多天线系统的若干新型发射与接收技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
数字通信系统的物理层关注的是发送节点到接收节点之间数据流的传输问题,如信道编码、信号调制及解调等。为进一步提高无线多天线系统的传输性能,本文在物理层上对发送端和接收端的若干技术环节进行一定的改进,具体如下:
     1)发送端的新型信号设计:传统调制方式的信号波形是通过幅度,相位或频率,或者两个或多个信号参数的组合的差异来携带一定量的数字信息。而本文引入一种新的波形差别方式一功率差异,其核心思想是往传统调制方式生成的能量信号波形中的不同位置按照一定映射关系插入连续零信号区间。理论计算表明,安装有多根接收天线的接收机可以得到多个信号副本,利用信号功率之间的差异,接收机可以以很低的错误概率在一段接收信号中区分出其中的受噪声污染的能量信号和纯噪声信号。基于上述结果,本文针对相干SIMO系统和非相干MIMO系统,提出了多种新型空时信号的设计方案,理论分析和仿真结果都表明,新编码方案的传输性能明显优于传统方案。
     2)接收端的信号预处理:解调前利用离散空间上的最小能量小波框架数列对接收信号进行预处理来提高信号的解调性能。本文首次给出离散信号空间上的最小能量框架的定义,并证明了它所具备的一些优良性质;接着利用这些性质针对受加性高斯噪声污染的矩形和升余弦脉冲信号展开接收信号预处理算法的相关研究。仿真结果表明,如果在接收机上增加这样一个信号预处理环节,由于充分利用了信号的先验信息,预处理算法可以降低脉冲信号在信道传输时受到的各种不利影响,有效提高了信号解调器的输出信噪比,获得了较大性能增益。
     3)基于双向传输的网络编码理论研究:一个网络通信系统可以视作是一些试图互相通信的节点以及它们之间的信道组成的集合体。目前关于无线网络通信的研究大部分仅考虑信息流的单向流动,即认为在一次通信过程中,信源节点集合与信宿节点集合之间的交集为空集。但受无线信道广播特性的影响,这种划分事实上会造成很大的网络资源浪费。由于下一代的移动通信系统将采用新的扁平网络架构,因此本文引入‘网络编码’和‘协作通信’的思想,从信息流的双向传输的角度出发,对一些基本网络拓扑结构,包括信息交换通信模型和协作中继通信模型,开展一些基础编码理论的研究。具体包括:针对交换节点的多维网络纠错码及性能的研究、多维网络线性分组码和网络卷积码的设计、多维空时码和双星座空时码的设计;针对协作中继节点的二维和三维网络纠错码的设计、以及二维和三维网络空时码的设计。理论分析和仿真结果表明,比起传统的基于单向信息流的编码理论,新型编码方案可以更好地利用无线信道的广播特性和无线的网络的空间资源,有效提高发射能量的利用率,从而获得更多的编码增益。
     在物理层上,源节点和中继节点都需要编码和信号处理算法,而目的节点则需要信号处理和解码算法。本文把发送信号设计、接收信号的预处理、基于‘网络编码’和‘协作通信’思想的纠错编码及空时编码等技术综合在一起进行设计和优化,贯穿于通信过程的始终,给无线网络带来协同的涌现增益。比起传统信号传输方式,这些新技术的使用将使得无线多天线系统在频谱效率、能耗、编译码复杂度、误码率性能和系统吞吐量等许多方面都获得了较大的性能增益。图61幅,表2个,参考文献187篇。
The physical layer of digital communication system is of concern of the information flow transmission problem between the sending nodes and receiving nodes, such as channel coding, signal modulation and demodulation. To further improve the transmission performance of wireless MIMO system, some physical layer technical improvements are proposed for the sending end and receiving end, as follows:
     1) The new transmission signal design:In order to carry digital information, the traditional modulation methods utilize the waveform difference of amplitude, phase or frequency, or two or more different combinations of signal parameters. But we introduce power difference as a new waveform different way, its core idea is to insert certain continuous zero signal intervals into the energy signal waveform according to some mapping relationship. Theoretical calculation indicates that the receiver with multiple antennas can get many copies of signal, and then distinguish the noise pollution signals and the pure noise signals by the signal power difference with a very low error probability. Based on these results, some novel space-time signal designs are proposed for various systems, such as coherent SIMO and non-coherent MIMO. Analysis and simulation results all show that the new encoding schemes are superior to traditional programs.
     2) Receive signal preprocessing:using the minimum-energy wavelet frame in the discrete space to pre-process the receive signal before demodulation. We first give the definition of minimum energy frame in discrete signal space, and prove some good characteristics of it. Then the denoising pre-processing algorithms are proposed for the polluted rectangular and raised cosine pulse signal by additive Gaussian noise using these characteristics. Simulation results show that, if adding a signal pre-processing part in the receiver, due to take full advantage of a priori information of signal, the signal pre-processing algorithms can reduce some adverse effects from transmission for the receive signal and improve the output signal-to-noise-rate of signal demodulation, and then obtain greater performance gain.
     3) Network coding theory based on two-way transmission:a network communication system can be regarded as the collection of the nodes which try to communicate with each other and their channels between them. Currently, most of the researches on wireless network communications are considering one-way information flow, namely, in a communication process, the intersection set between the source nodes and destination nodes is empty. In fact, with the broadcast characteristics of wireless channel, this division will cause great waste of network resources. Because of the new flat network architecture of next generation mobile communication systems, based on two-way flow of information transmitted, this paper introduces the network code and collaborative communication ideas, and carry out some basic coding theory research for some basic network topology. These include:multi-dimensional network error-correcting codes, multi-dimensional network linear block codes and convolutional codes, multi-dimensional space-time code and dual-constellation space-time code design for the exchange node; two-dimensional and three-dimensional network error-correcting code design, as well as two-dimensional and three-dimensional network of space-time code design for cooperative relay node. Theoretical analysis and simulation results show that, compared to the traditional coding theory based on one-way information flow, the novel coding schemes can make better use of the broadcast nature of wireless channel and wireless networking space resources, and effectively improve the utilization of energy emission and obtain more coding gain.
     In the physical layer, the source nodes and relay nodes need encoding and signal processing algorithms, while the destination nodes will need signal processing and decoding algorithm. the design of transmission signals, the pre-processing algorithm for the received signal, the error correction coding and space-time coding based on the network coding and collaborative communication are put together to carry out the optimization of communication. They are throughout all communication process and bring great gain for the wireless network. Compared to traditional methods, these novel technologies will obtain many gains on the performance of spectral efficiency energy consumption, encoding and decoding complexity, bit error rate and system throughput.
引文
[1]I Daubechies, Orthonormal bases of compactly supported wavelets, Comm. Pure Appl. Math. 1988,41(59):909-996
    [2]C K Chui. An introduction to wavelets. Academic Press, Boston,1992
    [3]I Daubechies. Ten lectures on wavelets. CBMS-NSF Series in Applied Math., Vol.61, SIAM, Philadelphia,1992
    [4]G B Moody, R G Mark, A L Goldberger. Evaluation of the "TRIM" ECG data compressor. Comput. Cardiology,1989,167-170
    [5]S Mallat. A theory for multiresolution signal decomposition:the wavelet rep- resentation. IEEE Trans. on Pattern Anal. Machine Intell,1989,11(7):674-693
    [6]P P Vaidyanathan. Multirate Systems and Filter Banks. Englewood Cliffs, NJ:Prentice-Hall, 1993.
    [7]J M Shapiro. Embedded image coding using zerotrees of wavelet coefficients. IEEE Trans. On Signal Proc.,1993,41(12):3445-3462
    [8]J J Benedetto, S Li. The theory of multiresolution analysis frames and application to filter banks. Appl. Comp. Harm. Anal.1998,5(3):398-427
    [9]L Shen, J Tan, Y Tham, Symmetric\anti-symmetric orthonormal multiwavelets and related scalar wavelets. Appl Comp Harm Anal,2000,8(11):179-258
