舰载高频地波雷达目标检测与估值研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高频地波雷达(HFSWR)利用垂直极化电磁波沿海面绕射传播的机理,既能实现对海上舰船和低空飞行目标的超视距探测,又可用于海态遥感等民用事业。舰载HFSWR除具有岸基HFSWR的特点外,更突出的优势在于其灵活机动性,其研制近年来引起广泛关注。相比于岸基HFSWR,舰载HFSWR信号处理的难点在于一阶海杂波展宽谱中舰船目标的检测与估值,本文对此进行了深入研究。
     首先理论分析了舰载HFSWR一阶海杂波谱的展宽机理,给出其展宽数学模型,这些已被舰载HFSWR数据采集试验所获得的实测海杂波数据处理结果所证实。平台运动时,雷达分辨单元内不同方向的一阶海杂波回波被附加不同的多普勒频移,使得岸基情形时强大的一阶Bragg峰(单频)被展宽,因此影响展宽谱中船目标检测的主要干扰为具有相同多普勒频率但方位不同的一阶海杂波,这也是全文的基础与出发点。
     类似于机载预警雷达(AEW)的地杂波抑制,本文将天线相位中心偏置(DPCA)技术推广并应用于舰载HFSWR的一阶海杂波抑制。考虑到实际平台运动速度的波动,提出了通过空域插值获得等效阵元信号进行DPCA处理的方法。计算机仿真结果表明:当平台运动速度与理想速度偏离较小时,可通过空域插值获得较好的杂波抑制效果。进一步,基于阵列采样信号的时空等价性,本文还分析了基于时域插值进行DPCA处理的方法,结果表明只要平台匀速直线运动,通过时域插值就可获得较好的杂波抑制效果,这大大放松了空域插值方法对平台运动速度的限制。理论证明在理想条件下上述DPCA处理对单频的正负一阶Bragg峰是最优的。
     DPCA是一种最简单的空时二维自适应处理,它需要满足特殊条件。由于舰载HFSWR的一阶海杂波具有时空耦合的二维谱,因此最佳杂波抑制应采用空时自适应处理(STAP)。本文利用卡亨南—洛厄维展开(KLE)对[O,T_0]观测时间、带宽为W的限带谱连续随机过程进行展开,得到其特征谱的解析表达式,即大特征值个数为2WT_0+1。进一步通过理论证明及计算机模拟,将连续限带谱的结论推广至离散序列情形,给出了机载预警雷达二维地杂波特征谱的表达式。针对舰载HFSWR的一阶Bragg展宽谱等带通谱情形,理论分析得到了其特征谱表达式,这与实测数据处理结果非常一致,可用于空时二维自适应处理结构的简化。
     综合前面分析并考虑到系统简单化与实时性,本文提出了时域多普勒滤波
High Frequency Surface Wave Radar (HFSWR), utilizing a vertical polarization electromagnetic wave that follows the curvature of the earth along the air-water interface with low propagation loss on highly conductive ocean surface, could detect and track targets beyond the horizon such as vessels on the sea and aircrafts at a low altitude. It provides a new technique for remote sensing of sea state and traffic control over the sea. Besides these characteristics, shipborne HFSWR also provide agility and maneuverability, which has attracted a number of countries' attention in decade's. Compared with the ashore HFSWR, the difficulty of signal processing in shipborne HFSWR is how to detect and estimate ships whose Doppler frequencies appeared in the spreading domain of the Bragg lines. The main purpose of this dissertation is to solve the problem both in theory and in practice.
    The dissertation firstly analyze the spreading mechanism of the Bragg line in shipborne HFSWR and present a mathematical spreading model, which are verified by experimental results from the shipborne HFSWR data collection experiment conducted in 1998. It is the vectorial summation of the platform motion with that of the clutter return from different directions within the radar range cell that results in spreading of the Bragg line. Therefore, the main interference for detection of targets in the spreading domain is the first order sea clutter returns from the direction different from targets' azimuth but with the same Doppler frequency with consideration of platform motion.
