低复杂度多用户分层空时编码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MIMO技术是未来宽带无线通信大幅度提升信道容量和改善通信质量的关键技术。目前,基于MIMO系统的分层空时码能够成倍地提高系统容量,但不能够获得分集增益;通过空时分组编码可获得分集增益来克服深度衰落,但典型的正交空时分组码和准正交空时分组码在获得低译码复杂度的同时均具有较低的编码速率。多用户分层空时编码将分层空时码与空时分组编码结合起来,通过将发送天线分成多个组(用户),每组(用户)独立进行空时分组编码,在接收端通过干扰相消分别译码来自各组(用户)的发送符号,在获得分集增益的同时能够提高空时分组码的编码速率,是目前多用户MIMO系统中广泛应用的一种空时编码方案。若采用最大似然(Maximum Likelihood,ML)译码算法译码,复杂度很高,不利于实际应用。
     部分干扰相消(Partial Interference Cancellation,PIC)分组译码算法通过发送符号分组和干扰相消并独立译码,在所有采用投影矩阵的同类分组译码算法中具有最优的误符号率。在单用户MIMO系统中,PIC分组译码算法通过编码设计可以较低的复杂度获得全分集性能。但对其在多用户系统中应用时的分集性能与空时编码设计尚无相关文献进行研究。
     论文以多用户分层空时编码系统为研究对象,研究采用低复杂度的PIC分组译码算法时的系统性能与译码算法改进,并研究基于低复杂度串行干扰相消(Successesive Interference Cancellation,SIC)辅助PIC(PIC-SIC)分组译码算法的全分集多用户空时分组码的设计。主要研究成果有:
     ①提出多用户分层空时系统等效信道模型的获取方法。基于空时分组码的线性表示,通过矩阵变换获取了多用户分层空时系统等效信道模型的表示方程,并证明PIC分组译码算法的投影矩阵可以继续简化,从而进一步降低干扰相消后的译码复杂度。
     ②研究采用ML译码和PIC分组译码算法时多用户分层空时编码系统的分集性能。基于空时编码设计的秩准则,证明多用户分层空时编码系统采用ML译码时,可获得与同样天线配置和空时编码方案的单用户MIMO系统相同的分集增益。论文进一步证明,PIC分组译码的K用户分层空时码系统,每用户具有M副发送天线和N副接收天线的情况下,采用Alamouti码和准正交空时分组码所能获得的分集增益为M(N-K+1)。该研究为低复杂度多用户分层空时编码系统提供了新的性能分析结果。
     ③为提升PIC分组译码算法译码的多用户分层空时编码系统性能,通过对任意信道环境下不同分组方案干扰相消后功率增益的对比分析,提出了一种自适应分组译码算法,在任意信道环境下自适应地选择功率增益最大的分组方案,从而获得更优的系统性能。仿真结果表明,采用此自适应分组算法,可以比传统的分组方法获得约3dB的误码率增益。
     ④传统多用户分层空时编码系统,采用PIC分组译码算法和其它干扰相消译码算法时,均会损失分集增益。论文通过改变编码方案,增强了分组译码时各分组等效信道矩阵所含矢量之间的独立性,并通过符号成对差错概率分析,证明所提编码方案采用PIC-SIC分组译码算法能够获得更高的分集增益。仿真结果表明,在频谱效率相同的情况下,所提方案比传统编码方案能获得更好的误码性能及更高的分集增益。
As one of the key techniques for future wide-band wireless communication,MIMO can substantially increase the channel capacity and improve the communicationquality. At present, the channel capacity can be explored by using MIMO-based layeredspace-time (LST), while space-time block codes (STBCs) can be used to increase thediversity gain to overcome deep fading. As two important STBCs, orthogonal STBCsand quasi-orthogonal STBCs have low decoding complexity with a relatively low coderate. To achieve the diversity gain and high code rate simultaneously, LST codes andSTBCs can be combined to be multi-user LST codes. The transmit antennas are firstpartitioned into multiple groups (users), and then each group (user) is codedindependently with a space-time code, finally each group’s (user’s) transmit symbols aredecoded at the receiver after cancelling interferences from other groups. Because of itsadvantages, this coding scheme is adopted widely in current multi-user MIMO systems.If maximum likelihood (ML) decoding is used for its decoding, the high complexitymay restrict its applications
     Partial interference cancellation (PIC) group decoding, which groups the transmitsymbols and decodes them independently after interference cancellation, is optimum interms of symbol-error-rate (SER) among all the similar group decoding algorithms withproject matrix. For single-user MIMO systems, full diversity can be achieved byspace-time code design with low complexity PIC group decoding. However, formulti-user MIMO system, its diversity performance and space-time coding are stillunknown.
     In the thesis, multi-user LST coded system is considered. Perfomance analysis forthe system decoded with the PIC group decoding is done and the methods to improvethe decoding performance are proposed. Furthermore, full-diversity multi-userspace-time coding scheme based on successive interference cancellation (SIC) aidedPIC (PIC-SIC) group decoding are also studied. The achievements are as follows.
     ①The method to obtain the equivalent channel models for multi-user LST codedsystems is proposed. Based on the linear expression of STBCs, the equivalent channelequation for multi-user LST coded systems is derived by linear matrix transformation.Next, it is proved that the projection matrix for the PIC group decoding algorithm canbe further simplified to lower the decoding complexity after interference cancellation.
     ②The diversity performance of multi-user layered space-time coding with themaximum likelihood (ML) decoding and PIC group decoding algorithm is analyzed andproved. Based on the rank criterion for single-user space-time code design, theML-decoded system diversity gain is proved to be the same as that of the single-userMIMO system with the same antenna configuration and STBC. It is further proved that,for a K-user layered MIMO system, each user equipped with M transmit antennasand N receive antennas and coded with Alamouti and quasi-orthogonal STBC,diversity order M (N-K+1)can be achieved using the PIC group decoding. Theobtained conclusion is a novel and important theoretical result for low-complexitymulti-user LST coded systems.
     ③In order to improve the performance of multi-user LST codes with the PICgroup decoding, by analyzing and comparing the power gains of all possible groupingschemes after interference cancellation under any channel realization, a PIC groupdecoding algorithm with adaptive grouping is obtained. The grouping scheme withmaximum power gain can be adaptively selected in real-time, and thus better systemperformance can be achieved. Simulation results show that the adaptive groupingscheme can obtain about3dB bit-error-rate (BER) improvement compared to thetraditional grouping schemes.
     ④For traditional multi-user LST coded systems, if using group decodingalgorithms including the PIC group decoding, the diversity order may decrease. Bychanging the coding scheme to strengthen the independence among the column vectorsin different groups’ equivalent channel matrices when using group decoding, a codingscheme is proposed and proved to be full diversity with the PIC-SIC group decodingbased on the analysis of symbol pair error probability. Simulation results show that thescheme can achieve better BER performance and higher diversity gain compared to thetraditional LST codes at the same spectrum efficiency.
引文
[1] Zheng L, Tse D N C. Diversity and multiplexing: a fundamental tradeoff in multiple-antennachannels [J]. IEEE Transactions on Information Theory,2003,49(5):1073-1096.
    [2] Alamouti S M. A simple transmit diversity technique for wireless communications [J]. IEEEJournal on Selected Areas in Communications,1998,16(8):1451-1458.
    [3] Guo X, Xia X-G. On Full Diversity Space Time Block Codes With Partial InterferenceCancellation Group Decoding [J]. IEEE Transactions on Information Theory,2009,55(10):4366-4385.
    [4] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs[J]. IEEE Transactions on Information Theory,1999,45(5):1456-1467.
    [5] Geramita A V, Seberry J. Orthogonal Designs, Quadratic Forms and Hadamard Matrices [M].New York and Basel: Marcel Dekker,1979.
    [6] Liang X B, Xia X G. On the nonexistence of rate-one generalized complex orthogonaldesigns [J]. IEEE Transactions on Information Theory,2003,49(11):2984-2989.
    [7] Wang H Q, Xia X G. Upper bounds of rates of complex orthogonal space-time block codes[J]. IEEE Transactions on Information Theory,2003,49(10):2788-2796.
    [8] Ganesan G, Stoica P. Space-time block codes: A maximum SNR approach [J]. IEEETransactions on Information Theory,2001,47(4):1650-1656.
    [9] Tirkkonen O, Hottinen A. Square-matrix embeddable space-time block codes for complexsignal constellations [J]. IEEE Transactions on Information Theory,2002,48(2):384-395.
    [10] Das S, Rajan B S. Low-delay, High-rate Non-square Complex Orthogonal Designs [J]. IEEETransactions on Information Theory,2012,58(5):1-1.
    [11] Su W, Xia X G, Liu K J R. A systematic design of high-rate complex orthogonal space-timeblock codes [J]. IEEE Communications Letters,2004,8(6):380-382.
    [12] Das S, Sundar Rajan B. Low-delay, high-rate, non-square STBCs from scaled complexorthogonal designs[C]//: IEEE International Symposium on Information Theory. IEEE,2008:1483-1487.
    [13] Jafarkhani H. A quasi-orthogonal space-time block code [J]. IEEE Transactions onCommunications,2001,49(1):1-4.
    [14] Tirkkonen O, Boariu A, Hottinen A. Minimal non-orthogonality rate1space-time block codefor3+Tx antennas [M]. IEEE Sixth International Symposium on Spread SpectrumTechniques and Applications.2000:429-432.
    [15] Papadias C B, Foschini G J. Capacity-approaching space-time codes for systems employingfour transmitter antennas [J]. IEEE Transactions on Information Theory,2003,49(3):726-732.
    [16] Su W F, Xia X G. Signal constellations for quasi-orthogonal space-time block codes with fulldiversity [J]. IEEE Transactions on Information Theory,2004,50(10):2331-2347.
    [17] Sharma N, Papadias C B. Improved quasi-orthogonal codes through constellation rotation [J].IEEE Transactions on Communications,2003,51(3):332-335.
    [18] Tirkkonen O. Optimizing space-time block codes by constellation rotations[C]//: FinnishWireless Communications Workshop((FWCW'01). Finland,2001:59-60.
    [19] Wang D, Xia X G. Optimal diversity product rotations for quasiorthogonal STBC withMPSK symbols [J]. IEEE Communications Letters,2005,9(5):420-422.
    [20] Yuen C, Guan Y L, Tjhung T T. Full-rate full-diversity STBC with constellation rotation[C]//:The57th IEEE Semiannual Vehicular Technology Conference. IEEE,2003:296-300vol.291.
    [21] Wolniansky P W, Foschini G J, Golden G D, et al. V-BLAST: An architecture for realizingvery high data rates over the rich-scattering wireless channel [M].1998Ursi Symposium onSignals, Systems, and Electr Onics. New York; Ieee.1998:295-300.
    [22] Su W, Xia X G. Quasi-orthogonal space-time block codes with full diversity[C]//: GlobalTelecommunications Conference. IEEE,2002:1098-1102vol.1092.
    [23] Yuen C, Guan Y L, Tjhung T T. Optimizing quasi-orthogonal STBC throughgroup-constrained linear transformation[C]//: Globecom2004. IEEE,2004:550-554Vol.551.
    [24] Khan M, Rajan B S, Lee M H. Rectangular co-ordinate interleaved orthogonal designs[C]//:Global Telecommunications Conference. IEEE,2003:2004-2009vol.2004.
    [25] Khan M Z A, Rajan B S. Space-time block codes from co-ordinate interleaved orthogonaldesigns[C]//: ISIT2002. Lausanne, Switzerland: IEEE,2002: Lausanne, Switzerland:275.
    [26] Tirkkonen O, Hottinen A. Complex space-time block codes for four Tx antennas[C]//: GlobalTelecommunications Conference. IEEE,2000:1005-1009vol.1002.
    [27] Yuen C, Guan Y L, Tjhung T T. Construction of quasi-orthogonal STBC with minimumdecoding complexity[C]//: ISIT2004. Citeseer,2004:309-309.
    [28] Yuen C, Guan Y L, Tjhung T T. Optimising quasi-orthogonal STBC throughgroup-constrained linear transformation [J]. IET Communications,2007,1(3):373-381.
    [29] Yuen C, Guan Y L, Tjhung T T. Quasi-orthogonal STBC with minimum decodingcomplexity: Further results[C]//: Wireless Communications and Networking Conference.New Orleans: IEEE,2005:483-488Vol.481.
    [30] Wang H, Wang D, Xia X G. On optimal quasi-orthogonal space-time block codes withminimum decoding complexity[C]//: ISIT2005. IEEE,2005:1168-1172.
    [31] Wang H, Wang D, Xia X G. On Optimal Quasi-Orthogonal Space-Time Block Codes WithMinimum Decoding Complexity [J]. IEEE Transactions on Information Theory,2009,55(3):1104-1130.
    [32] Karmakar S, Rajan B S. Minimum-decoding-complexity, maximum-rate space-time blockcodes from Clifford algebras[C]//: International Symposium on Information Theory. Seattle,USA,: IEEE,2006:788-792.
    [33] Yuen C, Guan Y L, Tjhung T T. Algebraic relationship between amicable orthogonal designsand quasi-orthogonal STBC with minimum decoding complexity[C]//: IEEE InternationalConference on Communications. IEEE,2006:4882-4887.
    [34] Dao D, Tellambura C. On decoding, mutual information, and antenna selection diversity forquasi-orthogonal STBC with minimum decoding complexity[C]//: GLOBECOM2006.2006:1-5.
    [35] Dao D N, Tellambura C. Performance Analysis and Optimal Signal Designs for MinimumDecoding Complexity ABBA Codes [J].2006,
    [36] Dao D N, Tellambura C. Quasi-orthogonal STBC with minimum decoding complexity:performance analysis, optimal signal transformations, and antenna selection diversity [J].IEEE Transactions on Communications,2008,56(6):849-853.
    [37] Rajan B S, Leey M H, Zafar M, et al. A rate-one full-diversity quasi-orthogonal design foreight Tx antennas[C]//: DRDO-IISc Program on Mathematical Engineering. Citeseer,2002.
    [38] Sharma N, Papadias C B. Full-rate full-diversity linear quasi-orthogonal space-time codes forany number of transmit antennas [J]. EURASIP Journal on Applied Signal Processing,2004,2004(1246-1256.
    [39] Yuen C, Guan Y L, Tjhung T T. A class of four-group Quasi-Orthogonal STBC achieving fullrate and full diversity for any number of antennas[C]//: IEEE16th International Symposiumon Personal, Indoor and Mobile Radio Communications. IEEE,2005:92-96.
    [40] Karmakar S, Sundar Rajan S. Multigroup-decodable STBCs from Clifford algebras [M].2006IEEE Information Theory Workshop.2006:448-452.
    [41] Dao D N, Tellambura C, Yuen C, et al. Four-group decodable semi-orthogonal algebraicspace-time block codes [M].20078th IEEE Wireless Communications and NetworkingConference.2007:588-593.
    [42] Rajan G S, Rajan B S. Four group decodable differential scaled unitary linear space-timecodes [M].2007IEEE Global Telecommunications Conference, Vols1-11.2007:1714-1718.
    [43] Dung Ngoc D, Chau Y, Tellambura C, et al. Four-Group Decodable Space-Time BlockCodes [J]. IEEE Transactions on Signal Processing,2008,56(1):424-430.
    [44] Karmakar S, Rajan B S. High-Rate, Multisymbol-Decodable STBCs From Clifford Algebras[J]. IEEE Transactions on Information Theory,2009,55(6):2682-2695.
    [45] Karmakar S, Rajan B S. Multigroup decodable STBCs from Clifford algebras [J]. IEEETransactions on Information Theory,2009,55(1):223-231.
    [46] Damen M O, Tewfik A, Belflore J. A construction of a space-time code based on numbertheory [J]. IEEE Transactions on Information Theory,2002,48(3):753-760.
    [47] Viterbo E, Boutros J. A universal lattice code decoder for fading channels [J]. IEEETransactions on Information Theory,1999,45(5):1639-1642.
    [48] Damen O, Chkeif A, Belfiore J C. Lattice code decoder for space-time codes [J]. IEEECommunications Letters,2000,4(5):161-163.
    [49] Damen M O, Abed-Meraim K, Lemdani M S. Further results on the sphere decoder [M].2001IEEE International Symposium on Information Theory.2001:333-333333.
    [50] El Gamal H, Damen M O. An algebraic number theoretic framework for space-timecoding[C]//: IEEE International Symposium on Information Theory Proceedings. IEEE,2002:132.
    [51] Galliou S, Belfiore J C. A new family of full rate, fully diverse space-time codes based onGalois theory[C]//: IEEE International Symposium on Information Theory. IEEE,2002:419.
    [52] El Gamal H, Damen M O. Universal space-time coding [J]. IEEE Transactions onInformation Theory,2003,49(5):1097-1119.
    [53] Belfiore J C, Rekaya G. Quaternionic lattices for space-time coding[C]//: IEEE InformationTheory Workshop Proceedings IEEE,2003:267-270.
    [54] Sethuraman B A, Rajan B S, Shashidhar V. Full-diversity, high-rate space-time block codesfrom division algebras [J]. IEEE Transactions on Information Theory,2003,49(10):2596-2616.
    [55] Belfiore J C, Rekaya G, Viterbo E. The golden code: a2*2full-rate space-time code withnonvanishing determinants [J]. IEEE Transactions on Information Theory,2005,51(4):1432-1436.
    [56] Yao H, Wornell G W. Achieving the full MIMO diversity-multiplexing frontier withrotation-based space-time codes[C]//: Proc Allerton Conf Communication, Control, andComputing. Monticello, IL,2003:400-409.
    [57] Dayal P, Varanasi M K. An optimal two transmit antenna space-time code and its stackedextensions [J]. IEEE Transactions on Information Theory,2005,51(12):4348-4355.
    [58] Oggier F, Rekaya G, Belfiore J C, et al. Perfect space-Time block codes [J]. IEEETransactions on Information Theory,2006,52(9):3885-3902.
    [59] Elia P, Sethuraman B A, Kumar R V. Perfect space-time codes for any number of antennas[J]. IEEE Transactions on Information Theory,2007,53(11):3853-3868.
    [60] Sezginer S, Sari H. Full-rate full-diversity2x2space-time codes of reduced decodercomplexity [J]. IEEE Communications Letters,2007,11(12):973-975.
    [61] Srinath K P, Rajan B S. A LOW-Complexity, Full-Rate, Full-Diversity2x2STBC withGolden Code's Coding Gain[C]//: Global Telecommunications Conference. IEEE,2008:1-5.
    [62] Paredes J M, Gershman A B, Gharavi-Alkhansari M. A new full-rate full-diversity space-timeblock code with nonvanishing determinants and simplified maximum-likelihood decoding [J].IEEE Transactions on Signal Processing,2008,56(6):2461-2469.
    [63] Srinath K P, Rajan B S. Generalized Silver Codes [J]. IEEE Transactions on InformationTheory,2011,57(9):6134-6147.
    [64] Srinath K P, Rajan B S. Low ML-Decoding Complexity, Large Coding Gain, Full-Rate,Full-Diversity STBCs for2x2and4x2MIMO Systems [J]. IEEE Journal of Selected Topicsin Signal Processing,2009,3(6):916-927.
    [65] Liu J, Zhang J K, Wong K M. Full-diversity codes for MISO systems equipped with linear orML detectors [J]. IEEE Transactions on Information Theory,2008,54(10):4511-4527.
    [66] Zhang J K, Liu J, Wong K M. Linear Toeplitz space time block codes [M].2005IEEEInternational Symposium on Information Theory. New York; Ieee.2005:1942-1946.
    [67] Shang Y, Xia X-G. Overlapped Alamouti Codes [M]. GLOBECOM2007. IEEE.2007:2927-2931.
    [68] Shang Y, Xia X G. Space-time block codes achieving full diversity with linear receivers [J].IEEE Transactions on Information Theory,2008,54(10):4528-4547.
    [69] Shang Y, Xia X G. A criterion and design for space-time block codes achieving full diversitywith linear receivers[C]//: IEEE International Symposium on Information Theory. IEEE,2007:2906-2910.
    [70] Guo X, Xia X G. Correction to “On Full Diversity Space–Time Block Codes With PartialInterference Cancellation Group Decoding”[Oct094366-4385][J]. IEEE Transactions onInformation Theory,2010,56(7):3635-3636.
    [71] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wirelesscommunication: Performance criterion and code construction [J]. IEEE Transactions onInformation Theory,1998,44(2):744-765.
    [72] Dai L, Sfar S, Letaief K B. An efficient detector for combined space-time coding and layeredprocessing [J]. IEEE Transactions on Communications,2005,53(9):1438-1442.
    [73] Natarajan L P, Rajan B S. A New Full-diversity Criterion and Low-complexity STBCs withPartial Interference Cancellation Decoding [J]. Arxiv preprint arXiv:10042131,2010,
    [74] Xu T, Xia X-G. On Space-Time Code Design With a Conditional PIC Group Decoding [J].IEEE Transactions on Information Theory,2011,57(6):3582-3593.
    [75] Shi L, Zhang W, Xia X G. A Design of High-Rate Full-Diversity STBC withLow-Complexity PIC Group Decoding[C]//: Global Telecommunications Conference. IEEE,2010:1-5.
    [76] Shi L, Zhang W, Xia X G. High-rate and full-diversity space-time block codes with lowcomplexity partial interference cancellation group decoding [J]. IEEE Transactions onCommunications,2011,59(5):1201-1207.
    [77] Duan W, Guo Y, Lee M H. High-rate full-diversity space-time-frequency codes with PICdecoding[C]//: International Conference on Electrical and Control Engineering. IEEE,2011:5956-5961.
    [78] Zhang W, Xu T, Xia X G. Two designs of space-time block codes achieving full diversitywith partial interference cancellation group decoding [J]. IEEE Transactions on InformationTheory2012,58(2):747-764.
    [79] Natarajan L P, Rajan B S. Collocated and Distributed STBCs with Partial InterferenceCancellation Decoding, Part I: Full-Diversity Criterion [J]. IEEE Transactions on WirelessCommunications,2011,10(9):3032-3041.
    [80] Natarajan L P, Rajan B S. Collocated and Distributed STBCs with Partial InterferenceCancellation Decoding, Part II: Code Construction [J]. IEEE Transactions on WirelessCommunications,2011,10(9):3042-3052.
    [81] Natarajan L P, Rajan B S. Distributed STBCs with full-diversity partial interferencecancellation decoding[C]//: International Symposium on Information Theory Proceedings.IEEE,2011:2025-2029.
    [82] Foschini G J. Layered space-time architecture for wireless communication in a fadingenvironment when using multi-element antennas [J]. Bell Labs Technical Journal,1996,1(2):41-59.
    [83] Tarokh V, Naguib A, Seshadri N, et al. Combined array processing and space-time coding [J].IEEE Transactions on Information Theory,1999,45(4):1121-1128.
    [84] Prasad N, Varanasi M K. Optimum efficiently decodable layered space-time block codes[C]//:Conference Record of the Thirty-Fifth Asilomar Conference on Signals, Systems andComputers. IEEE,2001:227-231vol.221.
    [85] Tao M, Cheng R S. Generalized layered space-time codes for high data rate wirelesscommunications [J]. IEEE Transactions on Wireless Communications,2004,3(4):1067-1075.
    [86] Naguib A F, Seshadri N, Calderbank A R. Applications of space-time block codes andinterference suppression for high capacity and high data rate wireless systems [M]//MatthewsM B. Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems&Computers, Vols1and2.1998:1803-1810.
    [87] Kazemitabar J, Jafarkhani H. Multiuser interference cancellation and detection for users withfour transmit antennas[C]//: IEEE International Symposium on Information Theory. IEEE,2006:1914-1918.
    [88] Kazemitabar J, Jafarkhani H. Multiuser interference cancellation and detection for users withmore than two transmit antennas [J]. IEEE Transactions on Communications,2008,56(4):574-583.
    [89] Sirianunpiboon S, Howard S D, Calderbank A R. Diversity gains across line of sight and richscattering environments from space-polarization-time codes [M].2007IEEE InformationTheory Workshop on Information Theory for Wireless Networks.2007:1-55.
    [90] Kazemitabar J, Jafarkhani H. Performance analysis of multiple antenna multi-userdetection[C]//: Information Theory and Applications Workshop. San Diego, CA: IEEE,2009:150-159.
    [91] Gartner M, Bolcskei H. Multiuser space-time/frequency code design[C]//: IEEE InternationalSymposium on Information Theory. IEEE,2006:2819-2823.
    [92] Gallager R. A perspective on multiaccess channels [J]. IEEE Transactions on InformationTheory,1985,31(2):124-142.
    [93] Tse D N C, Viswanath P, Zheng L. Diversity-multiplexing tradeoff in multiple-accesschannels [J]. IEEE Transactions on Information Theory,2004,50(9):1859-1874.
    [94] Nam Y H, El Gamal H. On the optimality of lattice coding and decoding in multiple accesschannels[C]//: IEEE International Symposium on Information Theory. IEEE,2007:211-215.
    [95] Badr M, Belfiore J-C. Optimal Space-Time Codes for the noncooperative MAC channeL [M].International Zurich Seminar.2008.
    [96] Zhang W, Ben Letaief K. A systematic design of full diversity multiuser space-frequencycodes [J]. IEEE Transactions on Signal Processing,2010,58(3):1732-1740.
    [97] Hong Y, Viterbo E. Algebraic Multiuser Space–Time Block Codes for a2x2MIMO [J]. IEEETransactions on Vehicular Technology,2009,58(6):3062-3066.
    [98] Coronel P, Ga Rtner M, Bolcskei H. Diversity-multiplexing tradeoff in selective-fadingmultiple-access MIMO channels[C]//: IEEE International Symposium on Information TheoryProceedings. IEEE,2008:915-919.
    [99] Lu H, Vehkalahti R, Hollanti C, et al. New space–time code constructions for two-usermultiple access channels [J]. IEEE Journal of Selected Topics in Signal Processing,2009,3(6):939-957.
    [100] Telatar I E. Capacity of multi-antenna Gaussian channels [J]. EUROPEANTRANSACTIONS ON TELECOMMUNICATIONS,1999,10(6):585-595.
    [101] Foschini G J, Gans M J. On limits of wireless communications in a fading environment whenusing multiple antennas [J]. Wireless Personal Communications,1998,6(3):311-335.
    [102] Foschini G J, Chizhik D, Gans M J, et al. Analysis and performance of some basicspace-time architectures [J]. IEEE Journal on Selected Areas in Communications,2003,21(3):303-320.
    [103] Foschini G J, Golden G D, Valenzuela R A, et al. Simplified processing for high spectralefficiency wireless communication employing multi-element arrays [J]. IEEE Journal onSelected Areas in Communications,1999,17(11):1841-1852.
    [104] Yan Q, Blum R S. Optimum space-time convolutional codes[C]//: Wireless Communicationsand Networking Confernce.2000:1351-1355vol.1353.
    [105] Gamal H E, Harnmons A R, Jr. On the design and performance of algebraic space-time codesfor BPSK and QPSK modulation [J]. IEEE Transactions on Communications,2002,50(6):907-913.
    [106] Hassibi B, Hochwald B M. High-rate codes that are linear in space and time [J]. IEEETransactions on Information Theory,2002,48(7):1804-1824.
    [107] Shiu D S, Foschini G J, Gans M J, et al. Fading correlation and its effect on the capacity ofmultielement antenna systems [J]. IEEE Transactions on Communications,2000,48(3):502-513.
    [108] Bolcskei H, Paulraj A J. Performance of space-time codes in the presence of spatial fadingcorrelation [M]//Matthews M B. Conference Record of the Thirty-Fourth AsilomarConference on Signals, Systems&Computers. New York; Ieee.2000:687-693.
    [109] Li F, Jafarkhani H. Multiple-antenna interference cancellation and detection for two usersusing precoders [J]. IEEE Journal of Selected Topics in Signal Processing,2009,3(6):1066-1078.
    [110] Tan C W, Calderbank A R. Multiuser detection of Alamouti signals [J]. IEEE Transactions onCommunications,2009,57(7):2080-2089.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700