [29] MacConnell J. H. ISHM&Design: A review of the benefits of the ideal ISHMsystem [C]. IEEE Aerospace Conference,2007:1-18.
    [30] Johnson S. B. Introduction to system health engineering and management inaerospace[R]. Advanced Sensors and Health Management Systems Branch, EV23,NASA Marshall Space Flight Center,2006:31-42.
    [31] Swearingen K., Majkowski W., Bruggeman B., et al. An open systemarchitecture for condition based maintenance overview[C]. IEEE AerospaceConference,2007:1-8.
    [32] Discenzo F. M., Nickerson W., Mitchell C. E., et al. Open systems architectureenables health management for next generation system monitoring andmaintenance[R]. The Office of Naval Research and the PEO Carriers OfficeDevelopment Program White Paper,1999:7-13.
    [33] Xia L. H., Rong L. Q., Zhao M., Wang L. X. Research on open systemarchitecture for equipment health management based on OSA-CBM[C]. IEEEInternational Conference on Intelligent Computing and Intelligent System (ICIS),2010:246-250.
    [34] Gunetti P., Mills A., Thompson H. A distributed intelligent agent architecture forgas-turbine engine health management[C].46th AIAA Aerospace SciencesMeeting and Exhibit, Reno, Nevada,7-10January2008:1-10.
    [35] Bagul Y. G., Zeid I., V S., et al. A framework for prognostics and healthmanagement of electronic systems[C]. IEEE Aerospace Conference,2008:1-9.
    [36]张亮,张凤鸣,李俊涛等.机载预测与健康管理(PHM)系统的体系结构[J].空军工程大学学报(自然科学版),2008,9(2):6-9.
    [37]张宝珍.基于信息的综合诊断体系结构及其在F-35联合攻击机研制中的应用[J].测控技术,24(3):13-16.
    [38] Niu G., Singh S., Holland S. W., Pecht M. Health monitoring of electronicproducts based on Mahalanobis distance and Weibull decision metrics[J].Microelectronics Reliability,2011,51(2):279-284.
    [39] Kumar S., Sotiris V., Pecht M. Mahalanobis distance and projection pursuitanalysis for health assessment of electronic systems[C]. IEEE AerospaceConference,2008:1-9.
    [40] Feng Z. P., Hao R. J., Chu F. L., Zuo M. J., et al. Application of cyclic spectralanalysis to gear damage assessment[C]. Prognostics and Health ManagementConference,2010:1-6.
    [41] Dong M., Peng Y. Equipment PHM using non-stationary segmental hiddensemi-Markov model[J]. Robotics and Computer-Integrated Manufacturing,2011,27(3):581-590.
    [42] Wang P. F., Youn B. D. A generic Bayesian framework for real-time prognosticsand health management (PHM)[C].50th AIAA/ASME/ASCE/AHS/ASCStructures, Structural Dynamics, and Materials Conference, Palm Springs,California,2009:1-16.
    [43] Si X. S., Wang W. B., Hu C. H. Remaining useful life estimation-a review on thestatistical data driven approaches[J]. European Journal of Operational Research,2011,213(1):1-14.
    [44] Sikorska J. Z., Hodkiewicz M., Ma L. Prognostic modeling options for remaininguseful life estimation by industry[J]. Mechanical Systems and Signal Processing,2011,25(5):1803-1836.
    [45] Dempsey P. J., Lewicki D. G., Le D. D. Investigation of current methods toidentify helicopter gear health[R]. NASA/TM-2007-214664,2005:32-37.
    [46] Kobayashi T., Simon D. L. Integration of on-line and off-line diagnosticalgorithms for aircraft engine health management[R]. NASA/TM-2007-214980,2007:51-60.
    [47] Dong M., He D. Hidden semi-Markov model-based methodology formulti-sensor equipment health diagnosis and prognosis[J]. European Journal ofOperational Research,2007,178(3):858-878.
    [48] Mishra S., Ganesan S., Pecht M., et al. Life consumption monitoring forelectronics prognostics[C]. IEEE Aerospace Conference Proceedings,2004:3455-3467.
    [49] Oh H., Azarian M. H., Pecht M., et al. Physics-of-failure approach for fan PHMin electronics applications[C]. Prognostics and Health Management Conference,2010:1-6.
    [50] Chookah M., Nuhi M., Modarres M. A probabilistic physics-of-failure model forprognostic health management of structures subject to pitting and corrosionfaitigue[J]. Reliability Engineering&System Safety,2011,96(12):1601-1610.
    [51] Jie G., Pecht M. Prognostics and health management using physics-of-failure[C].Reliability and Maintainability Symposium (RAMS),2008:481-487.
    [52] Millar R. C. Defining requirements for advanced PHM technologies for optimalreliability centered maintenance[C]. IEEE Aerospace conference,2009:1-7.
    [53] Julka N., Thirunavukkarasu A., Lendermann P., et al. Making use of prognositcshealht management information for aerospace spare components logisticsnetwork optimization[J]. Computers in Industry,2011,62(6):613-622.
    [54] Mao D., Lv C., Shi J., et al. Research of the military aircraft maintenance supportmode based on the prognostics and health management[C]. Prognostics andHealth Management Conference,2010:1-6.
    [55] Xia L. H., Zhao M., Ronh L. Q., Pang R. Research on equipment maintenancedecision system based on health management[C]. IEEE Aerospace ConferenceProceedings,2009:653-657.
    [56]王晗中,杨江平,王世华.基于PHM的雷达装备维修保障研究[J].装备指挥技术学院学报,2008,19(4):83-86.
    [57] He H. B., Zhao J. M., Xu C. A. Cost-benefit model for PHM[J]. ProcediaEnvironmental Sciences,2011,10(Part A):759-764.
    [58] Balaban E., Saxena A., Narasimhan S., et al. Experimental validation of aprognostic health management system for electro-mechanical actuators[R].AIAA2011-1518:1-12.
    [59] Xu P., Wang Z., Li Y. Prognostics and health management (PHM) systemrequirements and validation[C]. Prognostics and Health Management Conference,2010:1-4.
    [60] Reed E., Schumann J., Mengshoel O. J. Verification and validation of systemhealth management models using parametric testing[R]. AIAA2011-1445,2008:1-13.
    [61]曾声奎, Pecht M.,吴际.故障预测与健康管理(PHM)技术的现状与发展[J].航空学报,2005,26(5):626-632.
    [62]龙兵,孙振明.航天器集成健康管理系统研究[J].航天控制,2003,21(2):56-61.
    [63]宁东方,章卫国.一种飞控系统健康管理专家系统的设计[J].测控技术,2007,26(6):76-78.
    [64]朱睿,刘槟.飞机健康管理数据挖掘方法研究[J].中国民航学院学报,2004,22(z1):150-153.
    [65]木志高,胡海峰,胡茑庆.武器装备故障预测及健康管理系统设计[J].武器装备自动化,2006,25(3):20-21.
    [66]温熙森,徐永成,易晓山等.智能机内测试理论与应用[M].北京:国防工业出版社,2002:73-82.
    [67] Magliero L. R. ADS-the IDSS Adaptive diagnostic system[C]. Proceedings of theIEEE AUTOTESTCON,1987:61-64.
    [68] Department of Defense,MIL-HDBK-1814,DOD Handbook IntegratedDiagnostics[S].1997.
    [69] Department of Defense, MIL-HDBK-2165, Military Standard TestabilityProgram for Systems and Equipments[S].1995.
    [70]胡政.边界扫描测试理论与方法研究[D].长沙:国防科学技术大学,1998:85-90.
    [71] IEEE Std1149.1-1990, Standard test access port and boundary-scanarchitecture[S].2001.
    [72] Simpson W. R., Sheppard J. W. System complexity and integrated diagnostics[J].IEEE Design&Test of Computers,1991,8(3):16-30.
    [73] Sheppard J. W., Simpson W. R. A mathematical model for integrateddiagnostics[J]. IEEE Design&Test of Computers,1991,8(4):25-38.
    [74] Sheppard J. W., Simpson W. R. Applying testability analysis for integrateddiagnostics[J]. IEEE Design&Test of Computers,1992,9(3):65-78.
    [75] Simpson W. R., Sheppard J. W. System testability assessment for integrateddiagnostics[J]. IEEE Design&Test of Computers,1992,9(1):40-54.
    [76] Ahmed U., Cheng Z. X., Saito S. Information flow model and estimations forservices on the internet[C]. The18th International Conference on AdvancedInformation Networking and Application,2004:499-505.
    [77] Sheppard J. W. Maintaining diagnostic truth with information flow models[C].Proceedings of the IEEE AUTOTESTCON,1996:447-454.
    [78] Deb S., Pattipati K., Raghavan V., et al. Multi-signal flow graphs: a novelapproach for system testability analysis and fault diagnosis[C]. IEEEAUTOTESTCON'94,1994:361-373.
    [79] Deb S., Ghoshal S., Mathur A., et al. Multisignal Modeling for Diagnosis,FMECA, and Reliability[C]. Proceedings of the IEEE International Conferenceon Systems, Man, and Cybernetics,1998:3026-3031.
    [80] Simpson W. R., Sheppard J. W. System Test and Diagnosis[M]. Boston: KluwerAcademic Publishers,1994:92-95.
    [81] DSI international inc. eXpress[J/OL]http://www.dsiintl/WebLogic/products.aspx,2012.9.
    [82] QSI. TEAMS[J/OL] http://www.teamqsi.com/TEAMS.html,2012.9.
    [83] Hess A., Stechi J. S., Rudv-Clark S. D. The maintenance aware designenvironment: development of an aerospace PHM software tool[C]. Proceedingsof PHM08, Denver,2008:1-9.
    [84] David M. B., Brian A. K., Alony H. Automated testability decision tool[R].Rome Laboratory Air Force Systems Command Griffiss AFB NY,1991:24-27.
    [85]王刚.装备测试性参数优化选择技术研究[D].长沙:国防科学技术大学,2010:36-41.
    [86]常亮明.测试性参数及其指标分配[J].质量与可靠性,1996,64(4):35-38.
    [87]彭万宝,李彦,赵武等.产品开发需求分析技术研究[J].机械工程学报,2006,33(4):44-46.
    [88] David M. B., Brian A. K., Alony H. Automated testa decision tool[R]. RomeLaboratory Air Force Systems Command Griffiss AFB NY,1991:43-47.
    [89]王博,刘媛,洪其麟等.对军用航空发动机可靠性参数体系选择和指标确定的探讨[J].燃气涡轮试验与研究,2003,16(2):38-42.
    [90]吕晓明,黄考利,连光耀等.复杂装备系统级测试性指标确定方法研究[J].计算机测量与控制,2008,16(3):357-362.
    [91]苏永定,邱静,刘冠军.系统测试性指标确定方法[J].测试技术学报,2008,22(5):401-405.
    [92]钱彦岭,邱静,温熙森.确定系统级测试性参数的广义随即Petri网模型[J].系统工程与电子技术,2002,24(5):4-7.
    [93]苏永定.装备系统测试性需求分析技术研究[D].长沙:国防科学技术大学,2011:101-112.
    [94] GJB1770.2-93,对空情报雷达维修性、维修性的分配和预计方法[S].1993.
    [95]沈亲沐.装备系统级测试性分配技术研究及应用[D].长沙:国防科学技术大学,2007:28-30.
    [96] Haynes L., Levy R., Lin C. J., et al. Automatic generation of dependency modelsusing autonomous intelligent agents[C]. Proceedings of the IEEEAUTOTESTCON, OH, USA,1996:303-308.
    [97] Kurtoglu T., Tumer I. Y. A graph based fault identification and propagationframework for functinal design of complex systems[J]. ASME Journal ofMechanical Design,2008,30(5):1-8.
    [98] Kurtoglu T., Johnson S. B., Barszcz E. Johnson J. R. Integrating system healthmanagement into the early design of aerospace systems using functional faultanalysis[C]. International Conference on Prognostics and Health Management,Denver, CO,2008:1-9.
    [99] Biswas G., Mahadevan S. A hierarchical model-based approach to systems healthmanagement[C]. IEEE Aerospace Conference,2007:1-14.
    [100] Zhang G. F. Optimum sensor localization/selection in a diagnostic/prognosticarchitecture[D]. Georgia: Georgia Institute of Technology,2005:62-73.
    [101]连光耀,黄考利,郭瑞等.基于结构模型的测试性设计与分析技术研究[J].系统工程与电子技术,2007,29(10):1777-1780.
    [102]陈希祥.装备测试性方案优化设计技术研究[D].长沙:国防科学技术大学,2011:63-71.
    [103] Bagajewicz M., Sanchez M. Cost-optimal design of reliable sensor networks[J].Computers and Chemical Engineering,2000,23(11-12):1757-1762.
    [104]吕晓明,黄考利,连光耀.基于混沌遗传算法的测试选择优化问题研究[J].弹箭与制导学报,2009,29(3):265-272.
    [105]陈希祥,邱静,刘冠军.基于混合二进制粒子群-遗传算法的测试优化选择研究[J].仪器仪表学报,2009,30(8):1674-1680.
    [106]蒋荣华,王厚军,龙兵.基于离散粒子群算法的测试选择[J].电子测量与仪器学报,2008,22(2):11-15.