    [10]M Papadakis, G Gogoshin, I A Kakadiaris, D J Kouri, D K Hoffman. Non- separable radial frame multiresolution analysis in multidimensions. Numerical Funct. Anal. Optim.2003,24(18): 907-928
    [11]M Nielsen, E N Kamavuako, M M Andersen, M F Lucas, D Farina. Optimal wavelets for biomedical signal compression. Med.Biol. Eng. Comput.,2006:561-569
    [12]J A Norris, K B Englehart, D F Lovely. Myoelectric signal compression using zero-trees ofwavelet coefficients. Med. Eng. Phys.,2003:739-746
    [13]B A Rajoub. An efficient coding algorithm for the compression of ECG signal using the wavelet transform. IEEE Trans. On Biomed. Eng.,2002,49(4):732-735
    [14]N Rajpoot, R Wilson, F Meyer, R Coifman. Adaptive wavelet packet basis selection for zerotree image coding. IEEE Trans. On Image Proc,2003,12(12):1460-1472
    [15]P Wellig, Z Chang, M. Semling, G. S. Moschytz. Electromyogram data compression using single-tree and modified zero-tree wavelet encoding. in Proc. IEEE-EMBS,1998:303-1306
    [16]J Yloestalo. Data compression methods for EEG. Technol. Health Care,1999:285-300
    [17]D. Donoho. De-noising by soft thresholding. IEEE Trans. on Information Theory,1995,3(41): 613-627
    [18]Petukhov A. Symmetric framelets. Constr Approx,2003,19(2):309-328
    [19]Abdelnour A F, Selesnick I W. Symmetric nearly shift-invariant tight frame wavelets. IEEE Trans. on Sig Proc,2005,53(1):231-238
    [20]M Papadakis. Generalized frame multiresolution analysis in abstract Hilbert spaces. Sampling, Wavelets and Tomography, J. Benedetto and A. Zayed, Eds. Boston, MA:Birkhauser,2003
    [21]H Zhang, A Nosratinia, R Wells. Modeling the autocorrelation of wavelet coefficients for image denoising. Proc. Int. Conf. Image Processing,2000,9(3):300-303
    [22]S Chang, B Yu, M Vetterli. Spatially adaptive wavelet thresholding with context modeling for image denoising. IEEE Trans. on Image Process,2000,9(9):1522-1531
    [23]Peng L Z, Wang H H. Construction for a class of smooth wavelet tight frames. Sci china Ser F-Inf Sci,2003,46(6):445-458
    [24]Gao X P, Zhou S W. A study of orthogonal, balanced and symmetric multi- wavelets on the interval. Sci China Ser F-Inf Sci,2005,48(6):771-781
    [25]Peng Lang Shui, Zheng Bao, Xian-Da Zhang. M-band compactly supported orthogonal symmetric interpolating scaling functions, IEEE Trans. on Signal Processing.2001,49(9): 1704-1713
    [26]P Alexander. Explicit construction of framelets. Appl. Comp. Harm. Anal.2001,11(2): 313-327
    [27]I W Selesnick. Smooth wavelet tight frames with zero moments. Appl. Comp. Harm. Anal. 2001,10(7):163-181
    [28]程正兴.小波分析算法与应用.西安交通大学出版社,1999
    [29]冯向初,甘小冰,宋国乡.数值泛函与小波理论.西安电子科技大学出版社,2003
    [30]蒋鹏.小波理论在信号去噪和数据压缩中的应用研究.浙江大学,2004
    [31]Mallat. S著,杨力华等译.信号处理的小波导引.北京机械工业出版社,2003
    [32]C. K. Chui, W. He. Compactly supported tight frames associated with refinables functions. Appl. Comp. Harm. Anal,2000,8(5):293-319
    [33]L Shen, M Papadakis, A Ioannis, et al. Image denoising using a tight frame, IEEE Trans. on Image Processing,2006,15(6):1254-1263
    [34]谢映海,紧支撑M-带最小能量框架的直接构造,北京交通大学,2008
    [35]高协平,曹春红.最小能量区间小波框架研究.中国科学F辑:信息科学,2009,39(4):441-453
    [36]谢映海,杨维,张玉.离散空间上的最小能量框架及其在矩阵脉冲信号去噪中的应用研究.物理学报,2010,59(11):8255-8264
    [37]刘斌彭,嘉雄.基于二通道不可分小波的多光谱图像融合.中国科学F辑,2008,38(12):2273-2284
    [38]邓玉强,曹世英,于靖等.Gabor小波分析太赫兹波时间-频率特性的研究.物理学报,2008,57(12):7047-7752
    [39]陈世国,吉世印, 刘万松等.基于小波分析的指数衰减信号高斯脉冲成形.物理学报,2008,57(5):2882-2887
    [40]赵文山,何怡刚.一种改进的开关电流滤波器实现小波变换的方法,物理学报,2009,58(2):843-851
    [41]刘峰.基于小波变换的图像扩散滤波方法.中国科学F辑,2006,36(6):668-677
    [42]罗向阳, 刘粉林, 杨春芳等.基于最优小波包分解的图像隐写通用检测基于最优小波包分解的图像隐写通用检测.中国科学F辑,2010,40(2):327-339
    [43]赵瑞珍,刘晓宇,LI ChingChung等.基于稀疏表示的小波去噪.中国科学F辑,2010,40(1):33-40
    [44]张煜东,吴乐南.基于分割的彩色图像编码.中国科学F辑,2009,39(4):405-415
    [45]G. J Foschini. Layered space-time architecture for wireless communication in fading environment when using multi-element antennas. Bell Labs Tech. J,1996,41-59
    [46]S M Alamouti. A simple transmit diversity technique for wireless communications. IEEE J. Select. Areas Commun.,1998,16(7):1451-1458
    [47]V Tarokh, N Seshadri, A R Calderbank. Space-time codes for high data rate wireless communication:Performance criterion and codeconstruction. IEEE Trans. Information Theory,1998, 44(2); 744-765
    [48]V Tarokh, H Jafarkhani, A R Calderbank. Space-time blockcodes from orthogonal designs. IEEE Trans. Information Theory,1999,45(3):1456-1467
    [49]I E Telatar. Capacity of mulit-antenna Gaussian channels. Europ.Trans. Telecommun.,1999, 10(5):585-595