    By analogy with the ground clutter rejection in Airborne Early Warning (AEW) radar, Displaced Phase Center Antenna (DPCA) technique is extended for suppression of the first order sea clutter in shipborne HFSWR. Moreover, interpolation in spatial domain is proposed to retrieve signal for DPCA processing in consideration of the vibration of the platform motion. Simulation results show that the method can remarkably attenuate the first order sea clutter when the platform velocity slightly vibrates over the theoretical value. Furthermore DPCA processing with interpolation in temporal domain is given based on the space-time equivalence of signal, which dramatically ease the restriction on the platform velocity required by interpolation in spatial domain. Theoretical analysis shows that DPCA with interpolation in temporal domain can detect target if only the platform moves at constant velocity. It can be
引文
1 D.D. Crombie. Doppler Spectrum of Sea Echo at 13.6Mc/s. Nature. 1955, 175: 681~683
    2 Research news: Over-The-Horizon (OTH) Maritime Sensor. GEC Journal of Research, 1996, 13(1): 54~55
    3 加拿大试验超视距海岸雷达.飞航导弹.1994:62(International Defense Review.1993(10):769)
    4 俄罗斯和乌克兰超视距无线电定位研究的历史及成果.电子工程信息.1994:10-14 (原文为:F.F. Evstratov et al. Over the Horizon Radiolocation in Russia and Ukraine. ICR'94: 29~33)
    5 高频海洋雷达的原理.通信综合研究所季报,1991,37(3):345~360
    6 陈详占.国外地波超视距雷达的研究和应用.电子工程信息.1994.9:19~23
    7 陈振邦.舰载超视距雷达发展研究.雷达与对抗.1997.1:1~8,35
    8 E.D.R. Shearman. Over-The-Horizon Radar, Ch. 5 of Modern Radar Techniques. M.J.B. Scanlan ed., 1987
    9 Richard L Powers, Leon M Lewandowski, Robert J Dinger. High Frequency Surface Wave Radar - For Ship Self-Defense, Generalized Over-the-Horizon (OTH) Ocean Surveillance, Enabled in Part by Antenna, Receiver, Processing Advances. Sea Technology. 1996, 37(11): 25~32
    10 G.L. Tyler, C.C. Teagur, R.H. Stewart, A.M. Peterson, W.H. Munk, and J.W. Joy. Wave Directional Spectra from Synthetic Aperture Observations of Radio Scatter. Deep-Sea Research. 1974, 21:989~1016
    11 C.C. Teague. In-Situ Decametric Radar Observations of Ocean-Wave Directional Spectral during the 1974 Norpax 'Pole' Experiment. Stanford University, AD A009434, Mar. 1975
    12 D.E. Barrick, B.J. Lipa. CODAR Wave Measurements from a North Sea SemiSubmersible. IEEE Journal of Oceanic Engineering. 1990, 15(2): 119~125
    13 R. Howell, J. Walsh. Measurement of Ocean Wave Spectra Using a ShipMounted HF Radar. IEEE Journal of Oceanic Engineering. 1993, 18(3): 306~310
    14 H.H. Essen, K.W. Gurgel, F. Schirmer, T. Schlick. Surface Currents During MRCSEX'88 as Measured by a Land-and a Ship-Based HF radar, IGARSS'89. 1989, Vol.2: 730-733
    15 K.W. Gurgel. Shipborne Measurement of Surface Current Fields by HF Radar. Proceedings of the 1994 IEEE Oceans Conference. 1994, Part 3 (of 3): 23-27
    16 K.W. Gurgel, H.H. Essen, On the Performance of a Shipborne Current Mapping HF Radar. IEEE Journal of Oceanic Engineering. 2000, 25(1): 183-191
    17 REF: ST/461/JDS/2445, Introductory Presentation Maritime Applications of High Frequency Surface Wave Radar. Sep. 1989, Marconi Radar Systems.