    [107]吴涛,叶晓慧,王红霞.基于量子遗传算法测试选择问题的研究[J].计算机测量与控制,2010,18(11):2508-2510.
    [108]苏永定,钱彦岭,邱静.基于启发式搜索策略的测试选择问题研究[J].中国测试技术,2005,31(5):46-48.
    [109] Golonek T., Rutkowski J. Genetic-algorithm-based method for optimal analog testpoints selection[J]. IEEE Transactions on Circuits and Systems-II: Express Briefs,2007,54(2):117-121.
    [110]张亮,张凤鸣.装备健康管理中的传感器优化配置问题研究[J].传感器与微系统,2008,27(7):18-20.
    [111]杨光,刘冠军,李金国等.基于故障检测和可靠性约束的传感器布局优化[J].电子学报,2006,34(2):348-351.
    [112] Xu Y. H., Jiang J. Optimal sensor location in closed-loop control systems for faultdetection and isolation[C]. In Proceedings of the American Control Conference,2000:1195-1199.
    [113] Raghuraj R., Bhushan M., Rengaswamy R. Locating sensors in complex chemicalplants based on fault diagnostic observability criteria[J]. AIChE Journal,1999,45(2):310-322.
    [114] Wang H. Q., Song Z. H., Li P. Improved PCA with optimized sensor locations forprocess monitoring and fault diagnosis[C]. In Proceedings of the39th IEEEConference on Decision and Control,2000:4353-4358.
    [115] Bhushan M., Rengaswamy R. Design of sensor location based on various faultdiagnostic observability and reliability criteria[J]. Computers and ChemicalEngineering,2000,24(2-7):735-741.
    [116]杨鹏,邱静,刘冠军等.基于布尔逻辑的测试选择算法[J].测试技术学报,2007,21(5):386-390.
    [117]杨成林,电书林,龙兵等.基于启发式图搜索的最小测点集优选新算法[J].仪器仪表学报,2008,29(12):2497-2503.
    [118]薛凯旋,黄考利,连光耀等.基于信息流模型和列表寻优法的装备BIT系统测试选择技术研究[J].弹箭与制导学报,2008,28(2):300-302.
    [119]谢政,郁殿龙.测试点的选取问题[J].国防科技大学学报,2001,23(1):93-95.
    [120] Pinjala K. K., Kim B. C. An approach for selection of test points for analog faultdiagnosis[C]. Proceedings of the18th IEEE International Symposium on Defectand Fault Tolerance in VLSI Systems (DFT'03),2003:287-294.
    [121] Pattipati K. R., Alexandridis M. G. Application of Heuristic Search andInformation Theory to Sequential Fault Diagnosis[J]. IEEE Transactions onSystems, Man, and Cybernetics,1990,20(4):872-887.
    [122] Raghavan V., Shakeri M., Pattipati K. R. Test Sequencing Algorithms withUnreliable Tests[J]. IEEE Trans. on SMC Part A-Systems and Humans,1995,29(4):347-357.
    [123] Shakeri M., Raghavan V., Pattipati K. R., et al. Sequential testing algorithms formultiple fault isolation[J]. IEEE Trans. on SMC, Part A,2000,30(1):1-14.
    [124] Shakeri M., Pattipati K. R., Raghavan V., et al. Multiple Fault Isolation inRedundant Systems[C]. Proc. IEEE International Conference on SMC, VanCouver, BC, Canada, October,1995.
    [125] Ruan S., Tu F., Pattipati K. R. On a Multi-mode Test Sequencing Problem[C].IEEE Systems Readiness Technology Conference,2003:194-201.
    [126] Shertukde H. M., Pattipati K. R. Test Sequencing in Hierarchical Systems:Application to Electronic and Electromechanical Systems[C]. InternationalConference on CAD/CAM,Robotics, and the Factories of the Future, New Delhi,India, Dec.19-22,1989:703-711.
    [127]杨鹏.基于相关性模型的诊断策略优化设计技术[D].长沙:国防科学技术大学,2008:71-82.
    [128] AD-A241621. Analysis and demonstration of diagnostic performance in modernelectronic systems[R]. Rohnert Park, AIAA,1991:50-53.
    [129] N000140-00-BAA3339. Integrated product/process development in update andmodification programs[R]. NASA,2003:42-47.
    [130] Cotton R., Lopez J. Establishment of the B-2avionics organic depot[C].AUTOTESTCON’97.1997IEEE Autotestcon Proceedings22-25Sept,1997:212-217.
    [131]彭俊杰,黄庆成,洪炳熔等.一种用于星载系统可靠性评测的软件故障注入工具[J].宇航学报,2005,26(6):823-826.
    [132]舒燕君,曲峰,董剑等.通用容错测试仪GFTE的设计与实现[J].航天控制,2004,22(6):58-61.
    [133]秦海波,张天宏,孙健国.面向FADEC系统BIT验证的综合故障注入器研究[J].航空动力学报,2006,21(3):581-587.
    [134]王成刚,周晓东,彭顺堂等.一种基于多信号模型的测试性评估方法[J].测控技术,2006,25(10):13-15.
    [135]林志文,贺喆,刘松风.基于多信号模型的系统测试性分析与评估[J].计算机测量与控制,2006,14(2):222-224.
    [136]李天梅.装备测试性验证试验优化设计与综合评估方法研究[D].长沙:国防科学技术大学,2010:15-20.
    [137]曾芷德.数字系统测试与可测性[M].长沙:国防科技大学出版社,1992:90-98.
    [138]丁瑾.可靠性与可测性分析设计[M].北京:北京邮电大学出版社,1996:46-52.
    [139]向东.数字系统测试及可测试性设计[M].北京:科学出版社,1997:87-90.
    [140]陈光礻禹,潘中良等.可测性设计技术[M].北京:电子工业出版社,1997:36-41.
    [141] Abrmovici M.等著,李华伟等译.数字系统测试与可测试设计[M].北京:机械工业出版社,2006:62-67.
    [142]黄考利.装备测试性设计与分析[M].北京:兵器工业出版社,2005:75-82.
    [143]邱静,刘冠军,吕克洪.机电系统机内测试降虚警技术[M].北京:科学出版社,2009:120-125.
    [144] SJ/T10566-1994,可测性总线.第一部分:标准测试存取口与边界扫描结构[S].1994.
    [145] HB/Z301-1997,航空电子系统和设备测试性设计指南[S].1997.
    [146] HB7503-1997,测试性预计程序[S].1997.
    [147] GJB3385-98,测试与诊断术语[S].1998.
    [148] GJB3970-2000,军用地面雷达测试性要求[S].2000.
    [149]可维ARMS2.0可靠性维修性保障性工程CAD软件[J/OL]http://www.kewaytech.com/,2007.4.
    [150]苏永定.机电产品测试性辅助分析与决策相关技术研究[D].长沙:国防科学技术大学,2004:31-39.
    [151]张超,马存宝,宋东等.基于故障树分析的航空电子系统BIT诊断策略设计[J].计算机测量与控制,2008,16(1):12-16.
    [152]张超,马存宝,宋东等.基于动态故障树分析的容错系统机内测试诊断策略设计[J].兵工学报,2008,29(5):602-607.
    [153]连光耀,黄考利,赵常亮.复杂电子系统测点与诊断策略的优化方法[J].系统工程与电子技术,2004,26(11):1739-1742.
    [154]杨冬健,王红,刘金甫.航空设备的测试性设计和验证技术概述[J].测控技术,2006,25(10):1-5.
    [155]林志文,贺喆,杨士元.基于多信号模型的雷达测试性设计分析[J].系统工程与电子技术,2009,31(11):2781-2784.
    [156]王宝龙,黄考利,苏林等.基于遗传算法的复杂电子装备测试性优化分配[J].计算机测量与控制,2007,15(7):925-928.
    [157] Santi L. M., Sowers T. S., Aguila R. B. Optimal sensor selection for healthmonitoring systems[R]. NASA/TM-213955,2005:49-53.
    [158]装备测试性工作通用要求[Z].待颁布.
    [159] Sowers S., Kopasakis G., Simon D. L. Application of the systematic sensorselection strategy for turbofan engine diagnostics[R]. NASA/TM-215200,2008:51-58.
    [160] Maul W. A., Kopasakis G. Sensor selection and optimizaiton for healthassessment of aerospace systems[R]. NASA/TM-214822,2007:41-47.
    [161] Simon D. L., Garg S. A systematic approach to sensor selection for aircraft enginehealth estimation[R]. NASA/TM-215839,2009:58-62.
    [162]王宝龙,黄考利.面向生命周期的复杂电子装备测试性建模[J].仪器仪表学报,2006,27(6):1230-1232.
    [163] Vachtsevanos G. Performance Metrics for Fault Prognosis of ComplexSystems[C]. IEEE Systems Readiness Technology Conference,2003:341-345.
    [164] Kacprzynski G. J., Liberson A., Palladino A., et al. Metrics and development toolsfor prognostic algorithms[C]. IEEE Aerospace Conference Proceedings, Big Sky,MT, United states,2004:3809-3815.
    [165] Hess A., Calvello G., Frith P., et al. Challenges, issues, and lessons learnedchasing the "Big P": Real predictive prognostics part2[C]. IEEE AerospaceConference, Big Sky, MT, United States,2006:1-19.
    [166] Saxena A., Celaya J., Saha B., et al. Metrics for Offline Evaluation of PrognosticPerformance[J]. International Journal of Prognostics and Health Management,2010,1:1-20.
    [167] Wang T., Lee J. On Performance Evaluation of Prognostics Algorithms[C].Proceedings of MFPT2009, ASME, Dayton, OH,2009:219-226.
    [168] Luna J. J. Metrics, Models, and Scenarios for Evaluating PHM Effects onLogistics Support[C]. Annual Conference of the Prognostics and HealthManagement Society, San Diego, CA,2009:1-9.
    [169] Leao B. P., Yoneyama T., Rocha G. C., et al. Prognostics performance metricsand their relation to requirements, design, verification and cost-benefit[C].International Conference on Prognostics and Health Management, Denver, UnitedStates,2008:1-8.
    [170] Line J. K., Clements N. S. Prognostics usefulness criteria[C]. IEEE AerospaceConference, Big Sky, MT, United states,2006:1-7.
    [171] Wheeler K. R., Kurtoglu T., Poll S. D. A Survey of Health Management UserObjectives Related to Diagnostic and Prognostic Metrics[C]. Proceedings of theASME2009International Design Engineering Technical Conferences&Computers and Information in Engineering Conference, San Diego, California,USA,2009:1-19.
    [172] Flynn E.B., Todd M.D. A Bayesian approach to optimal sensor placement forstructural health monitoring with application to active sensing[J]. MechanicalSystems and Signal Processing2010,24(4):891-903.
    [173] Li D.S., Li H.N., Fritzen C.P. Load dependent sensor placement method: theoryand experimental validation[J]. Mechanical Systems and Signal processing,2012,31:217-227.
    [174] Nimityongskul S.,Kammer D.C. Frequency response based sensor placement forthe mid-frequency range[J]. Mechanical Systems and Signal Processing,2009,23(4):1169-1179.
    [175] Hanise T., Hromcik M. Optimal sensors placement and spillover suppression[J].Mechanical Systems and Signal Processing,2012,28:367-378.
    [176] Guerriero F., Violi A., Natalizio E., et al. Modeling and solving optimalplacement problems in wireless sensor networks[J]. Applied MathematicalModelling,2011,35(1):230-241.
    [177]姚向华,韩九强.传感器网络中的传感器配置问题研究[J].信息与控制,2006,35(2):252-255.
    [178]张海燕,任倩倩.基于遗传优化策略的传感器配置算法[J].佳木斯大学学报(自然科学版),2011,29(1):61-64.
    [179] Lee R.W., Kulesz J.J. A risk-based sensor placement methodology[J]. Journal ofHazardous Materials,2008,158(2-3):417-429.
    [180]杨国锋,邱静,钱彦岭.一种用于机电产品测试性设计的传感器优选MINLP模型[J].国防科技大学学报,2004,2(3):103-106.
    [181]刘晓芹,黄考利,安幼林.改进的混合蛙跳算法在传感器配置优化中的应用[J].计算机科学,2011,38(2):72-75.
    [182] Cheng S., Tom K., Pecht M. Failure precursors for polymer resettable fuses[J].IEEE Transactions on Devices and Materials Reliability,2010,10(3):374-380.
    [183] Cheng S., Azarian M., Pecht M. Sensor system for prognostic and healthmanagement[J]. Sensors,2010,10(4):5774-5797.
    [184] Cheng S., Tom K., Thomas L., Pecht M. A wireless sensor system forprognostics[J]. IEEE Sensors Journal,2010,10(4):856-862.
    [185] Xu Z., Koltsov D., Richardson A., et al. Design and simulation of a multi-functionMEMS sensor for health and usage monitoring[C]. Prognostics and HealthManagement Conference,2010:1-7.
    [186] Novis A., Powrie H. PHM sensor implementation in the real world-a statusreport[C]: IEEE Aerospace Conference,2006:1-9.
    [187] Baer W. G., Lally R. W. An open-standard smart sensor architecture and systemfor industrial automation[C]: IEEE Aerospace Conference,2000:123-131.