    [50]G. J Foschini, M J Gans. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Commun.,1998,6(3):311-318
    [51]A Goldsmith, S A Jafar, N Jindal, et al. Capacity limits of MIMO channels. IEEE J. Select. Areas Commun.,2003,51(6):684-702
    [52]L Zheng, D N C Tse. Diversity and multiplexing:A fundamental tradeoff inmultiple-antenna channels. IEEE Trans. on Information Theory,2003,19(5):1073-1096
    [53]B Hassibi, B M Hochwald. High-rate codes that are linear in space and time. IEEE Trans. on Information Theory,2002,48(3):1804-1824
    [54]R W Heath Jr, A J Paulraj. Linear dispersion codes for MIMO systems based on frame theory. IEEE Trans. on Signal Processing,2002,50(10):2429-2441
    [55]G. Caire, S Shamai. On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Trans. on Information Theory,2003,49(7):1691-1706
    [56]S Vishwanath, N Jindal, A Goldsmith. Duality, achievable rates, and sum-rate capacity of MIMO broadcast channels. IEEE Trans. on Information Theory,2003,49(10):2658-2668
    [57]B M Hochwald, T L Marzetta. Unitary space-time modulation for multiple antenna communications in Rayleigh Flat Fading. IEEE Trans. on Information Theory,2000,46(2):543-564
    [58]B M Hochwald, T L Marzetta, T J Richardson, et al. Systematic design of unitary space-time constellations. IEEE Trans. on Information Theory,2000,46(6):1962-1973
    [59]T L Marzetta, B M Hochwald. Capacity of a mobile multiple-antenna com- munication link in Rayleigh flat fading. IEEE Trans. on Information Theory,1999,45(5):139-157
    [60]V Tarokh, M Kim. Existence and construction of noncoherent unitary space-time codes. IEEE Trans. on Information Theory,2002,48(12):3112-3117
    [61]Yi Wu, K Ruotsalainen, M Juntti. Unitary space-time constellation design based on the Chernoff bound of the pairwise error probability. IEEE Trans. on Information Theory,2008,54(8): 3842-3850
    [62]T Niyomsataya, A Miri, M Nevins. Unitary space-time constellation designs from group codes. IEEE Trans. on Information Theory,2007,53(11):4322-4329
    [63]Jeongchang Kim, Kyungwhoon Cheun, Soongyoon Choi. Unitary space-time constellations based on quasi-orthogonal sequences. IEEE Trans. on communications,2010,58(1):35-39
    [64]T Niyomsataya, A Miri, M Nevins. An application of the bruhat decom- position to the design of full diversity unitary space-time codes. IEEE Trans. on Information Theory,2009,55(1):232-244
    [65]Brian L Hughes. Optimal space-time constellations from groups. IEEE Trans. on Information Theory,2003,49(2):401-410
    [66]M O Damen, K A Meraim, J C Belfiore. Diagonal algebraic space-time block codes. IEEE Trans. on Information Theory,2002,48(3):628-636
    [67]M O Damen, H E Gamal, N C Beaulieu. Linear threaded algebraic space-time constellations. IEEE Trans. on Information Theory,2003,49(10):2372-2388
    [68]W L Zhao, G Leus, Giannakis. Algebraic design of unitary space-time con- stellations. IEEE International Conference on Communications,2003,5:3180-3184
    [69]W L Zhao, G Leus G, Giannakis. Orthogonal design of unitary constellations for uncoded and trellis-coded noncoherent space-time systems. IEEE Trans. on Information Theory,2004,50(6): 1319-1327
    [70]J Abarbanel, A Averbuch, S Rosset, et al. Unitary non-group STBC from cyclic algebras. IEEE Trans. on Information Theory,2006,52(9):3903-3912
    [71]H X Tong, F Yu. Constructions of three-transmit-antenna space-time codes. J Syst Sci Comp, 2007,20(3):381-385
    [72]T L Marzetta, B Hassibi, B M Hochwald. Structured unitary space-time autocoding constellations. IEEE Trans. on Information Theory,2002,48(4):942-950
    [73]T Niyomsataya, A Miri, M Nevins. Unitary space-time group codes:diversity sums from character tables. IEEE Trans. on Information Theory,2008,54(11):5203-5210
    [74]V Tarokh, H Jafarkhani, A R Calderbank. Space-time block codes from orthogonal designs. IEEE Trans. on Information Theory,1998,44(3):1456-1467
    [75]X B Liang. Orthogonal designs with maximal rates. IEEE Trans. on Information Theory,2003, 49(10):2468-2503
    [76]H B Kan, H Shen. A counterexample for the open problem on the minimal delays of orthogonal designs with maximal rates. IEEE Trans. on Information Theory,2005,51(1):355-359
    [77]B Hassibi, B Hochwald. High rate codes that are linear in space and time. Proc. of 38th Annu. Allerton Conf. Communication, Control, and Computing, Monticello, IL, Oct.2000.
    [78]R W Heath, Jr, A J Paulraj. Linear dispersion codes for MIMO based on frame theory. IEEE Trans. on Signal Processing,2002,50(10):2429-2441
    [79]H Jafarkhani. A quasi-orthogonal space-time block code. IEEE Trans. on Commun.,2001, 49(11):1-4
    [80]N Sharma, C B Papadias. Improved quasi-orthogonal codes through constellation rotations. IEEE Trans, on Commun,2003,51(3):332-335
    [81]M O Damen, K Abdel-Meraim, J C Belfiore. Diagonal algebraic space-time block codes. IEEE Trans. on Information Theory,2002,48(3):628-636
    [82]M O Damen, H E Gamal, N C Beaulieu. Linear threaded algebraic space-time constellations. IEEE Trans. on Information Theory,2003,49(10):2372-2388
    [83]B M Hochwald, W Sweldens. Differential unitary space-time modulation. IEEE Trans. on Communication,2000,148(12):2041-2052
    [84]V Tarokh, H Jafarkhani. A differential detection scheme for transmit diversity. IEEE J. Select. Areas Commun.,2000,18(7):1169-1174
    [85]邹黎,赵玉萍,王兵等.双星座空时调制.中国科学E辑.2005,35(2):200-213
    [86]邹黎,赵玉萍,王兵等.一种新的酉空时调制.电子与信息学报.2004,26(7):1009-1016
    [87]郭永亮,朱世华.基于满分集空时分组码的非相干空时码设计.中国科学E辑.2008,38(2):312-320
    [88]于飞,童宏玺.一类满分集酉空时码的构造.中国科学A辑.2009,39(5):625-632
    [89]罗振东,刘元安高锦春.差分空时块对角码.中国科学E辑.2007,37(8):1032-1044
    [90]郭永亮,朱世华,张国梅.基于正交空时分组码的酉空时码设计.电子学报.2006,34(1):123-126
    [91]A Sendonaris, E Erkip, B Aazhang. Increasing uplink capacity via user cooperation diversity. Proc. of IEEE ISIT, Cambridge, USA,1998
    [92]A Sendonaris, E Erkip, B Aazhang. User cooperation diversity Part Ⅰ and Part Ⅱ. IEEE Trans. on Commun.,2003,51(11):2003
    [93]J N Laneman, D Tse, G. W Wornell. Cooperative diversity in wireless networks:efficient protocols and outage behavior. IEEE Trans. on Information Theory,2004,50(12):3062-3080
    [94]J N Laneman, G. W Wornell, D Tse. An efficient protocol for realizing cooperative diversity in wireless networks. Proc. of IEEE ISIT, Washington DC, Jun.2001
    [95]J N Laneman, G. W Wornell. Distributed space-time coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans. on Information. Theory,2003,49(10):2415-2525
    [96]T E Hunter, A Nosratinia. Cooperative diversity through coding. Proc. of IEEE ISIT, Laussane, Switzerland, Jul.2002
    [97]A Stefanov, E Erkip. Cooperative space-time coding for wireless networks. IEEE Information Theory Workshop, Paris, France,2003
    [98]T E Hunter, A Nosratinia. Coded cooperation under slow fading, fast fading, and power control. The Thirty-Sixth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, USA, 2002
    [99]M Janani, A Hedayat. Coded cooperation in wireless communications:space-time transmission and iterative decoding. IEEE Trans. on Signal Processing,2004,52(2):362-371
    [100]S Soltanali, S Pirahesh, S Niksefat. An efficient scheme to motivate cooperation in mobile ad hoc networks. Networking and Services, Athens, Greece:IEEE Computer Society Press,2007: 98-103
    [101]M Pischella, J C Belfiore. Resource Allocation for QoS-Aware OFDMA Using Distributed Network Coordination. IEEE Trans. on Vehicular Technology,2009,58(4):1766-1775
    [102]L Buttyan, J Huhaux. Stimulating cooperation in self-organizing mobile ad hoc networks. Proc. of ACM\Kluwer Mobile Networks and Applications. New York:IEEE Press,2003:579-592
    [103]S Buchegger, J Y L Boudec. Performance analysis of the confidant protocol:cooperation of nodes fairness in dynamic ad-hoc networks. Proc. of Mohihoc, Lausanne, Switzerland:ACM,2002: 226-236
    [104]S Zhong, Y R Yang, J Chen. Sprit:a simple, cheat-proof, eredit-based system for mobile Ad Hoc networks. Pro. of IN FOCOM. San Francisco, USA:IEEE Press,2003:187-197
    [105]R U Nabar R U, F W Kneubuhler, B H Aolcskei. Performance limits of amplify-and-forward based fading relay channels. Proc. of IEEE Int. Conf. Acoustics. Speech and Signal Processing. Canada, Montreal,2004,4:565-568
    [106]R U Nabar, B H Aolcskei, F W Kneubuhler. Fading relay channels:Performance limits and space-time signal design. IEEE J. Sel. Areas Commun.,2004,22:1099-1109
    [107]K Azarian, H Gamal. P Schniter. On the achievable diversitymultiplexing trade off in halfduplexing cooperative channels. IEEE Trans. on Information Theory,2005,51(4):4152-4172
    [108]I Lee, Kim. BER analysis for decode-and—forward relaying in dissimilar Rayleigh fading channels. IEEE Commun. Lett.,2007,11(4):52-54
    [109]N C Beaulieu, J Hu. A closed-form expression for the outage probability of decode-and-forward relaying in dissimilar Rayleigh fading channels. IEEE Commun. Lett,2006, 10(5):813-815
    [110]J N Laneman, G W Wornell. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks. IEEE Trans. on Information Theory,2003,49(6): 2415-2425
    [111]L Jun, C Wen, Z Cheng, et al. On the throughput reliability tradeof analysis in amplify-and-forward cooperative channels. IEEE International Conference on Communications(ICC), Beijing, May 2008,3:1034-1038
    [112]T E Hunter, A Nosratinia. Diversity through coded cooperation. IEEE Trans. on Wireless Commun.,2006,5(2):283-289
    [113]T E Hunter, S Sanayei, A Nosratinia. Outage analysis of coded cooperation. IEEE Trans. on Information Theory,2006,52(5):375-391
    [114]T E Hunter. Coded coperation:A new framework for user coperation in wireless networks. Ph. D dissertation, Univ. Texas at Dalias, Richardson,2004
    [115]M K Karakayali, G. J Foschini, R A Valenzuela. Network coordination for spectrally efficient communications in cellular systems. IEEE Trans. on Wireless Commun.,2006,13(4):56-61
    [116]B L Ng, J S Evans, S V Hanly, et al. Transmit beamforming with cooperative base stations. Proc. of IEEE Intl. Symp. Inf. Theory, Sep.2005,1431-1435
    [117]B L Ng, J S Evans, S V Hanly, et al. Distributed downlink beamforming with cooperative base stations. IEEE Trans. on Information Theory,2008,54(12):5491-5499
    [118]B L Ng, C T K Jindal, Goldsmith, et al. Capacity gain from two-transmitter and two-receiver cooperation. IEEE Trans. on Information Theory,2007,53(10):3822-3827
    [119]B L Ng, C T K Jindal, Goldsmith. The impact of CSI and power allocation on relay channel capacity and cooperation strategies. IEEE Trans. on Wireless Commun.,2008,7(12):5380-5389
    [120]M Pischella, J C Belfiore. Resource allocation for qoS-aware OFDMA using distributed network coordination. IEEE Trans. on Vehicular Technology,2009,58(4):1766-1775
    [121]J N Laneman, G W Wornell, D Tse. An efficient protocol for realizing cooperative diversity in wireless networks. Proc. of IEEE ISIT, Washington DC, Jun.2001, p.294
    [122]程卫军,朱柏程Nakagami衰落信道下多跳合作分集系统的中断率.电子与信息学报,2006,28(10):1892-1896
    [123]赵贤敬,郑宝玉,钱小聪等.协作发射分集系统及其误码率性能分析.通信学报,2007,28(1):40-48
    [124]程卫军,朱柏程.基于最小路由数的多节点合作MRC系统的性能分析.电子学报,2007,35(7):1246-1250
    [125]R Ahlswede, N Cai, S Y R Li, et al. Network information flow. IEEE Trans. on Information Theory,2000,46(4):1204-1216
    [126]S Y R Li, R W Yeung, N Cai. Linear network coding. IEEE Trans. on Information Theory, 2003,49(2):371-381
    [127]R Koetter, M Medard. An algebraic approach network coding. IEFE\ACM Trans. on Networking,2003,11(5):782-795
    [128]T Ho, M Medard, R Koetter, et al. A random linear network coding approach to multicast. IEEE Trans. on Information Theory,2006,52(10):4413-4430
    [129]C Fragouli, E Soljanin. Information flow decomtxition for network coding. IEEE Trans. on Information Theory,2006,51 (4):1295-1312
    [130]R W Yeung, S Y R Li, N Cai, et al. Network coding theory. Foundation and Trends in Communications and Information Theory,2005,2(4):241-381
    [131]S Jaggi, P Sanders, P A Chou, et al. Polynomial time algorithms for multicast network code construction. IEEE Trans. on Information Theory,2005,51 (6):1973-1982
    [132]T Ho, M Medard, R Koetter, et al. A random linear network coding approach to multicast. IEEE Trans. Information Theory,2006,52(10):4413-4430
    [133]Y N Wu, K Jain, Y Kungs. A unification of network coding and tree-packing(routing) theorems. IEEE Trans. on Information Theory,2006,52(6):2398-2409
    [134]S Zhang, S Liew, P Lam. Physical layer network coding. Proc. of ACM MOBICOM, Los Angeles, USA,2006,358-365
    [135]S Sengupta, S Rayanchu, S Banerjee. Network coding-aware routing in wireless networks. IEEE/ACM Trans. on Networking,2010:1158-1170
    [136]X B Liang. Matrix games in the multicast networks:maximum information flows with network switching. IEEE Trans on Information Theory,2006,11(5):2433-2466
    [137]V S Mansouri, V Wong. Lifetime-resource trade off for multicast traffic in wireless sensor networks. IEEE Trans.on wireless communications,2010,5(1):1924-1934
    [138]P Parag, J F Chamberland. Queueing analysis of a butterfly network for comparing network coding to classical routing. IEEE Trans. on Information Theory,2010,56(4):1890-1908
    [139]N Cai, R W Yeung. Network coding and error correction. Proc. of IEEE Information Theory Workshop(ITW02),2002(10):119-122
    [140]R W Yeung, N Cai. Network error correction, part Ⅰ:Basic concepts and upper bounds. Communications in Information and Systems,2006,6(1):19-36
    [141]N Cai, R W Yeung. Network error correction, part Ⅱ:Lower bounds. Communications in Information and Systems,2006,6(1):37-54
    [142]Z Zhang. Network error correction coding in packetized networks. Proc. of IEEE Information Theory Workshop(ITW06), Chengdu, China, Oct.2006
    [143]Z Zhang. Linear network error correction codes in packet networks. IEEE Trans. on Information Theroy,2008,54(1):209-218
    [144]P A Chou, Y N Wu, K Jain. Practical network coding. The 41st Annual Allerton Conference on Communication, Control, and Computing, Monticello, IL,2003
    [145]T Ho, B Leong, R Koetter, et al. Byzantine modification detection in multicast networks using randomized network coding. The 2004 IEEE Int'l Symp on Information Theory (ISIT'04), Chicago, IL, USA,2004:2798-2803
    [146]M Wang, B C Li. How practical is network coding?. The 14th IEEE Int'l Workshop on Quality of Service (IW QoS 2006), New Haven,2006:274-278
    [147]C Fragouli, J Y L Boudec, J Widmer. Network coding:An instant primer. ACM SIGCOMM Computer Communication Review,2006,36(1):63-68
    [148]C Fragouli, E Soljanin. Decentralized network coding. Information Theory Workshop, San Antonio, Texas,2004:24-29
    [149]C Gkantsidis, P R Rodriguez. Network coding for large scale content distribution. IEEE INFOCOM'05,2005:2235-2245.
