机载雷达空时自适应处理算法及其实时实现问题研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
机载雷达空时二维自适应处理(STAP)算法,以其优良的杂波和干扰抑制性能引起雷达界的广泛重视,三十多年来一直是雷达信号处理研究领域的一个热点问题。本文结合实际工程背景,研究了适合工程实现的STAP算法,以及算法的实时实现问题。
     为了进一步优化现有部分自适应STAP滤波器的结构,深入研究了局域杂波自由度问题。分析了降维变换对干扰协方差矩阵杂波自由度的影响。给出了局域构成与局域杂波自由度之间的函数表达式,并予以证明。通过这一理论成果,我们从局域构成方式就可以知道局域杂波自由度,进而就可以得出局域STAP处理器所需的可调控权数。分析得出现有的降维STAP处理器,特别是只做时域(空域)一维域变换的STAP处理器,存在进一步降低系统自由度的可行性。分别利用仿真数据和实测数据验证了理论研究成果的正确性。
     针对现有局域STAP处理器的不足,提出了一种对杂波自由度和干扰环境变化更加稳健的局域STAP处理器—FDSP (Flexible DOF STAP Processor)。该处理器根据外部干扰环境的变化情况,依据准则自适应地调整系统自由度。它不仅降低了非主杂波区杂波抑制的计算量,并且可以有效抑制有源干扰。给出了该处理器的实现方法和权值递推求解的快速算法。利用实测数据证明了该处理器的有效性。
     通过我国某新型机载相控阵雷达的实测数据,比较研究了几种数据独立的样本选取方法的性能,得出分段的方法在这类方法中具有优势。并对分段方法中的最优的分段数目、段内的样本选取方式以及对消形式等问题进行了研究。比较了分段方法和功率选取方法的性能,得出功率选取法更能够发掘输入数据中的信息,对于孤立的强杂波点的消除具有明显的优势。针对功率选取法中强目标信号自相消效应明显这一不足,提出了改进的功率选取法,该方法通过功率-相位联合选取样本,避免了在训练样本集中包含含有目标的样本,明显地去除了强目标的自相消效应。
     用实测数据比较研究了两种工程中常用的空时二维权值计算算法的性能。实验结果表明这两种算法均具有良好的杂波、干扰抑制性能,传统的SMI算法在杂波抑制性能上较QRD-SMI算法有一定的优势,而QRD-SMI算法对“目标消除效应”较SMI算法有更强的稳健性。综合比较算法性能、数值特性以及可并行实现性,QRD-SMI更适合在STAP的工程实现时采用。
     针对多DSP并行处理系统,研究了机载雷达空时自适应处理算法的实时实现。在分析了部分自适应STAP算法内在并行性的基础上,提出了一种任务级的STAP并行处理算法。给出了该算法的任务划分、执行模型、任务映射策略以及性能评价函数。该算法在不同的计算阶段之间进行数据重映射。通过数据实验证明这种基于多DSP并行处理系统的STAP并行算法具有较高的实时性能。
The Space-Time Adaptive Processing (STAP) algorithm that is well-known in the area of multi-channel Airborne Early Warning (AEW) radar has outstanding performance of clutter and jamming suppression. The practical STAP algorithms and its real time implementation problems are researched in this dissertation.
     To optimize existing reduced dimension STAP processor, local clutter DOFs (degree of freedom) problem is further researched. The impact of reduced dimension transformation on interference covariance matrix is analyzed. The functional relationship between the constitution of local processing domain and local clutter DOFs is presented. By this research finding, the number of adaptive weights can be known from the number of local clutter DOFs which can be calculated from the constitution of local processing domain. Then, the conclusion can be drawn that the system DOFs of current reduced dimension STAP processor can be feasibly reduced more by reduced-rank methods. The validity of the research is proved by simulated data and measurement data processing results.
     A robust localized space-time adaptive processor, which is called FDSP (Flexible DOF STAP Processor), is presented. The processor adjusts system DOFs adaptively with variable interference environment. Compared with the fixed DOF STAP processor, FDSP reduces large computational complexity and improves the performance of clutter and jamming suppression. The implementation of FDSP is illustrated. The validity of FDSP is proved by measurement data processing results.
     The data independent sample selection strategies are surveyed by measurement data of Chinese new type AEW radar, which indicates that range segment method have the best results. Then, the comparative study on PST (Power Selected Training) and range segment method is given, which shows that PST has better performance on strong clutter discretes rejection because it exploits more information inherent in the data. Many times, however, targets are also present whose inclusion in the STAP weight training results in significant target self-cancellation as well as degradation in clutter mitigation performance. An ameliorated PST training method is presented that excises targets from the training set based on a phase measurement for each potential STAP training sample. The resulting training method based on both phase and power selection critera is shown to offer significant performance gains on experimental data.
     The test results of two practical STAP weights computational algorithms are presented, which shows that both algorithms have satisfactory performance on resisting clutter and jamming, and traditional SMI algorithm has better performance on clutter rejection, but QRD-SMI is more robust to the effect of target self-nulling. Considering algorithm performance, numerical characteristic and parallelism, QRD-SMI is more suitable for real time implementation of STAP.
     STAP algorithms require very high computing power and hardly implements. A detail analysis of computation steps of partially-adaptive STAP algorithm is present, which indicates that there is a natural, inherent parallelism in STAP algorithm. A parallel algorithm based on multi-DSP system of partially-adaptive STAP is presented. The execution model, task mapping strategy and performance evaluation functions of this algorithm is also illustrated. Data remapping is used between successive computation steps of STAP. The effectiveness of the implementation is demonstrated with experimental results.
引文
[1] 郦能敬, 预警机系统导论, 北京:国防工业出版社,1998
    [2] Brennan L.E., Reed I.S., Theory of adaptive radar, IEEE Trans. AES, 1973, 9(2): 237~252
    [3] Reed I.S., Mallett. J. D., Brennan L.E., Rapid convergence rate in adaptive array, IEEE Trans. AES, 1974, 10(6): 853~863
    [4] KIemm R., Adaptive clutter suppression for airborne phased array radars, IEE Proc. F, 1983, 130(1): 125~132
    [5] Klemm R., Adaptive airborne MTI: An auxiliary channel approach, IEE Proc.F, 1987, 134(3): 269~276
    [6] Ender J., Klemm R., Airborne MTI via digital filtering, IEE Proc.F, 136(1), 1989: 22~28
    [7] Klemm R., Ender J., New aspects of airborne MTI, Proc. of IEEE Int. Conf. on Radar 90, Arlington, USA, 1990: 335~340
    [8] Klemm R., Ender J., Two-dimensional filters for radar and sonar applications, Proc. of IASTED-90, Lugano, Switzerland, 1990: 2023~2026
    [9] Klemm R., Adaptive airborne MTI with two dimensional motion compensation, IEE Proc.F, 1991 138(6): 551~558
    [10] Klemm R., Adaptive air- and spaceborne MTI under jamming conditions, Proc. of 1993 IEEE National Radar Conf., Boston, USA, 1993: 167~172.
    [11] Klemm R., Effect of multiple-time around clutter on adaptive spaceborne MTI radar, Proc. of Int. Conf. on Radai 94, Paris, France, 1994: 121~126.
    [12] Klemm R., Real-time adaptive airborne MTI, Part I: space-time processing, Proc. of 1996 CIE Int. Conf, on Radar, Beijing, l996: 755~760
    [13] Klemm R., Real-time adaptive airborne MTI, part II: space-frequency processing, Proc. of 1996 CIE Int.Conf. Radar Beijing, 1996: 430~433
    [14] Dipietro R., Extended factored space-time processing for airborne radarsystems,Proceedings of the 26th Asilomar Conference on Signals, Systems, and Computing, Pacific Grove, CA, October, 1992: 425~430
    [15] Brennan L.E., et al., Comparison of space-time adaptive processing appraches using experimental airbore radar data. The Record of 1993 IEEE National Radar Conf., Massachusetts, USA, 1993: 176~181
    [16] Wang H., Cai L.J., On Adaptive Sptial-Temporal Processing for Airborne Surveillance Radar System. IEEE Trans. AES, 1994, 30(3): 660~669
    [17] Youngliang Wang, et al., Robust Space-Time Adaptive Processing for Airborne Radar in Non homogeneous Clutter Environments. IEEE Trans. AES, 2003, 39(1): 70~81
    [18] Brown R.D., Wicks M.C., Zhang Y., Zhang Q., Wang H., A space-time adaptive processing approach for improved performance and affordability, Proceedings of the 1996 IEEE National Radar Conference, 1996: 321~326
    [19] Zhang Y., Wang H., Further results of ΣΔ-STAP approach to airborne surveillance radars, IEEE National Radar Conference, May 1997: 337~342
    [20] Maher J., Zhang Y., Wang H., A performance evaluation of ΣΔ-STAP approach to airborne surveillance radass in the presence of both clutter and jammers, IEEE National Radar Conference, 13-15 May 1997: 305~309
    [21] Zhang Y., Wang H., Further study on space-time adaptive processing with sum and difference beams, 1997 IEEE Antennas and Propagation Society International Symposium, 1997 Vol4: 2422~2425
    [22] Zhang Y., Wang H., Further results of ΣΔ-STAP approach to airborne surveillance radars, IEEE National Radar Conference, 1997: 337~342
    [23] Wang H., Zhang Y., A STAP configuration for airborne surrreillance radars, IEEE National Radar Conference, 1997: 217~222
    [24] Zhang Y., Maher J., Chang H., Wang H., Adaptive pre-suppression of jammers for STAP-based airborne radars, Proceedings of the Radar Conference 1998: 32~37
    [25] Brown R.D., Schneible R.A., Wicks M.C., Wang H., Zhang Y., STAP for clutter suppression with sum and difference beams, IEEE Trans. AES, 2000, 36(2): 634~646
    [26] 保铮 等,相控阵机载雷达杂波抑制的时空二维自适应滤波,电子学报, 1993,21(9):1-7
    [27] 保铮等,机载雷达空时二维信号处理,现代雷达,1994,16(1), 16(2):38~48,17~27
    [28] 刘青光,彭应宁等,机载雷达自适应杂波抑制的联合通道变换方法,电子学报,1994,22(9): 1~8
    [29] Liu Q.G, Peng Y.N., Analysis of array errors and a short-time processor in airborne phased array radars. IEEE Trans. AES, 1996, 32(2): 587~597
    [30] 王永良等,空时二维自适应信号处理的统一理论与局域方法研究,电子学报,1996,24(9):73~78
    [31] 保铮等,相控阵机载雷达杂波抑制的时—空二维自适应滤波,电子学报,1993,21(9)
    [32] 廖桂生等,机载雷达时—空二维部分联合自适应处理,电子科学学刊,1993, 15(6).
    [33] 王永良 等,适于非均匀杂波环境的空时自适应处理方法,电子学报,1999,27(9):63~66
    [34] 廖桂生,相控阵天线 AEW 雷达时空二维自适应处理,西安:西安电子科技大学博士学位论文,1992 年
    [35] 吴仁彪,机载相控阵雷达时空二维自适应滤波的理论与实现,西安:西安电子科技大学博士学位论文,1993 年
    [36] 王永良,新一代机载预警雷达的空时二维自适应处理,西安:西安电子科技大学博士学位论文,1994
    [37] 许志勇,AEW 雷达空时二维自适应处理降维方法的研究,西安:西安电子科技大学博士学位论文,1997
    [38] 张良,机载相控阵雷达降维 STAP 研究,西安:西安电子科技大学博士学位论文,1999
    [39] 苏涛,并行处理技术在雷达信号处理中的应用研究,西安:西安电子科技大学博士学位论文,1999
    [40] 王彤,机载雷达简易 STAP 方法及应用,西安:西安电子科技大学博士学位论文, 2001
    [41] 廖桂生,保铮,许志勇,机载雷达空时二维自适应处理框架及其应用,中国科学(E 辑),1997, 27(4): 336~341
    [42] 廖桂生,熊军,吴顺君,机载雷达空时二维信号处理自适应权值训练距离分段递推算法,信号处理,1998, 14(3): 233~238
    [43] 欧阳善,保铮,廖桂生,基于逆 QR 分解的机载雷达空时二维自适应处理算法,电子学报, 1999, 27(9): 94~97
    [44] 董瑞军等, 结构自适应 STAP, 电子学报,2001, 29(3):397-399
    [45] Bao Zheng, et al., Adaptive spatial-temporal processing for airborne radars, Chinese Journal of Electronics,1993, 2(1)
    [46] Bao Zheng et al., Review of reduced rank space-time adaptive processing for airborne radar, Proc. of 1996 CIE Int. Conf. on Radar. Beijing, 1996
    [47] Xu Zhiyong, Bao Zheng, Liao Guisheng, A method of designing irregular subarray architectures for partially adaptive processing, Proceedings, CIE International Conference of Radar 1996: 461~464. Barile E.C., Fante R.L., Torres J.A., Some limitations on the effectiveness of airborne adaptive radar, IEEE Trans. AES, 28(4), 1992: 1015~1023
    [48] 王永良,彭应宁, 空时自适应信号处理,北京:清华大学出版社, 2000
    [49] Ward J., Sreinhardt A.O., Multiwindow Post-Doppler Space-Time Adaptive Processing, Proc. IEEE Seventh SP Workshop Statistical Signal and Array Processing, June 1994: 461~464
    [50] Ward J., Space-Time Adaptive Processing for Airborne Radar Data Systems, Technical Report 1015, MIT Lincoln Laboratory, Lexington, Mass, Sept. 1994
    [51] Haimovich A.M., Ness Y.B., An eigenanalysis interference canceler, IEEE Trans. SP, 1991 9(1): 76~84.
    [52] Haimovich A.M., An eigencanceler: Adaptive radar by eigenanalysis methods, IEEE Trans. AES, 1996, 32(2): 532~542(ec)
    [53] Haimovich A.M., The eigencanceler: Adaptive radar by eigenanalysis methods, IEEE Trans. AES, 1996, 32(2): 532~542
    [54] Kirsteins I.P., Tufts D.W., Adaptive detection using a low rank approximation to a data matrix, IEEE Trans. AES, 1994, 30(1): 55~67
    [55] Shah A., Tufts D.W., Determination of the dimension of a signal subspace from short data records, IEEE Trans. SP, 1994, 42(9): 2531~2535
    [56] Park S., Sarkar T.K., A deterministic, eigenvalue approach to space time adaptive processing, 1996 IEEE International Symposium on Phased Arrray Systems and Technology, 1996: 372 ~375.
    [57] Guerci J.R., Pillai S.U., Kim Y.L., Effcient space-time adaptive processing for airborne MTI-mode radar, 1996 IEEE International Conference on Acoustics, Speech, and Signal Processing, Vol. 5,1996: 2781~2784
    [58] Yow-Ling Gau, Reed I.S., An improved reduced-rank CFAR space-time adaptive radar detection algorithm, IEEE Trans. SP, 1998, 46(8): 2139~2146
    [59] Tzeta Tsao, Himed B., Michels J.H., Effects of interference rank estimation onthe detection performance of rank reduced STAP algorithms, Proceedings of the Radar Conference1998: 147~152
    [60] Berger S.D., Welsh B.M., Selecting a reduced-rank transformation for STAP-a direct form perspective, Proceedings of the 1998 Radar Conference: 177~182
    [61] Park S., Sarkar T.K., A modified generalized eigenvalue approach to space-time adaptive processing, IEEE Antennas and Propagation Society International Symposium, Vol.2,1998: 1292~1295
    [62] Reed I.S., Gau Y.L., Noncoherent summation of multiple reduced-rank test statistics for frequency-hogped STAP, IEEE Trans. SP,1999, 47(6): 1708~1711
    [63] Berger S.D., Welsh B.M., Selecting a reduced-rank transformation for STAP-a direct form perspective, IEEE Trans. AES, 1999, 35(2): 722 ~729
    [64] Ayoub T.F., Hairriovich A.M., Pugh M.L., Reduced-rank STAP for high PRF radar, IEEE Trans. AES, 1999, 35(3): 953~962
    [65] Goldstein J.S., Reed I.S., Subspace selection for partially adaptive sensor array processing, IEEE Trans. AES, 1997, 33(2): 539-544
    [66] Goldstein. J. S, Reed I.S., Reduced-rank adaptive filter, IEEE Trans. SP, 1997, 45(2): 492~496
    [67] Goldstein J.S., Reed I.S., Theory of Partially adaptive radar, IEEE Trans, AES, 1997, 33(4): 1309~1324
    [68] Goldstein J.S. et al., A multistage representation of the Wiener filter based on orthogonal projection, IEEE Trans. Information Theory, 1998, 44(7): 2943~2959
    [69] Goldstein J.S. et al., Multistage partially adaptive STAP CFAR detection algorithm, IEEE Trans. AES. 1999, 35(2): 645~661
    [70] Reed I.S., Goldstein J.S., Yu X., Singer P., Multidisciplinary perspective on adaptive sensor array processing, IEE Proceedings Radar, Sonar and Navigation, 1999, 146(5): 221~234
    [71] Peckham C.D., Haimovich A.M., Reduced-rank STAP performance analysis, IEEE Trans. AES, 2000, 36(2): 664~676
    [72] Guerci J.R., Goldstein J.S., Reed I.S., Optimal and adaptive reduced-rank STAP, IEEE Trans. AES, 2000, 36(2): 647~663
    [73] Goldstein J.S., Guerci J.R., Reed I.S., Advanced concepts in STAP, The Record of the IEEE 2000 International Radar Conference, 2000: 699~704
    [74] Guerci J.R. et al., Optimal and Adaptive Reduced-Rank STAP. IEEE Trans. AES, 2000, 36(2): 647~661
    [75] Karl G., Picciolo M.L., Airborne/Spacebased Radar STAP Using a Structured Covariance Matrix, IEEE Trans. AES, 2003, 39(1): 269~281
    [76] Michels J.H., Himed B., Rangaswamy M., Evaluation of the normalized parametric adaptive matched filter STAP test in airborne radar clutter, The Record of the IEEE 2000 International Radar Conference: 769~774
    [77] Roman J.R. et al., Parametric adaptive matched filter for airborne radar applications, IEEE Trans. AES, 2000, 36(2): 677~692
    [78] Friedlander B., A Subspace Method for Space Time Adaptive Processing, IEEE Trans. SP, 2005, 53(1): 74~82
    [79] Youngliang Wang, Space-time joint processing method for simultaneous clutter and jamming rejection in airborne radar, IEE Electronics Letters, 1996, 32(3): 258~259
    [80] Melvin W.L., A STAP Overview, IEEE AES Magazine, 2004, 19(1): 19-35
    [81] Nitzberg R., An effect of range-hetergeneous clutter on adaptive Doppler filters. IEEE Trans. AES. 1990, 26(3): 475~480
    [82] Borsari G.K., Steinhardt A.O., Cost-efficient training strategies for space-time adaptive processing algorithms, Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, 1995 Vol.l: 650~654
    [83] Rabideau D.j.,Improved adaptive clutter cancellation through data-adaptive training, IEEE Trans. AES, 1999, 35(3): 879~891
    [84] Melvin W.L., Wicks M.C., Improving Practical Space-Time Adaptive Training. Proc.IEEE National Radar Conf, 1997: 48~53
    [85] Wicks M.C., Melvin W.L., Chen P., An effcient architecture for nonhomogeneity detection in space-time adaptive processing airborne early warning radar, Radar 1997: 295~299
    [86] Melvin W.L., Eigenbased modeling of nonhomogeneous airborne radar environments, Proceedings of the 1998 IEEE Radar Conference: 171~176
    [87] Hale T., Welsh B., Secondary data support in space-time adaptive processing, Proceedings of the 1998 IEEE Radar Conference: 183~188
    [88] Lombardo P., Data selection strategies for radar space time adaptive processing, Proceedings of the 1998 IEEE Radar Conference: 201~206
    [89] Richmond C.D., The theoretical performance of a class of space-time adaptive detection and training strategies for airborne radar, Conference Record of the Thirty-Second Asilomar Conference on Signals, Systems&Computers, 1998 Vol.2: 1327~1331
    [90] Adve R.S., Hale T.B., Wicks M.C., Transform domain localized processing using measured steering vectors and non-homogeneity detection, The Record of the 1999 IEEE Radar Conference: 285~290
    [91] Rabideau D.J., Steinhardt A.O., Improved adaptive clutter cancellation through data-adaptive training, IEEE Trans. AES, 1999, 35(3): 879~891
    [92] Griffiths L.J., Techau P.M., Bergin J.S., Bell K.L., Space-time adaptive processing in airborne radar systems, The Record of the IEEE 2000 International Radar Conference: 711~716
    [93] Melvin W.L., Space-time adaptive radar performance in heterogeneous clutter, IEEE Trans. AES,2000, 36(2): 621~633
    [94] Rangaswamy M., Himed B., Michels J.H., Performance Analysis of the Nonhomogeneity Detector for STAP Applications, Proceedings of the 2001 IEEE Radar Conference: 193~197
    [95] Paul M. et al., Effects of Internal Clutter Motion on STAP in a Heterogeneous Environment, Proceedings of the 2001 IEEE Radar Conference: 204~209
    [96] Techau, P.M., Bergin, J.S., Guerci, J.R., Effects of internal clutter motion on STAP in a heterogeneous environment, Proceedings of the IEEE Radar Conference 2001, 1-3 May 2001: 204~209
    [97] Schoenig G.N., Picciolo M.L., Mili L., Improved detection of strong nonhomogeneities for STAP via projection statistics, IEEE International Radar Conference 2005, 9-12 May 2005: 720 ~725
    [98] Gerlach, K., Picciolo M.L., SINR improvement in airborne/spaceborne STAP radars using a priori platform knowledge, Sensor Array and Multichannel Signal Processing Workshop Proceedings, 4-6 Aug. 2002: 548~552
    [99] Antonik P., Schuman H., Li P., Melvin W., Wicks M., Knowledge-based space-time adaptive processing, IEEE National Radar Conference 1997, 13-15 May 1997: 372~377
    [100] Kreithen D.E., Pulsone N.B., Rader C.M., Schrader G.E., The MIT Lincoln Laboratory KASSPER algorithm testbed and baseline algorithm suite Sensor Array and Multichannel Signal Processing workshop Proceedings, 4-6 Aug. 2002: 38~42
    [101] Page D., Scarborough S., Crooks S., Improving knowledge-aided STAP performance using past CPI data, Proceedings of the IEEE Radar Conference2004, 26-29 April 2004: 295~300
    [102] Capraro C.T., et al., Improved STAP performance using knowledge-aided secondary data selection , Proceedings of the IEEE Radar Conference 2004, 26-29 April 2004: 361~365
    [103] Melvin W.L., Showman, G.A., Guerci J.R., A knowledge-aided GMTI detection architecture, Proceedings of the IEEE Radar Conference 2004, 26-29 April 2004: 301~306
    [104] Melvin W. et al., Knowledge-based space-time adaptive processing for airborne early warning radar, IEEE AES Magazine,1998, 13(4): 37~42
    [105] Adve R.S., Wicks M.C., Hale T.B., