OFDM空时协同通信系统物理层关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
OFDM空时协同通信技术是协同分集和OFDM技术的联合,同时综合应用分布式空时编码技术。与常规的OFDM系统相比,OFDM空时协同通信系统的主要优势在于具有更强的抗多径干扰能力,更高的频谱和功率利用率,以及更大的传输覆盖范围。但是,与OFDM技术一样,OFDM空时协同技术存在信号峰均比(peak-to-average power ratio, PAPR)较高和对载波频率偏差非常敏感两大缺陷,成为目前研究的热点和难点。
     本文围绕OFDM空时协同技术在实际无线通信系统中的应用而展开,结合课题需要,深入研究了OFDM空时协同通信系统的物理层若干关键技术,主要包括OFDM空时协同通信协议、峰均比抑制、数据幅度重构,以及数据检测技术等,并提出了实用的、有效的改进方案,取得的主要研究成果如下:
     首先,针对如何进一步提高协同通信系统的中断率性能和频谱利用率,结合增强中继协议和Alamouti正交空时码,提出了基于判决反馈的OFDM空时协同通信的系统模型和协议,在该协议的协同传输阶段,加入了空时协同分集,分析了系统的中断率、成对错误率和比特误码率性能,并以进一步提高中断率性能为目标,提出了中继点的放置方案。理论分析和仿真结果表明,所提OFDM空时协同通信协议达到了满分集,并且在相同带宽的情况下,较现有协议大大提高了系统的中断率和误码率性能,更有效的利用了系统带宽;同时,由于利用了发射分集,因此所提协议非常适合于发射功率严格受限的系统。
     其次,针对OFDM空时协同系统的较高峰均比问题,根据带内和带外分开处理的思想,将改进的SRCF法和SC法进行联合,提出了低复杂度的PAPR抑制算法SRCF-SM,并将其应用在源点发射信号的PAPR抑制,中继点只负责接收源点的信号,并利用空时编码进行转发,这样既解决了OFDM空时协同系统较高峰均比问题,又简化了中继点运算复杂度。复杂度分析表明,SRCF-SM法复杂度极低,其中FFT/IFFT单元只需要三个,尤其适合于在DSP或FPGA中实现。仿真结果表明,无论限幅门限较大或较小,所提算法始终保持良好的PAPR抑制性能,并且远优于现有的SRCF法和RCF法。
     接下来,针对源点对信号的PAPR非线性抑制会引起信号失真,从而降低整个协同通信系统误码率性能的问题,提出了适用于OFDM空时协同系统的迭代数据幅度重构算法IIAR。该算法基于传统的DAR算法,在几乎相同复杂度的情况下,以进一步提高DAR法的误码率性能为目标。仿真结果表明,所提IIAR算法较DAR法大大改善了系统的误码率性能,更有效的恢复了PAPR抑制前后的信号;同时,在调制阶数较低时,所提算法的性能与较高复杂度的IAR算法相当。
     最后,针对OFDM空时协同系统自身能有效对抗多路时间偏差,而多路频率偏差则会引起系统性能严重恶化的问题,本文对OFDM空时协同系统的均衡技术进行了深入的研究,重点研究了最大似然法和迭代最大似然法的数据检测技术。针对迭代最大似然算法及其改进算法的错误传播问题所导致的系统误码率性能的下降,提出了两种排序准则,即信号的信噪比排序和信干噪比排序,并进一步提出了基于此两种排序准则的迭代最大似然数据检测算法,以避免迭代过程中可能产生的错误传播问题。仿真结果表明,在几乎不增加复杂度的情况下,所提算法的误码率性能远远优于现有的迭代最大似然法及其改进算法,在调制阶数较高或子载波数较多的情况下,所提算法的性能优势更为明显。因此,该算法更有效的克服了系统中的多路频偏问题。
The space-time (ST) cooperative orthogonal frequency division multiplexing (OFDM), denoted as ST Co-OFDM, is the integration of the cooperative communication, OFDM and distributed ST coding, which has many advantages to the traditional OFDM system, such as high frequency and power efficiency, improved reliability and large covering range. The ST Co-OFDM system, however, has two drawbacks, that is, high peak-to-average power ratio (PAPR) and sensitivity to carrier frequency offset (CFO), which become the focuses in the research field of cooperative communication.
     According to the characteristics of the ST Co-OFDM system, the main idea of the dissertation is to study some key technologies in the physical layer for ST Co-OFDM systems, and provide improved schemes. The contributions of the dissertation are as follows:
     Firstly, based on the existing protocols in Co-OFDM systems, the decision-feedback decode-and-forward protocol, named as the two-relay space-time coding (TR-STC), is proposed, where the single-relay (SR) protocol and Alamouti orthogonal ST coding are integrated. The performances of the average outage probability, pairwise error probability (PEP) and bit error rate (BER) are analyzed, and simulation studies are concluded in Rayleigh channels. It is shown that the proposed protocol achieves full diversity order, and significantly outperforms the SR protocol in outage probability, with the same bandwidth. Furthermore, the proposed TR-STC is more practical than the SR in energy-efficient networks, due to its transmission diversity.