    [150]R Matsumoto. Construction algorithm for network error correcting codes attaining the singleton bound. IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences,2007,90(9):1-7
    [151]Y Chen, S Kishore, J Li. Wireless diversity through network coding. IEEE Wireless Communications and Networking Conference,2006:1681-1686
    [152]I F Akyildiz, X Wang W Wang. Wireless mesh networks:a survey. Computer network Journal(Elsevier), March 2005
    [153]N Akhtar, K Moessner. On the nominal capacity of multi-radio multi-channel wireless Mesh networks. Computer Communications,2008,31(8):1475-1483
    [154]J Vicente, S Rungta. Overmesh:network-centric computing. IEEE Commu- nications Magazine,2007,45(2):126-133
    [155]IT世界.IEEE组织将要接受网状网络WLAN标准http:\\www.it.com.cn\f\diy\057\22\147971.htm,jul.2007
    [156]J Jun, M Sichitiu. The nominal capacity of wireless mesh networks. IEEE Trans. on Wireless Communications,2003,10(5):8-14
    [157]P Gupta, P R Kumar. The capacity of wireless networks. IEEE Trans. on Information Theory, 2000,46(2):388-405
    [158]B Liu, Z Liu, D Towsley. On the capacity of hybrid wireless networks. Proc.of INFOCOM 2003, April 2003
    [159]A Raniwala, Tzi-cker Chiueh. Architecture and algorithms for an IEEE 802.11-Based multi-channel wireless mesh network. Proc.of INFOCOM, March 2005
    [160]M Grossglauser, D N C Tse. Mobility increases the capacity of ad hoc wireless networks. IEEE\ACM Trans. on Networking, August 2002
    [161]J Li etal. Capacity of ad hoc wireless networks. Proc. of 7th ACM Int'l, Conf, Mobile Comp, and Net, Rome, Italy, Junly,2001
    [162]N Pogkas, G E Karastergios, C P Antonopoulos, et al. Architecture design and implementation of an ad-hoc network for disaster relief operations. IEEE Trans. on Industrial Informatics,2007,3(1): 63-72
    [163]W Wei, A Zakhor. Multiple tree video multicast over wireless ad hoc networks. IEEE Trans. on Circuits and Systems for Video Technology,2007,17(1):2-15
    [164]P C Ng, S C Liew. Throughput analysis of IEEE802.11 multi-hop ad hoc networks. IEEE\ACM Trans. on Networking,2007,15(2):309-322
    [165]N B Salem, J P Hubaux. A fair scheduling for wireless mesh networks. Proc.of IEEE Wi Mesh, September 2005
    [166]T J Tsai, J W Chen. IEEE 802.11 MAC protocol over wireless mesh networks problems and perspectives. Proc. of IEEE AINA, March 2005
    [167]C H Chiang, B S Jong, T W Lin. Regular mesh simplification. International Conference on Computer and Management (CAMAN),2011,1-4
    [168]Egoh K, Rojas Cessa R, Ansari N. Distributed diffusion-based mesh algorithm for distributed mesh construction in wireless ad hoc and sensor networks. IEEE International Conference on Communications (ICC), May 2010,1-5
    [169]Heecheol Song, Bong Chan Kim, Jae Young Lee, Hwang Soo Lee. IEEE 802.11-based wireless mesh network testbed. mobile and wireless communications summit,2007 16th IST,1-5
    [170]Ping Zhou, Xudong Wang, Rao R. Asymptotic capacity of infrastructure wireless mesh networks. IEEE Trans. on Mobile Computing,2008,7(8):1011-1024
    [171]Ye Yan, Hua Cai, Seung-Woo Seo. Performance analysis of IEEE802.11 wireless mesh networks. IEEE International Conference on Communications,2008,2547-2551
    [172]Zhang Lili, Wang Huibin, Xu Lizhong, Xu Zhuoming, Li Chenming. Fault tolerance and transmission delay in wireless mesh networks. International Conference on Networks Security, Wireless Communications and Trusted Computing,2009,193-196
    [173]Jayaprakasam S, Teong Chee Chuah, Su Wei Tan. Collaborative mesh networking for low cost wireless coverage in rural areas. IEEE Symposium on Industrial Electronics & Applications,2009, 313-318
    [174]Sulyman A I, Takahara G,Hassanein H S, Kousa M. Multi-hop capacity of MIMO-multiplexing relaying in WiMAX mesh networks. IEEE International Con- ference on Communications,2009,1-5
    [175]Keuchul Cho,Jeongbae Yun, Youngmi Baek, Kihyun Kim, Kijun Han. The path recovery method for wireless mesh networks. International Multisymposiums on Computer and Computational Sciences,2008,110-113
    [176]Arezoomand A S, Pourmina M. Prolonging network operation lifetime with new maximum battery capacity routing in wireless mesh network. The 2nd International Conference on Computer and Automation Engineering,2010,319-323
    [177]F J M Willians, N J A Sloane. The theory of error-correcting codes. Amsterdam: North-Hoalland,1977
    [178]张力军,张宗橙,郑宝玉等译,数字通信[M],电子工业山版社,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700