    18 HFSWR: the Way forward for Anti-Missile Defence? Maritime Defence. 1996, 21(3): 69-70
    19 US Navy to Test Shipborne Over-the-Horizon Radar. Jane's NAVY International. 1996, 101(3): 4
    20 NRaD Looks Over HFSWR Horizons. Jane's NAVY International. 1996, 101(9): 23
    21 R.H. Khan, D.K. Mitchell. Waveform Analysis for High-Frequency FMICW Radar. IEE Proc. F. 1991, 138(5): 411-419
    22 E.D.R. Shearman et al. HF Ground-Wave Radar for Sea-State and Swell Measurement: Theoretical Studies, Experiments and Proposals. International Conference RADAR-82. 1982: 101-106
    23 J.M. Madden. The Adaptive Suppression of Interference in HF Ground Wave Radar. RADAR'87. London, UK, 1987: 98-102
    24 H. Leong. Adaptive Nulling of Skywave Interference Using Horizontal Dipole Antennas in a Coastal Surveillance HF Surface Wave Radar System. IEE RADAR'97. 1997: 26-30
    25 Y.I. Abramovich, N.K. Spencer, S.J. Anderson and A.Y. Gorokhov. Stochastic-Constrains Method in Nonstationary Hot-clutter Cancellation — Part I: Fundamentals and Supervised Training Applications. IEEE Trans. AES. 1998, 34(4): 1271-1292
    26 Y.I. Abramovich, N.K. Spencer, S.J. Anderson. Stochastic-Constrains Method in Nonstationary Hot-Clutter Cancellation — Part II: Unsupervised Training Applications. IEEE Trans. AES. 2000, 36(1): 132-150
    27 A.M. Ponsford, D.J. Bagwell, D.G. Money and M.H. Gledhill. Progress in Ship Tracking by HF Ground-Wave Radar. RADAR'87. 1987: 89-96
    28 G.A. Andrews, K. Gerlach. SBR Clutter and Interference. Ch. 11 of Space-Based Radar Handbook. L. J. Cantafio ed., Artech House, 1989: 413-479
    29 S. Barbarossa. Detection and Imaging of Moving Objects with Synthetic Aperture Radar Part 1: Optimal Detection and Parameter Estimation Theory. IEE Proceedings-F. 1992, 139(1): 79~88
    30 孙仲康,周一宇,何黎星.单多基地有源无源定位技术.国防工业出版社.1996:197
    31 Y.H. Mao. MTI, MTD and Adaptive Clutter Cancellation, Ch. 6 of Advanced Radar Technique and Systems. Gaspare Galati eds., Peter Pergerinus Ltd., 1993: 285~442
    32 M.I. Skolnik. Introduction to Radar Systems. McGraw-Hill Book Company. 1980
    33 保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理.现代雷达.1994,16(1):38~48
    34 保铮,张玉洪,廖桂生,王永良,吴仁彪.机载雷达空时二维信号处理(续).现代雷达.1994,16(2):17~27
    35 L.E. Brennan, I.S. Reed. Theory of Adaptive Radar. IEEE Trans. AES. 1973, 9(2): 237~252
    36 L.E. Brennan, J.D. Mallett and I.S. Reed. Adaptive Array in Airborne MTI Radar. IEEE Trans. AP. 1976, 24:607~615
    37 R. Klemm. Adaptive Clutter Suppression for Airborne Phased Array Radars. IEE Proc. F&H. 1983, 130(1): 125~132
    38 L.E. Brennan and F.M. Staudaher. Subclutter Visibility Demonstration. Technical Report RL-TR-92-21. Adaptive Sensors Incorporated, 1992
    39 J. Ward. Space-Time Adaptive Processing for Airborne Radar. Technical Report 1015. Lincoln Laboratory, MIT, Dec. 1994
    40 陈晓初.机载雷达二维杂波特征谱研究.现代雷达.1994,16(3):29~36
    41 Q. Zhang and W.B. Mikhael, Estimation of the Clutter Rank in the Case of Subarraying for Space-Time Adaptive Processing. Electronics Letters. 1997, 33(5): 419~420
    42 R. Klemm. Adaptive Airborne MTI: an Auxiliary Channel Approach. IEE Proc. F. 1987, 134(3): 269~276
    43 H. Wang and L. Cai. On Adaptive Spatial-Temporal Processing for Airborne Surveillace Radar Systems. IEEE Trans. AES. 1994, 30(3): 660~670
    44 Y.L. Wang, Z. Bao and G.S. Liao. Three United Configurations on Adaptive Spatial-Temporal Processing for Airborne Surveillance Radar Systems. ICSP'93. Beijing. 1993:381~386
    45 L.E. Brennan, D.J. Piwinski, F.M. Standaher. Comparison of Space-Time Adaptive Processing Approaches Using Experimental Airborne Radar Data. 1993 IEEE National Radar Conference. U.S.A. 1993: 176~181
    46 保铮,廖桂生,吴仁彪,张玉洪,王永良.相控阵机载雷达杂波抑制的时—空二维自适应滤波.电子学报.1993,21(9):1~7
    47 廖桂生,保铮,张玉洪.机载雷达时—空二维自适应信号处理——广义功率倒置法.电子学报.1994,22(7):106~108
    48 王永良,彭应宁,保铮.机载雷达空时二维自适应处理方法——时空子阵联合处理.电子学报.1995,23(12):107~110
    49 廖桂生,保铮,张玉洪.机载雷达时—空二维部分联合自适应处理.电子科学学刊.1993,16(6):575~580
    50 J. Ender and R. Klemm. Airborne MTI via Digital Filtering. IEE Proc. F. 1989, 126(1): 22~28
    51 R. Klemm. Adaptive Airborne MTI with Two-Dimensional Motion Compensation. IEE Proc. F. 1991:551~558
    52 汪学刚,张直中,徐文卿.时空二维信号的非自适应准最佳处理.电子学报.1993,21(3):37~44
    53 韩莉婷,钱惠生.机载预警雷达抑制杂波的旋转陷谱法.电子学报.1995,23(1):110~113
    54 钱惠生,程旭霞.用斜对消处理实现旋转陷谱法.现代雷达.1995,17(1):29~45
    55 R. Klemm. Space-Time Adaptive Processing Principles and Applications. The Institution of Electrical Engineers. London. UK, 1998:86~87, 76~81
    56 王永良,彭应宁著.空时自适应信号处理.清华大学出版社,2000.9
    57 [美]H.L范特里斯著.检测、估计和调制理论:卷Ⅰ 检测、估计和线性调制理论.国防工业出版社.1983:226~234
    58 [美]伊伏斯·里迪著,卓荣邦等译.现代雷达原理.电子工业出版社,1991:384
    59 段凤增编.信号检测理论.哈尔滨工业大学出版社.1988:188
    60 J. Guan, Y.N. Peng and Y. He. Proof of CFAR by the Use of the Invariant Test. IEEE Trans. AES. 2000, 36(1): 336~339
    61 H.M. Finn and R.S. Johnson. Adaptive Detection Mode with Threshold Control as a Function of Spatially Sampled Clutter Level Estimates. RCA Review. 1968, No.29:414~463
    62 H. Rohling. Radar CFAR Resolution of Targets Using Automatic Detectors. IEEE Trans. AES. 1983, 19(4): 608~621
    63 V.G. Hansen and A. Olsen. Nonparametric Radar Extraction Using a Generalized Sign Test. IEEE Trans. AES. 1971, 7(5): 942~952
    64 何友,关键,彭应宁,陆大绘著.雷达自动检测与恒虚警处理.清华大学出版社.1999.5:39
    65 I.S. Reed, J.D. Mallett and L.E. Brennan. Rapid Convergence Rate in Adaptive Arrays. IEEE Trans. AES. 1974, 10(6): 853~863
    66 E.J. Kelly. An Adaptive Detection Algorithm. IEEE Trans. AES. 1986, 22(1): 115~127
    67 F.C. Robey, D.R. Fuhrmann, E.J. Kelly and R. Nitzberg. A CFAR Adaptive Matched Filter Detector. IEEE Trans. AES. 1992, 28(1): 208~216
    68 E. Conte, M. Lops and G. Ricci. Asymptotically Optimum Radar Detection in Compound-Gausian Clutter. IEEE Trans. AES. 1995, 31(2): 617~625
    69 E. Conte, A.D. Maio and G. Ricci. Adaptive CFAR Detection in CompoundGaussian Clutter with Circulant Covariant Matrix. IEEE Signal Processing Letters. 2000, 7(3): 63~65
    70 丁鹭飞,张平编.雷达系统.西北电讯工程学院出版社.1984.11:96