     Secondly, like the OFDM system, the ST Co-OFDM system also suffers from the high PAPR, since the OFDM symbols are employed in data transmission. The common PAPR reduction schemes are investigated, where the clipping and filtering (CF) scheme and its improved algorithm are considered to be suited for the Co-OFDM system. An improved repeated clipping and filtering (RCF) scheme for PAPR reduction, named simplified repeated clipping and filtering with spectrum mask (SRCF-SM), is proposed for Co-OFDM systems, based on the idea of the in-band and out-of-band independent processing. The comparison of the computational complexity analyses is completed among different schemes, and simulation results demonstrate that the proposed scheme significantly outperforms the traditional RCF and SRCF ones in PAPR reduction, with very little increase of the computational complexity. It can also be concluded that the proposed scheme is especially useful in the circumstance that requires more PAPR reduction, and practical in implementation on digital signal processor (DSP) or field programmable gate array (FPGA), due to only three FFT/IFFT units required.
     Thirdly, since the signal distortion, caused by the clipping at the transmitter in the proposed SRCF-SM scheme, greatly degrades the system performance, the amplitude reconstruction scheme for the clipping signal at the receiver should be adopted. After investigating the traditional amplitude reconstruction schemes, the low-complexity improved iterative amplitude reconstruction (IIAR) scheme is proposed, based on the classical decision-aided reconstruction (DAR) scheme. The aim of the proposed IIAR is improving the BER performance of the DAR, with almost the same computational complexity. Simulation results show that the BER performance of the proposed scheme is much better than that of the DAR, and closed to that of the IAR in low modulation order.
     Finally, different from the multi-input multi-output (MIMO) system, the nodes in the ST Co-OFDM system are not only distributed in space, but also have their own oscillators, leading to the multiple timing and frequency offsets in the cooperative system. The ST Co-OFDM system can combat the timing offsets, since the OFDM with the long enough cyclic prefix (CP) insertion is robust to the time offsets; however, it is very sensitive to the multiple carrier frequency offsets (CFOs), resulting in serious inter-carrier interference (ICI) and inter-symbol interference (ISI), which is impossible for the destination to compensate simultaneously. To solve this problem, the data detection algorithms for ST Co-OFDM systems are discussed. According to the error propogation in maximum likelihood (ML) and iterative ML (IML) schemes, two simplified IML schemes are proposed, based on the sorting idea of the signal to noise ratio (SNR) and signal to interference plus noise ratio (SINR), respectively, whose main idea is that the signal is ordered in the decreasing way of SNR or SINR before iterative process begins. It is shown that the proposed schemes greatly outperform the existent ML and IML schemes, especially for the higher modulation order and larger number of subcarriers, which is practical in complex communication systems.
引文
[1] ITU-T. Framework for network management of IMT-2000 networks [S]. ITU E. 418, 2003.
    [2] ITU-T. Framework for IMT-2000 networks [S]. ITU Q.1701, 1999.
    [3] ITU-T. Functional network architecture for IMT-advanced [S]. ITU-T Q.1704, 2008.
    [4]尹长川,罗涛,乐光新.多载波宽带无线通信技术[M].北京:北京邮电大学出版社, 2004.
    [5]佟学俭,罗涛. OFDM移动通信技术原理与应用[M].北京:人民邮电出版社, 2003.
    [6] T.S. Rappaport, A. Annamalai, R.M. Buehrer, W.H. Tranter. Wireless communications: Past events and a future perspective [J]. IEEE Commun. Magazine, 2002, 40(5): 148-161.
    [7] A. Paulrai, C. Papadias. Space time processing for wireless communications [J]. IEEE Signal Process. Mag., 1997, 14(6): 49-83.
    [8] D. Gesbert, M. Shafi, S. Da-Shan. From theory to practice: an overview of MIMO space-time coded wireless systems [J]. IEEE Journal on Selected Areas in Commun., 2003, 21(3): 281-302.
    [9] A. Paulraj, D. Gore, R. Nabar, H. Bocskei. An overview of MIMO communications-A key to gigabit wireless [J]. IEEE Proceedings, 2004, 92(2): 198-218.
    [10] E. Van der Meulen. A survey of multi-way channels in information theory: 1961-1976 [J]. IEEE Trans. Inform. Theory, 1977, 23(1): 1-37.
    [11] T. M. Cover, A. El Gamal. Capacity theorems for the relay channel [J]. IEEE Trans. Inform. Theory, 1979, 9(25): 572-584.
    [12] A. Sendonaris, E. Erkip, B. Aazhang. User cooperation diversity-Part I: System description [J]. IEEE Trans. Commun., 2003, 51(11): 1927-1938.
    [13] A. Sendonaris, E. Erkip, B. Aazhang. User cooperation diversity-Part II: Implementation aspects and performance analysis [J]. IEEE Trans. Commun., 2003, 51(11): 1939-1948.
    [14] J.N. Laneman, D.N.C. Tse, G.W. Wornell. Cooperative diversity in wireless networks: Efficient protocols and outage behavior [J]. IEEE Trans. Inform. Theory, 2004, 50(12): 3062-3080.
    [15] J.N. Laneman, G.W. Wornell. Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks [J]. IEEE Trans. Inform. Theory, 2003, 49(10): 2415-2425.
    [16] M. Janani, A. Hedayat, T.E. Hunter, A. Nosratinia. Coded cooperation in wirelesscommunications:Space-time transmission and iterative decoding [J]. IEEE Trans. Signal Process, 2004, 52(2): 362-371.
    [17] T.E. Hunter, G.W. Nosratinia. Diversity through coded cooperation [J]. IEEE Trans. Wireless Commun., 2006, 5(2): 283-289.
    [18] T.E. Hunter, S. Sanayei, A. Nosratinia. Outage analysis of coded cooperation [J]. IEEE Trans. Inf. Theory, 2006, 52(2): 375-391.
    [19]彭木根,王文博,张倩倩,纪晓东.异构无线通信系统的协同分集性能研究[J].电子学报, 2009, 37(1): 21-25.
    [20]陈书平,王文博,张兴,付雷.放大转发OFDM协同中继系统多业务资源分配机制[J].通信学报, 2010, 31(4): 116-121
    [21]罗涛,李祥明,王健康,乐光新.基于空时分组编码的协同通信系统性能的研究[J].电子信息学报, 2007, 29(9): 2143-2145.
    [22]俞晓帆,赵春明.分布式空频编码协同通信系统中基于导频转发新时序的信道估计算法[J].电子信息学报, 2010, 32(6): 1412-1417.
    [23] W. Siriwongpairat, A. Sadek, K. J. R. Liu. Cooperative communications protocol for multiuser OFDM networks [J]. IEEE Trans. Wireless Commun., 2008, 7(7): 2430-2435.
    [24] Z. Li, X. Xia. An Alamouti coded OFDM transmission for cooperative systems robust to both timing errors and frequency offsets [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1839- 1844.
    [25] M. Kaneko, K. Hayashi, P. Popovski, K. Ikeda, H. Sakai, R. Prasad. Amplify-and-forward cooperative diversity schemes for multi-carrier systems [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1845-1850.
    [26] H. Ochiai, H. Imai. Performance of the deliberate clipping with adaptive symbol selection for strictly band-limited OFDM systems [J]. IEEE J. Select. Areas Commun., 2000, 18(11): 2270-2277.
    [27] S. Han, J. Lee. An overview of peak-to-average power ratio reduction techniques for multicarrier transmission [J]. IEEE Wireless Commun. Mag., 2005, 12(2): 56-65.
    [28] S. Muller, J. Huber. OFDM with reduced peak-to-average power ratio by optimum combination of patial transmit sequences [J]. Electron. Lett., 1997, 33(5): 368-369.
    [29] S. Le Goff, B. Khoo, C. Tsimenidis, B. Sharif. A novel selected mapping technique for PAPR reduction in OFDM systems [J]. IEEE Trans. Commun., 2008, 56(11): 1775-1779.
    [30] H. Ochiai, H. Imai. Performance analysis of deliberately clipped OFDM signals [J]. IEEE Trans. Commun., 2002, 50(1): 89-101.
    [31] K.R. Panta, J. Armstrong. Effects of clipping on the error performance of OFDM in frequency selective fading channels [J]. IEEE Trans. Wireless Commun., 2004, 3(2): 668-671.
    [32] Y. Kim, U. Kwon, D. Seol, G. Im. An effective PAPR reduction of SFBC-OFDM for multinode cooperative transmission [J]. IEEE Signal Process. Lett., 2009, 16(11): 925-928.
    [33] M. Eddaghel and J. A. Chambers. PAPR reduction in distributed closed loop extended orthogonal space frequency block coding with quantized two-bit group feedback for broadband multi-node cooperative communications [C]. Wireless Communications and Mobile Computing Conference (IWCMC), 2011: 719-724.
    [34] U. Kwon, D. Kim, G. Im. Amplitude clipping and iterative reconstruction of MIMO-OFDM signals with optimum equalization [J]. IEEE Trans. Wireless Commun., 2009, 8(1): 268-277.
    [35] Z. Li, X. Xia. Single-symbol ML decoding for orthogonal and quasi-orthogonal STBC in clipped MIMO-OFDM systems using a clipping noise model with Gaussian approximation [J]. IEEE Trans. Commun., 2008, 56(7): 1127-1136.
    [36] S. Wei, D. L. Goeckel, M. C. Valenti. Asynchronous cooperative diversity [J]. IEEE Trans. Wireless Commun., 2006, 5(6): 1547-1557.
    [37] X. Li. Space-time coded multi-transmission among distributed transmitters without perfect synchronization [J]. IEEE Signal Process. Lett., 2004, 11(12): 948-951.
    [38] Y. Li, X.-G. Xia. Full diversity distributed space-time codes for asynchronous cooperative communications [C]. IEEE International Symposium on Information Theory (ISIT), Adelaide, Australia, 2005: 911-915.
    [39] Y. Shang, X.-G. Xia. Shift-full-rank matrices and applications in space-time trellis codes for relay networks with asynchronous cooperative diversity [J]. IEEE Trans. Inform. Theory, 2006, 52(7): 3153-3167.
    [40] Y. Mei, Y. Hua, A. Swami, B. Daneshrad. Combating synchronization errors in cooperative relays [C], Proc. IEEE ICASSP 2005, 2005, 3:369-372.
    [41] Y. Li, W. Zhang, X.-G. Xia. Distributive high-rate full-diversity space-frequency codes for asynchronous cooperative communications [C]. Proc. IEEE ISIT 2006, 2006: 2612-2616.
    [42] Z. Li, X.-G. Xia. A simple Alamouti space-time transmission scheme for asynchronous cooperative systems [J]. IEEE Signal Processing Lett., 2007, 14(11): 804-807.
    [43] Z. Li, D. Qu, G. Zhu. An equalization technique for distributed STBC-OFDM system with multiple carrier frequency offsets [C]. Proc. IEEE WCNC 2006, 2006, 2: 839-843.
    [44] D. Veronesi, D. L. Goeckel. Multiple frequency offset compensation in cooperative wireless systems [C]. Proc. IEEE GLOBECOM 2006, 2006: 1-5.
    [45] Huiming Wang, Xiang-Gen Xia, Qinye Yin. Computationally efficient equalization for asynchronous cooperative communications with multiple frequency offsets [J]. IEEE Trans. Wireless Commun., 2009, 8(2): 648-655.
    [46] Q. Huang, M. Ghogho, J. Wei. Data detection in cooperative STBC-OFDM systems with multiple frequency offsets [J]. IEEE Signal Process. Lett., 2009, 16(7): 600-603.
    [47] X. Li, F. Ng, T. Han. Carrier frequency offset mitigation in asynchronous cooperative OFDM transmissions [J]. IEEE Trans. Signal Process., 2008, 56(2): 675-685.
    [48] K. Sathananthan, C. R. N. Athaudage, B. Qiu. A novel ICI cancellation scheme to reduce both frequency offset and IQ imbalance effects in OFDM [C]. Proc. Ninth International Symposium on Computers and Communications, 2004, 2: 708-713.
    [49] S. Yiu, R. Schober, L. Lampe. Distributed space-time block coding [J]. IEEE Trans. Commun., 2006, 54(7): 1195–1206.
    [50] R. U. Nabar, H. Bolcskei, F. W. Kneubuhler. Fading relay channels: performance limits and space-time signal design [J]. IEEE J. Select. Areas Commun., 2004, 22(6): 1099-1109.
    [51] Y. Jing, B. Hassibi. Distributed space-time coding in wireless relay networks [J]. IEEE Trans. Wireless Commun., 2006, 5(12): 3524-3536.
    [52] P. A. Anghel, G. Leus, M. Kaveh. Distributed space-time coopera-tive systems with regenerative relays [J]. IEEE Trans. Wireless Commun., 2006, 5(11): 3130-3141.
    [53] P. A. Anghel, M. Kaveh. On the performance of distributed space-time coding systems with one and two non-regenerative relays [J]. IEEE Trans. Wireless Commun., 2006, 5(3): 682-692.
    [54] Y. Li, X. Xia. A Family of Distributed Space-Time Trellis Codes With Asynchronous Cooperative Diversity [J]. IEEE Trans. Commun., 2007, 55(4): 790-800.
    [55] Z. Zhong, S. Zhu, A. Nallanatha. Distributed space-time trellis code for asynchronous cooperative communications under frequency-selective channels [J]. IEEE Trans. Wireless Commun., 2009, 8(2): 796-805.
    [56] H. Wang, X. Xia, Q. Yin. Distributed space-frequency codes for cooperative communication systems with multiple carrier frequency offsets [J]. IEEE Trans. Wireless Commun., 2009, 8(2): 1045-1055.
    [57] F. Tian, X.-G. Xia, W.-K. Ma, P. C. Ching. Full diversity under multiple carrier frequency offsets of a family of space-frequency codes [C]. Proc. IEEE ICASSP’09, 2009: 2733-2736.
    [58] H. Wang, Q. Yin, X. Xia. Full diversity space-frequency codes for frequency asynchronous cooperative relay networks with linear receivers [J]. IEEE Trans. Commun., 2011, 59(1):236-247.
    [59] P. Viswanath, D. N. C. Tse, R. Laroia. Opportunistic beam-forming using dumb antennas [J]. IEEE Trans. Inf. Theory, 2002, 48(6): 1277-1294.
    [60] E. G. Larsson. On the combination of spatial diversity and multiuser diversity [J]. IEEE Commun. Lett., 2004, 8(8): 517-519.
    [61] Q. Zhou, H. Dai. Asymptotic analysis on the interaction between spatial diversity and multiuser diversity in wireless networks [J]. IEEE Trans. Signal Process., 2007, 55(8): 4271-4283.
    [62] H. J. Joung, C. Mun. Capacity of multiuser diversity with cooperative relaying in wireless networks [J]. IEEE Commun. Lett., 2008, 12(10): 752-754.
    [63] Y. U. Jang, W. Y. Shin, Y. H. Lee. Multiuser scheduling based on reduced feedback information in cooperative communications [C]. Proc. IEEE VTC-Spring, Barcelona, Spain, 2009: 1341–1345.
    [64] X. Zhang, W. Wang, X. Ji. Multiuser diversity in multiuser two-hop cooperative relay wireless networks: System model and performance analysis [J]. IEEE Trans. Veh. Technol., 2009, 58(2): 1031–1036.
    [65] S. Chen, W. Wang, X. Zhang. Performance analysis of multiuser diversity in cooperative multi-relay networks under Rayleigh-fading channels [J]. IEEE Trans.Wireless Commun., 2009, 8(7): 3415-3419.