    [188]方华元,胡昌华,马清亮.动态运行环境下退化系统最佳检测周期的确定[J].系统工程与电子技术,2009,31(4):851-854.
    [189]程志君,郭波.劣化系统的最佳检测与维修周期分析[J].机械与电子,2007,2:6-9.
    [190] Kallen M. J., van Noortwijk J. M. Optimal periodic inspection of a deteriorationprocess with sequential condition states[J]. International Journal of PressureVessels and Piping,2006,83(4):249-255.
    [191] Kallen M. J., van Noortwijk J. M. Optimal maintenance decisions under imperfectinspection[J]. Reliability Engineering and System Safety,2005,90(2-3):177-185.
    [192] Cerone P. Inspection interval for maximum future reliability using the delay-timemodel[J]. European Journal of Operational Research,1993,68(2):236-250.
    [193] Chelbi A., Ait-Kadi D. Generalized inspection strategy for randomly failingsystems subjected to random shocks[J]. International Journal of ProductionEconomics,2000,64(1-3):379-384.
    [194] Jiang R. Optimization of alarm threshold and sequential inspection scheme[J].Reliability Engineering and System Safety,2010,95(3):208-215.
    [195] Cui L. R., Loh H. T., Xie M. Sequential inspection strategy for multiple systemsunder availability requirement[J]. European Journal of Operational Research,2004,155(1):170-177.
    [196] Brint A. T. Sequential inspection sampling to avoid failure critical items beingin an at risk condition[J]. Journal of the Operational Research Society,2000,51(9):1051-1059.
    [197] Yeh R. H. Optimal inspection and replacement policies for multi-statedeteriorating systems[J]. European Journal of Operational Research,1996,47(3):248-259.
    [198]梁旭,李行善,张磊等.支持事情维修的故障预测技术研究[J].测控技术,2007,26(6):5-8.
    [199]王俨剀,廖明夫.航空发动机健康等级综合评价方法[J].航空动力学报,2008,23(5):939-945.
    [200] Jaw L. C., Friend R. ICEMS: a platform for advanced condition-based healthmanagement[C]. Proceedings of the2001IEEE Aerospace Conference,2001:2909-2914.
    [201] ARINC604. Guidance for Design&User of Built-in Test Equipment[R].1988.
    [202]赵建印.基于性能退化数据的可靠性建模与应用研究[D].长沙:国防科学技术大学,2005:21-25.
    [203] Tseng S. T., Peng C. Y. Stochastic diffusion modeling of degradation data[J].Journal of Data Science,2007,5:315-333.
    [204] Kharoufeh J. P., Cox S. M. Stochastic models for degradation-based reliability[R].Wright Patterson: Air Force Institute of Technology,2004:43-47.
    [205] Strelnikov V. P., Tatsii V. G. Model of mechanical wear based on Markovprocesses[J]. International Applied Mechanics,1977,13(3):258-262.
    [206]尹晓虎.装备维修系统的动力学分析技术研究[D].长沙:国防科学技术大学,2008:72-78.
    [207]李春洋.基于多态系统理论的可靠性分析与优化设计方法研究[D].长沙:国防科学技术大学,2010:46-49.
    [208]梁利华.液压传动与电液伺服系统[M].哈尔滨:哈尔滨工程大学出版社,2005:73-76.
    [209] Kumar S., Dolev E., Pecht M. Parameter selection for health monitoring ofelectronic products[J]. Microelectronics Reliability,2010,50(2):161-168.
    [210]韩光臣,孙树栋,司书宾等.复杂系统故障传播与故障分析模型研究[J].计算机集成制造系统,2005,11(6):794-798.
    [211]李天梅,邱静,刘冠军.基于故障扩散强度的故障样本选取方法[J].兵工学报,2008,28(7):829-833.
    [212]宋志平,李应红.一种用于可靠性自动化分析的故障系统描述模型[J].航空动力学报,2000,15(3):303-306.
    [213]韩光臣,孙树栋,王军强等.复杂系统模糊概率故障图模型研究[J].中国机械工程,2005,16(9):801-804.
    [214]李果,高建民,高智勇等.基于小世界网络的复杂系统故障传播模型[J].西安交通大学学报,2007,41(3):334-337.
    [215] Bentz C. On the hardness of finding near-optimal multicuts in directed acyclicgraphs[J]. Theretical Computer Science,2011,412(39):5325-5332.
    [216] Rizzi R., Rospocher M. Covering partially directed graphs with directed paths[J].Discrete Mathematics,2006,306(13):1390-1404.
    [217] Jeremy R. J. Fault propagation timing analysis to aid in the selection of sensorsfor health management systems[D]. University of Missouri-Rolla,2008:29-33.
    [218] Jones R., Molent L., Pitt S. Similitude and Paris crack growth law[J].International Journal of Fatigue,2008,30(10-11):1873-1880.
    [219] Pugno N., Ciavarella M., Cornetti P., Carpinteri A. A generalized Paris's law forfatigue crack growth[J]. Journal of the Mechanics and Physics of Solids,2006,54(7):1333-1349.
    [220] Darveaux R. Effect of simulation methodology on solder joint crack growthcorrelations[C]. Proceedings of50th Electronic Computers&TechnologyConference,2000:1048-1058.
    [221]褚卫华.模块级电子产品可靠性强化试验方法研究[D].长沙:国防科学技术大学博士学位论文,2003:83-86.
    [222]田瑾,赵延弟.面向PHM系统的扩展式故障模式影响分析技术研究[J].航空维修与工程,2006,4:34-37.
    [223]邱静,刘冠军,杨鹏等.装备测试性建模与设计技术[M].北京:科学出版社,2012:72-78.
    [224] Tang L., Kacprzynski G. J., Goebel K., Vachtsevanos G. Methodologies foruncertainty management in prognostics[C]. IEEE Aerospace Conference,2009:1-12.
    [225] Nondestructive evaluation system reliability assessment, MIL-HKBK-1823[S]1997.
    [226]程志君.多部件系统视情维修决策技术研究[D].长沙:国防科学技术大学,2007:54-61.
    [227] Sugiura T., Mizutani S., Nakagawa T. Optimal random and periodic inspectionpolicies[C]. Reliability Modeling Analysis and Optimization, Singapore: WorldScientific,2006:393-403.
    [228]谭林,陈童,郭波.基于几何过程的单部件可修系统最优维修策略[J].系统工程,2008,26(6):88-92.
    [229] Nakagawa T., Mizutani S., Chen M. A summary of periodic and randominspection policies[J]. Reliability Engineering and System Safety,2010,95(8):906-911.
    [230]陆大金.随机过程及其应用[M].北京:清华大学出版社,2003:27-31.
    [231]王凌.维修决策模型和方法的理论与应用研究[D].杭州:浙江大学博士学位论文,2007:43-48.
    [232] Volponi A. Development of an information fusion system for engine diagnosticsand health management[C]. NASA TM-2004-212924, ARL-TR-3127, JANNAFConference,2003:271-278.
    [233]胡奇英,刘建庸.马尔可夫决策过程引论[M].西安:西安电子科技大学出版社,2000:75-81.
    [234]侯振挺,郭先平.马尔可夫决策过程[M].长沙:湖南科学技术出版社,1998:83-89.
    [235] Pineau J., Gordon G., Thun S. Anytime point-based approximations for largePOMDPs[J]. Journal of Artificial Intelligence Research,2006,27:335-380.
    [236] Smallwood R. D., Sondik E. J. Optimal control of partially observable processesover the finite horizon[J]. Operations Research,1973,21(5):1071-1088.
    [237] Chen D. Y., Trivedi K. S. Optimization for condition-based maintenance withsemi-Markov decision process[J]. Reliabiity Engineering and System Safety,2005,90(1):25-29.
    [238] Sondik E. J. The optimal control of partially observable Markov processes[D].Stanford: Department of Electrical engineering, Stanford University,1971:52-57.
    [239] Littman M. L., Cassandra A. R., Kaelbling L. P. Efficient dynamic programmingupdates in partially observable Markov decision processes[R]. Technical reportCS-95-19, Brown University, Providence, RI,1996:32-37.
    [240] Zhang N. L., Liu W. J. Planning in stochastic domains: problems characteristicsand approximation (2nd ed)[R]. Technical Report HKUST-CS96-31, Departmentof Computer Science, Hong Kong University of Science and Technology,1996:37-45.
    [241] Pineau J., Gordon G., Thrun S. Point-based value iteration: an anytime algorithmfor POMDPs[C]. The International Joint Conference on Artificial Intelligence(IJCAI), Acapulco, Mexico,2003:1025-1032.
    [242]曾庆虎.机械动力传动系统关键部件故障预测技术研究[D].长沙:国防科学技术大学,2010:94-102.
    [243] Yeh R. H. Optimal inspection and replacement policies for multi-statedeteriorating systems[J]. European Journal of Operational Research,1996,47(3):248-259.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700