    71 S. Haykin, J.Litva, T.J. Shepherd (Eds.). Radar Array Processing: Chapter 3.2 Angle Estimation. 1993:51~86
    72 [美]D.K.巴顿著.雷达系统分析.陈方林译.国防工业出版社.1985:48
    73 R.C. Davis, L.E. Brennan and I.S. Reed. Angle Estimation with Adaptive Arrays in External Noise Fields. IEEE Trans. AES. 1976, 12(1): 179~186
    74 W.F. Gabriel. A High-Resolution Target-Tracking Concept Using Spectral Estimation Techniques. NRL Report 8797. May 1984
    75 F.C. Lin and F.F. Kretschmer, Jr. Angle Measurement in the Presence of Mainbeam Interference. IEEE International Radar Conference. 1990:444~450
    76 U. Nickel. Monopulse Estimation with Adaptive Arrays. IEE Proc. F. 1993, 140(5): 303~308
    77 U. Nickel. Monopulse Estimation with Subarray-Adaptive Arrays and Arbitrary Sum and Difference Beams. IEE Proc. F. 1996, 143(4): 232~238
    78 R.L. Fante. Synthesis of Adaptive Monopulse Patterns. IEEE Trans. AP. 1999, 47(5): 773~774
    79 [美]D.E.达吉恩,R.M.默塞里奥著.多维数字信号处理.程佩青等译.科学出版社.1991:241
    80 肖先赐编.现代谱估计—原理与应用.哈尔滨工业大学出版社.1991.8:148
    81 W.F. Gabriel. Spectral Analysis and Adaptive Array Superresolution Techniques. Proc. IEEE. 1980, 68(6): 654~666
    82 J.P. Burg. Maximum Entropy Spectral Analysis. Proc. 37th Meeting Society Explortation Geophysicists. 1967
    83 J. Capon. High-Resolution Frequency-Wavenumber Spectrum Analysis. Proc. IEEE. 1969, 57:1408~1418
    84 R. Schmidt. Multiple Emitter Location and Signal Parameter Estimation. Proc. RADC Spectral Estimation Workshop. Rome. NY. 1979 (Republished in IEEE Trans. AP. 1986, 34(3): 276~280)
    85 A. Paulraj, R. Roy, T. Kailath. Estimation of Signal Parameters via Rotational Invariance Techniques - ESPRIT. 《Proc. of the 19th Asilomar Conf. on Circuit, Systems and Computers》. 1985
    86 S. Haykin et al. Some Aspects of Array Signal Processing. IEE Proceedings-F. 1992, 139(1): 1~26
    87 G.Bienvenu.被动阵处理:常规方法到高分辨力概念.鱼雷靶场.1991.第2期:1~13 (黄清译自《Underwater Acoustic Data Processing》.NATO ASI Series E. Vol.161)
    88 Jian Li. Improved Angular Resolution for Spatial Smoothing Techniques. IEEE Trans. SP. 1992, 40(12): 3078~3081
    89 高世伟,保铮.利用数据矩阵分解实现对空间相关信号源的超分辨处理.通信学报.1988,9(1):4~13
    90 林海平.数据矩阵存在ESPRI了结构的一个定理及DM-ESPRRIT算法.信号处理.1994,10(2):105~110
    91 Y. Meng, P. Stoica, K.M. Wong. Estimation of the Direction of Arrival of Spatially Dispersed Signals in Array Processing. IEE Proc. - Radar, Sonar Navig. 1996, 143(1): 1~9
    92 A. Paulraj, T. Kailath. Eigenstructure Methods for Direction of Arrival Estimation in the Presence of Unknown Noise Fields. IEEE Trans. ASSP. 1986, 34(1): 13~20
    93 S. Prasad, R.T. Williams et al. A Transform-Based Covariance Differencing Approach for Some Classes of Parameter Estimation Problems. IEEE Trans. ASSP. 1988, 36(5): 631~641
    94 S. Prasad and B. Chandna. Signal Subspace Algorithms for Direction of Arrival Estimation in Presence of a Class of Unknown Noise Fields. ICASSP'88. 1988: 2913~2916
    95 Q. Wu and J.P. Reilly. Extension of ESPRIT Method to Unknown Noise Environment. ICASSP'91. Toronto. 1991:3365~3368