    [66] H. Ding, J. Ge, D. Costa, Y. Guo. Outage Analysis for Multiuser Two-Way Relaying in Mixed Rayleigh and Rician Fading [J]. IEEE Commun. Lett., 2011, 15(4): 410-412.
    [67] L. Sun, T. Zhang, L. Lu, H. Niu. On the Combination of Cooperative Diversity and Multiuser Diversity in Multi-Source Multi-Relay Wireless Networks [J]. IEEE Signal Process. Lett., 2010, 17(6): 535-538.
    [68] A. Nosratinia, T.E. Hunter. Grouping and partner selection in cooperative wireless networks [J]. IEEE J.Select.Areas Commun., 2007, 25(2): 369–378.
    [69] A.S. Ibrahim, A.K. Sadek, W. Su, K.J.R. Liu. Cooperative communications with relay-selection: When to cooperate and whom to cooperate with [J]. IEEE Trans. Wireless Commun., 2008, 7(7): 2814-2827.
    [70] D. da Costa,S. A?ssa. Performance analysis of relay selection techniques with clustered fixed-gain relays [J]. IEEE Signal Process. Lett., 2010, 17(2): 201-204.
    [71] Q. Zhang, F. Shu, M. Wang, J. Sun. Relay selection schemes for precoded cooperative OFDM and their achievable diversity orders [J]. IEEE Signal Process. Lett., 2011, 18(4): 231-234.
    [72] S. Prakash, I. McLoughlin. Performance of dual-hop multi-antenna systems with fixed gain amplify-and-forward relay selection [J]. IEEE Trans. Wireless Commun., 2011, 10(6): 1709-1714.
    [73] K. Bakanoglu, Tomasin, E. Erkip. Resource allocation for the parallel relay channel with multiple relays [J]. IEEE Trans. Wireless Commun., 2011, 10(3): 792-802.
    [74] W. Dang, M. Tao, H. Mu, J. Huang. Subcarrier-pair based resource allocation for cooperative multi-relay OFDM systems [J]. IEEE Trans. Wireless Commun., 2010, 9(5): 1640-1649.
    [75] I. Maric, R. Yates. Bandwidth and power allocation for cooperative strategies in Gaussian relay networks [J]. IEEE Trans. Inform. Theory, 2010, 56(4): 1880-1889.
    [76] F.S. Tabataba, P. Sadeghi, M.R. Pakravan. Outage Probability and Power Allocation of Amplify and Forward Relaying with Channel Estimation Errors [J]. IEEE Trans. Wireless Commun., 2011, 10(1): 124-134.
    [77] T. Pham, H. Nguyen, H. Tuan. Power allocation in MMSE relaying over frequency-selective rayleigh fading channels [J]. IEEE Trans. Commun., 2010, 58(11): 3330-3343.
    [78]彭木根,王文博.协同无线通信原理与应用[M].北京:机械工业出版社, 2009.
    [79]王成金,李屹,张琳,纪红.蜂窝小区内分层中继组播策略的信道容量分析[J].北京邮电大学学报, 2010, 33(6): 54-57.
    [80] I. F. Akyildiz, X. Wang, W. Wang. Wireless mesh networks: a survey [J]. Computer Networks and ISDN Systems, 2005, 47(4): 445-487.
    [81] I. F. Akyildiz, X. Wang. A survey on wireless mesh networks [J]. IEEE Communications Magazine, 2005, 43(9): 523-530.
    [82] E. Sakhaee, A. Jamalipour. The global in-flight internet [J]. IEEE Journal on Selected Areas in Communications, 2006, 24(9): 1748-1757.
    [83] D. Medina, F. Hoffmann, F. Rossetto, C.-H. Rokitansky. A crosslayer geographic routing algorithm for the airborne internet [C]. IEEE International Conference on Communications, 2010: 1-6.
    [84] D. Medina, F. Hoffmann, F. Rossetto, C.-H. Rokitansky. Routing in the airborne internet [C]. Integrated Communications Navigation and Surveillance Conference, 2010: A7-1-A7-10.
    [85]周强,熊华钢.新一代民机航空电子互连技术发展[J].电光与控制, 2009,4:1-6.
    [86] J.G. Proakis著,张力军,张宗橙,郑宝玉等译.数字通信(第四版)[M].北京:电子工业出版社, 2003.
    [87] T. E. Hunter. Coded cooperation: A new framework for user cooperation in wireless networks [M]. Ph.D Dissertation, Dallas: University of Texas, 2004.
    [88] A. Nosratinia, T. E. Hunter, Ahmadreza Hedayat. Cooperative communication in wireless networks [J]. IEEE Commun. Magzine, 2004, 42(10): 74-80.
    [89] A. Bletsas, H. Shin, M. Z. Win. Cooperative communications with outage-optimal opportunistic relaying [J]. IEEE Trans. Wireless Commun., 2007, 6(9): 1-11.
    [90] A. Bletsas, H. Shin, M. Z. Win. Outage optimality of opportunistic amplify-and-forward relaying [J]. IEEE Commun. Lett., 2007, 11(3): 261-263
    [91] Z. G. Ding, et.al.. On the performance of opportunistic cooperative wireless networks [J]. IEEE Trans. Commun., 2008, 56(8): 1236-1240.
    [92] J. Guo, H. Luo, H. Li. Opportunistic relaying in cooperative OFDM networks for throughput and fairness improvement [C]. IEEE GLOBECOM 2008 proceedings, 2008: 1-5.
    [93] D. Chen, J. N. Laneman. Modulation and demodulation for cooperative diversity in wireless systems [J]. IEEE Trans. Wireless Commun., 2006, 5(7): 1785-1794
    [94] O. Shin, A.M. Chan, H.T. Kung, V. Tarokh. Design of an OFDM cooperative space-time diversity system [J]. IEEE Trans. Veh. Tech., 2007, 56(4): 2203-2215.
    [95] Q. Huang, M. Ghogho, J. Wei, P. Ciblat. Timing and frequency synchronization for OFDM based cooperative systems [C]. Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, 2009: 2649-2652.
    [96] Q. Huang, M. Ghogho, J. Wei, P. Ciblat. Practical timing and frequency synchronization for OFDM-based cooperative systems [J]. IEEE Trans. Signal Process., 2010, 58(7): 3706-3716.
    [97] G. Yang, C. Wang, H. Wang, S. Li. A new synchronization scheme for OFDM-based cooperative relay systems [C]. IEEE Global Telecommunications Conference, 2010: 1-5.
    [98] Y. Chen, J. Zhang, A.D.S. Jayalath. Estimation and compensation of clipping noise in OFDMA systems [J]. IEEE Trans. Wireless Commun., 2010, 9(2): 523-527.
    [99] J. Wang, X. Zhou, Y. Xu, W. Wang. Performance improvement of OFDM-ROF system with clipping and filtering technique [J]. IEEE Trans. Consumer Electron., 2008, 54(2): 296-299.
    [100] R. Ali-Hemmati, P. Azmi, B. Seyfe, M. Shikh-Bahaei. Iterative cancellation of clipping noise in multilevel quadrature amplitude modulation multi-carrier CDMA system [J]. IET Commun., 2008, 2(2): 300-305.
    [101] Z. Li, X. Xia. Single-symbol ML decoding for orthogonal and quasi-orthogonal STBC in clipped MIMO-OFDM systems using a clipping noise model with Gaussian approximation [J]. IEEE Trans. Commun., 2007, 56(7): 1127-1136.
    [102] U. Kwon, D. Kim, G. Im. Amplitude clipping and iterative reconstruction of MIMO-OFDM signals with optimum equalization [J]. IEEE Trans. Wireless Commun., 2009, 8(1): 268-277.
    [103] J. Armstrong. Peak-to-average power reduction for OFDM by repeated clipping and frequency domain filtering [J]. Electron. Lett., 2002, 38(5): 246-247.
    [104] S. Deng, M. Lin. Recursive clipping and filtering with bounded distortion for PAPR reduction [J]. IEEE Trans. Commun., 2007, 55(1): 227-230.
    [105] L. Wang, C. Tellambura. Analysis of clipping noise and tone-reservation algorithms for peak reduction in OFDM systems [J]. IEEE Trans. Veh. Technol., 2008, 57(3): 1675-1694.
    [106] L. Wang, C. Tellambura. A simplified clipping and filtering technique for PAR reduction in OFDM systems [J]. IEEE Signal Process. Lett., 2005, 12(6): 453-456.
    [107] K. F. Lee, D. B. Williams. A space-time coded transmitter diversity technique for frequency selective fading channels [C]. Proc. IEEE Sensor Array and Multichannel Signal Processing Workshop, 2000: 149-152.
    [108] D.-B. Lin, P.-H. Chiang, H.-J. Li. Performance analysis of two-branch transmit diversity block-coded OFDM systems in time-varying multipath Rayleigh-faing channels [J]. IEEE Trans. Vehic. Technol., 2005, 54(1): 136-148.
    [109] Y. J. Kim, H. Lee, H. K. Chung, Y. S. Cho. An iterative decoding technique for cooperative STBC-OFDM systems with multiple carrier frequency offsets [C]. Proc. IEEE 18th Int. Symp. Personal, Indoor and Mobile Radio Communications, 2007: 1-4.
    [110] Q. Huang, M. Ghogho, J. Wei. Data detection in cooperative STBC-OFDM systems with multiple frequency offsets [J]. IEEE Signal Process. Lett., 2009, 16(7): 600-603.
    [111] V. Tarokh, N. Seshadri, A. R. Calderbank. Space-time codes for high data rate wireless communication: Performance criterion and code construction [J]. IEEE Trans. Inf. Theory, 1998, 44(2): 744-765.
    [112] S. M. Alamouti. A simple transmit diversity technique for wireless communications [J]. IEEE J. Sel. Areas Commun., 1998, 16(8): 1451-1458.
    [113] Zheng Li, Xiang-Gen Xia, Moon Ho Lee. A simple orthogonal space-time coding scheme for asynchronous cooperative systems for frequency selective fading channels. IEEE Trans. Commun., 2010, 58(8): 2219-2224.
    [114] Z. Li, X.-G. Xia, B. Li. Achieving full diversity and fast ML decoding via simple analog network coding for asynchronous two-way relay networks [J]. IEEE Trans. Commun., 2009, 57(12): 3672-3681.
    [115] Y. Jing, B. Hassibi. Distributed space-time coding in wireless relay networks [J]. IEEE Trans. Wireless Commun., 2006, 5(12): 3524-3536.
    [116] D.J.G. Mestdagh, P.M.P. Spruyt. A method to reduce the probability of clipping in DMT-basedtransceivers [J]. IEEE Trans. Commun., 1996, 44(10): 1234-1238.
    [117] S.Y. Le Goff, S.S. Al-Samahi, K.K. Boon, C.C. Tsimenidis, B.S. Sharif. Selected mapping without side information for PAPR reduction in OFDM [J]. IEEE Trans. Wireless Commun., 2009, 8(7): 3320-3325.
    [118] H. Saedi, M. Sharif, F. Marvasti. Clipping noise cancellation in OFDM systems using oversampled signal reconstruction [J]. IEEE Commun. Lett., 2002, 6(2): 73-75.
    [119] J. Tellado, L. Hoo, J. Cioffi. Maximum-likelihood detection of nonlinearly distorted multicarrier symbols by iterative decoding [J]. IEEE Trans. Commun., 2003, 51(2): 218-228.
    [120] P. Zillmann, W. Rave, G. Fettweis. Soft detection and decoding of clipped and filtered COFDM signals [C]. Proc. IEEE Vehic. Tech. Conf., 2007: 1598-1602.
    [121] D. Kim, G. L. Stuber. Clipping noise mitigation for OFDM by decision-aided reconstruction [J]. IEEE Commun. Lett., 1999, 3(1): 4-6.
    [122] U. K. Kwon, G. H. Im. Iterative amplitude reconstruction of clipped OFDM signals with optimum equalization [J]. Electron. Lett., 2006, 42(20):1189-1190.
    [123] C. S. Patel, G. L. Stüber. Channel estimation for amplify and forward relay based cooperation diversity systems [J]. IEEE Trans. Wireless Commun., 2007, 6(6): 2348-2356.
    [124] D. Kim, U. K. Kwon, G. H. Im, C. Shin. A pilot design technique for single-carrier transmission over fast fading relay channels [C]. Proc. IEEE Globecom 2008, New Orleans, 2008: 1-5.
    [125] U. Kwon, D. Kim, K. Kim, G. Im. Amplitude clipping and iterative reconstruction of STBC/SFBC-OFDM signals [J]. IEEE Signal Process. Lett., 2007, 14(11): 808-811.
    [126] Y. Li, W. Zhang, X.-G. Xia. Distributive high-rate full-diversity space-frequency codes for asynchronous cooperavtive communications [C]. Proc. IEEE ISIT’06, 2006: 2612-2616.
    [127] A. R. Hammons, H. El Gamal. On the theory of space-time codes for PSK modulation [J]. IEEE Trans. Inform. Theory, 2000, 46(2): 524-542.
    [128] X.Guo, X.-G.. Xia. Distributed linear convolutive space-time codes for asynchronous cooperative communication networks [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1857-1861.
    [129] W. G. Jeon, K. H. Chang, Y. S. Cho. An equalization technique for orthogonal frequency-division multiplexing systems in time-variant multipath channels [J]. IEEE Trans. Commun., 1999, 47 (1): 27-32.
    [130] Y. S. Choi, P. J. Voltz, F. A. Cassara. On channel estimation and detection for multicarrier signals in fast and selective Rayleigh fading channels [J]. IEEE Trans. Commun., 2001, 49 (8):1375-1387.
    [131] X. D. Cai, G. B. Giannakis. Bounding performance and suppressing intercarrier interference in wireless mobile OFDM [J]. IEEE Trans. Commun., 2003, 51 (12): 2047-2056.
    [132] J. H. Park, Y. Whang, K. S. Kim. Low complexity MMSE-SIC equalizer employing time-domain recursion for OFDM systems [J]. IEEE Signal Process. Lett., 2008, 15: 633-636.
    [133] P. Schniter. Low-complexity equalization of OFDM in doubly selective channels [J]. IEEE Trans. Signal Process., 2004, 52 (4): 1002-1011.
    [134] D.-B. Lin, P.-H. Chiang, H.-J. Li. Performance analysis of two-branch transmit diversity block-coded OFDM systems in time-varying multipath Rayleigh-faing channels [J]. IEEE Trans. Vehic. Technol., 2005, 54(1): 136-148.
    [135] W. Zhang, Y. Li, X.-G. Xia, P. C. Ching, K. B. Letaief. Distributed space-frequency coding for cooperative diversity in broadband wireless ad hoc networks [J]. IEEE Trans. Wireless Commun., 2008, 7(3): 995-1003.
    [136] K. G. Seddik, K. J. R. Liu. Distributed space-frequency coding over broadband relay channels [J]. IEEE Trans. Wireless Commun., 2008, 7(11): 4748-4759.
    [137] O. Oguz, A. Zaidi, J. Louveaux, L. Vandendorpe. Distributed space-time-frequency block codes for multiple-access-channel with relaying [C]. Proc. IEEE GLOBECOM 2007, 2007: 1729-1733.
    [138] L. C. Tran, A. Mertins, T. A. Wysocki. Cooperative communication in space-time-frequency coded MB-OFDM UWB [C]. Proc. IEEE Vehicular Tech. Conf. 2008, 2008: 1-5.
    [139] W. Yang, Y. Cai, L. Wang. Distributed space-time-frequency coding for cooperative OFDM systems [J]. Science in China Series F: Inf. Sciences, 2009, 52(12): 2424-2432.
    [140] J. Wu, H. Hu, M. Uysal. High-Rate Distributed space-time-frequency coding for wireless cooperative networks [J]. IEEE Trans. Wireless Commun., 2011, 10(2): 614-625.
    [141] X. Wang, Y. Wu, J.Y. Chouinard. On the comparison between conventional OFDM and MSE-OFDM systems [C]. IEEE GLOBECOM’03, 2003: 35-39.
    [142] X. Wang, Y. Wu, J.Y. Chouinard, H.C. Yu. On the design and performance of multisymbol encapsulated OFDM systems [J]. IEEE Trans on Vehicular Technology, 2006, 55(3): 990-1002.
    [143] X. Wang, Y. Wu, H.-C. Wu, G. Gagnon. An MSE-OFDM system with reduced implementation complexity using pseudo random prefix [C]. IEEE GLOBECOM’07, 2007: 2836-2840.
    [144] P. Singh, S. Chakrabarti, and R.V. Raja Kumar, Multiple access using MSE-OFDM [C]. IEEE CCNC 2008, 2008: 403-406.
    [145] Sung-Ju Lee, Jae-Seon Yoon, and Hyoung-Kyu Song. Carrier frequency offset mitigation using MSE-OFDM in cooperative communications [C]. Telecommunication Networks and Applications Conference, 2008: 76-79.
    [146] Sung-Ju Lee, Jae-Seon Yoon, and Hyoung-Kyu Song. Frequency offset mitigation of cooperative ofdm system in wireless digital broadcasting [J]. IEEE Trans. Consumer Electronics, 2009, 55(2): 385-390.
    [147] L. Wang, J. Liu. Cooperative PTS for PAPR reduction in MIMO-OFDM [J]. Electronics Lett., 2011, 47(5): 351-352.
    [148] X. Li, Y. Wu, E. SerPedin. Timing synchonization in decode-and-forward cooperative communication systems [J]. IEEE Trans. Signal Process., 2009, 57(4): 1444-1455.
    [149] X. Li , C. Xing, Y. Wu, S. Chan. Timing estimation and resynehronization for amplify-and-forward Communication Systems [J]. IEEE Trans. Signal Process., 2010, 58(4): 2218-2229.
    [150] H. Mehrpouyan, S. Blostein. Bounds and algorithms for multiple frequency offset estimation in cooperative networks [J]. IEEE Trans. Wireless Commun., 2011, 10(4): 1300-1311.
    [151] Z. Zhang, W. Zhang, C. Tellambura. Cooperative OFDM channel estimation in the presence of frequency offsets [J]. IEEE Trans. Vehi. Techn., 2009, 58(7): 3447-3459.
    [152] T. Luo, F. Lin, T. Jiang, M. Guizani, W. Chen. Multicarrier modulation and cooperative communication in multihop cognitive radio networks [J]. IEEE Wireless Communications, 2011, 18(1): 38-45.
    [153] W. Zhang, K. Letaief. Full-rate distributed space-time codes for cooperative communications [J]. IEEE Trans. Wirel. Commun., 2008, 7(7): 2446-2451.
    [154] S. Yatawatta, A. P. Petropulu. A multiuser OFDM system with user cooperation[C]. Proc. 38th Asilomar Asilomar Conf. on Signals, Systems, and Computers, 2004, 1: 319-323.
    [155] Y. Ding, M. Uysal. Amplify-and-forward cooperative OFDM with multiple-relays: performance analysis and relay selection methods [J]. IEEE Trans. Wirel. Commun., 2009, 8(10): 4963-4968.
    [156] H. Wang, X. Xia, Q. Yin. Computationally efficient equalization for asynchronous cooperative communications with multiple frequency offsets [J]. IEEE Trans. Wirel. Commun., 2009, 8(2): 648-655.
    [157] IEEE Std. 802.11. IEEE standard for information technology-Telecommunications and information exchange between systems-Local and metropolitan area networks-Specific requirements-Part 11: wireless LAN medium access control (MAC) and physical layer (PHY)specifications [S]. 2007, C1-1184.
    [158] IEEE Std. 802.16. IEEE standard for local and metropolitan area networks media access control (MAC) bridges amendment 5: Bridging of IEEE 802.16 [S]. 2007, 1-14.
    [159] Radio broadcasting systems: digital audio broadcasting (DAB) to mobile, portable and fixed receivers [S]. ETSI ETS 300 401, 1995.
    [160] Digital video broadcasting (DVB): frame structure, channel coding and modulation for digital terrestrial television (DVB-T) [S]. ETSI ETS 300 744, 1997.
    [161] Rationale and track of security decisions in long term evolution (LTE) RAN/3GPP system architecture evolution (SAE) [S]. 3GPP TR 33.821. 2009.
    [162] Interworking and Inter-Technology Handoff for UMB and UTRA/E-UTRA Technologies [S]. 3GPP2 S. R0130-0. 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700