    96 R. Rajagopal and P.R. Rao. DOA Estimation with Unknown Noise Fields: A Matrix Decomposition Method. IEE Proc. F. 1991, 138(5): 495~501
    97 Y. Zhou, P.C. Yip. DOA Estimation by ARMA Modelling and Pole Decomposition. IEE Proc.-F. 1995, 142(3): 115~122
    98 R. Rajagopal, P.R. Rao. Generalised Algorithm for DOA Estimation in a Passive Sonar. IEE Proc.-F. 1993, 140(1): 12~20
    99 李平安,孙进才.俞卞章.一种用于未知噪声背景中相干源二维波达方向估计的新方法.信号处理.1996,12(1):63~69
    100 张贤达著.现代信号处理.清华大学出版社.1995:375~377
    101 廖桂生,保铮,王波.基于高阶累量的盲高分辨DOA估计及其性能分析.通信学报.1996,17(4):10~14
    102 U. Nickel. Angular Superresolution with Phased Array Radar: A Review of Algorithms and Operational Constraints. IEE Proc. Pt. F. 1987, 134(1): 53~59
    103 孙超.高分辨目标方位估计技术的发展与存在的问题.《中国博士后首届学术大会论文集》.国防工业出版社.1993:278~281
    104 罗利春.空间谱估计测向实际系统评价与启发.电信技术研究.1995:16~21
    105 S.J. Orfanidis. Adaptive Structured Eigenvector Methods. USA. ICASSP'90: 2683~2686
    106 罗发龙,李衍达.方向估计的神经网络计算.电子学报.1993,21(10):62~68
    107 W.A.U. Titze et al. Direction Finding System Using Symmetric-Pair Antenna Arrays. IEE Proc.-Radar, Sonar Navig. 1995, 142(3): 130~136
    108 [日]小林正次等编著.海洋电子学.海洋出版社.1980:29~34
    109 杨儒贵编.电磁场与波.西安交通大学出版社.1989.3:173~177
    110 陈国华,吴葆仁编著.海水电导.海洋出版社.1981:209~212
    111 蔡南先著.电波与天线.中国广播电视出版社.1992:38
    112 邵克玉编.天线与电波传播.海洋出版社.1987:81
    113 国防科技预研任务开题论证报告:高频地波舰载超视距雷达实验系统.哈尔滨工业大学电子工程技术研究所技术总结报告.1996:21~23
    114 J.R. Wait. Theory of HF Ground Wave Backscatter from Sea Waves. J. Geophys. Res. 1966, 71:4842~4839
    115 D.E. Barrick. First-Order Theory and Analysis of MF/HF/VHF Scatter from the Sea. IEEE Trans. on Antennas and propagation. 1972, 20:2~10
    116 O.M. Phillips. The Dynamics of the Upper Ocean. Cambridge, England: Cambridge University Press, 1977
    117 D.D. Crombie et al. Spectral Characteristics HF Ground-Wave Signals Back-Scattered from the Sea. 1970, AD-716 305
    118 B.J. Lipa and D.E. Barrick. Extraction of Sea State from HF Radar Sea Echo: Mathematical Theory and Modeling. Radio Science. 1986, 21(1): 81~100
    119 K. Hasselmann. Determination of Ocean Wave Spectra from Doppler Radio Return from the Sea Surface. Nature Phys. Sci. 1971, 229:16~17
    120 D.E. Barrick. Remote Sensing of Sea State by Radar, Ch. 12 of Remote sensing of the Troposphere. V. Derr, editor. NOAA/Environmental Research Laboratories. Boulder, Colo, 1972:12-1~12-46
    121 G.L. Tyler, W.E. Faulkerson, A.M. Peterson and C.C. Teague. Second-Order Scattering from the Sea: Ten-Meter Radar Observations of the Doppler Continuum. Science. 1972, 177:349~351
    122 E.W. Gill, J. Walsh. On the Second-Order High Frequency Bistatic Ground Wave Radar Cross Section of the Ocean Surface. Canadian Conference on Electrical and Computer Engineering. 1997, Vol.2:516~519
    123 J. Walsh, R. Howell and B. Dawe. Model Development for Evaluation Studies of Ground Wave Radar. Centre Cold Ocean Resources Eng. Contract Rep. 90- C14, 1990
    124 L.R. Wyatt. High Order Nonlinearities in HF Radar Backscatter from the Ocean Surface. IEE Proc.-Radar, Sonar Navig. 1995, 142(6): 293~300
    125 C.C. Teague, G.L. Tyler and R.H. Stewart. Studies of the Sea Using HF Radio Scatter. IEEE Trans. AP. 1977, 25(1): 12~19
    126 张宁,赵彬,张庆祥.高频地波超视距雷达技术:信号处理机.哈尔滨工业大学电子工程技术研究所总结报告.1995:8~11
    127 D.C. Schleher ed. MTI Radar. Artech House. 1978:258
    128 M.L. Heron. Line Broadening on HF Ocean Surface Radar Backscatter spectra. IEEE Journal of Oceanic Engineering. 1985:397~401
    129 S.P. Kingsley. The Coherence of HF Radar Sea Echoes. GEC Journal of Research. 1986, 4(3): 203~210
    130 R. Khan. Ocean-Clutter Model for High-Frequency Radar. IEEE Journal of Oceanic Engineering. 1991, 16:181~188
    131 M.L. Parkinson. Observations of the Broadening and Coherence of MF/lower HF Surface Radar Ocean Echoes. IEEE Journal of Oceanic Engineering. 1997, 22(1): 347~363
    132 朱华等编.随机信号分析.北京理工大学出版社.1990.12:326~332
    133 A. Haimovich. The Eigencanceler: Adaptive Radar by Eigenanalysis Methods. IEEE Trans. AES. 1996, 32 (2): 532~542
    134 Kevin M. Buckley and Lloyd J. Griffiths. Eigenstructure Based Broadband Source Location Estimation. ICASSP'86:1869~1872
    135 王宏禹著.随机数字信号处理.科学出版社.1988:120~124 232
    136 D. Slepian and E. Sonnenblick. Eigenvalues Assoicated with Prolate Spheroidal Wave Functions of Zero Order. The Bell System Technical Journal. 1965, XLIV(8): 1745~1759
    137 D. Slepian and H.O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty—Ⅲ, The Dimension of the Space of Essentially Time- and Band-Limited Signals. The Bell System Technical Journal. 1962, XL(1): 1295~1339
    138 R. Klemm. New Aspects of Airborne MTI. IEEE International radar conference. 1990:335~340
    139 Christopher T.H. Baker. The Numerical Treatment of Integral Equations. Clarendon Press. Oxford. 1977:168
    140 李衍达,常同.信号重构理论及其应用.清华大学出版社.1991:17~19
    141 余鄂西编.科技中的矩阵理论.华中理工大学出版社.1988:182~183
    142 C.E. Shannon. Communicaion in the Presence of Noise. Proceedings of the IRE. 1949:10~21
    143 D. Slepian and H.O. Pollak. Prolate Spheroidal Wave Functions, Fourier Analysis and Uncertainty-Ⅰ. The Bell System Technical Journal. 1961, XL(1): 43~63
    144 K.M. Buckley. Spatial/Spectral Filtering with Linearly Constrained Minimum Variance Beamformers. IEEE Trans. ASSP. 1987, 35(3): 249~266
    145 S.A. Tretter. Introduction to Discrete-Time Signal Processing. John Wiley & Sons. 1976
    146 J.E. Hudson. Adaptive Array Principles. Peter Peregrinus Ltd. 1981:39~48
    147 Robert A. Monzingo and Thomas W. Miller. Introduction to Adaptive Arrays. John Wiley & Sons. 1980:134
    148 张澄波著.综合孔径雷达原理、系统分析与应用.科学出版社.1989:33
    149 王威.高频地波超视距雷达目标检测与估值的研究.哈尔滨工业大学博士学位论文.1997:54~58
    150 L. Marple. Resolution of Conventional Fourier, Autoregressive and Special ARMA Methods of Spectrum Analysis. lCASSP'77. Hartford. CT. 1977:74~77
    151 张光义著.相控阵雷达系统.国防工业出版社.1994:256~263
    152 Junhao Xie. Comments on "Synthesis of Adaptive Monopulse Patterns". IEEE Trans. AP. 2000, 48(7): 1145~1146
    153 R.L. Fante. Author's Reply. IEEE Trans. AP. 2000, 48(7): 1146
    154 Q.G. Liu and Y.N. Peng. Analysis of Array Errors and a Short-Time Processor in Airborne Phased Array Radars. IEEE Trans. AES. 1996, 32(2): 587~597
    155 石镇著.自适应天线原理.北京:国防工业出版社.1991:112~122
    156 M. Wax and Y. Anu. Performance Analysis of the Minimum Variance Beamformer. IEEE Trans. SP. 1996, 44(4): 928~937
    157 C. Vaidyanathan and K.M. Buckley. Performance Analysis of the MVDR Spatial Spectrum Estimator. IEEE Trans. SP. 1992, 40(11): 2726~2736
    158 R.T. Lacoss. Data Adaptive Spectral Analysis Methods. Geophysics. 1972, 36(4): 661~675
    159 H. Cox. Resolving Power and Sensitivity to Mismatch of Optimum Array Processors. The Journal of the Acoustical Society of America. 1973, 54(3): 771~785
    160 E. Walach. On Superresolution Effects in Maximum-Likelihood Adaptive Antenna Arrays. IEEE Trans. AP. 1984, 32(3): 259~263
    161 C.L. Zahm. Effects of Errors in the Direction of Incidence on the Performance of an Adaptive Array. Proc. IEEE. 1972, 60:1008~1009
    162 G.V. Borgiotti, L.J. Kaplan. Superresolution of Uncorrelated Interference Sources by Using Adaptive Array Techniques. IEEE Trans. AP. 1979, 27(6): 842~845
    163 R.L. Johnson, G.E. Miner. Comparison of Superresolution Algorithms for Radio Direction Finding. IEEE Trans. AES. 1986, 22(4): 432~441
    164 M.A. Lagunas, F. Vallverdu. Rayleigh Estimates for High Resolution Direction Finding. Underwater Acoustic Data Processing. NATO ASI Series E, 161, 1989. Kluwer Academic Publishers, 1989: 267-271
    
    165 V.F. Pisarenko. On the Estimation of Spectra by Means of Nonlinear Functions of the Covariance Matrix. Geophys. J.R. Astron. Soc. 1972, 28: 511-531
    
    166 Yang Hua and Duan Fengzeng. Application of Super-Resolution Techniques to the Ground-Wave OTH Radar. NAECON'94: 441-446
    167 G. Bienvenu, and L. Koop. Source Power Estimation Method Associated with High Resolution Bearing Estimator. Atlanta. GA. ICASSP'81: 153-156
    168 M. Wax and T. Kailath. Detection of Signals by Information Theoretic Criteria. IEEE Trans. ASSP. 1985, 33(2): 387-392
    169 Q.T. Zhang, and K.M. Wong. Information Theoretic Criteria for the Determination of the Number of Signals in Spatially Correlated Noise. IEEE Trans. SP. 1993,41(4): 1651-1663
    170 M. Kaveh and A. Barabell. The Statistical Performance of the MUSIC and the Minimum-Norm Algorithms in Resolving Plane Waves in Noise. IEEE Trans. ASSP. 1986, 34(2): 331-340
    171 D.N. Swingler. Frequency Estimation for Closely Spaced Sinusoids: Simple Approximations to the Cramer-Rao Lower Bound. IEEE Trans. SP. 1993, 41(1): 489-494
    172 M.H. Er. Linear Antenna Array Pattern Synthesis with Prescribed Broad Nulls. IEEE Trans. AP. 1990, 38(9): 1496-1498
    173 A.P. Ralph. Data Processing for a Groundwave HF Radar. The GEC Journal of Research. 1988, 6(2): 96-105
    174 Recommendations and Reports of the CCIR 1982, Vol.5: Propagation in Non-Ionized Media. 15th Plenary Assembly. 1982: 24

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700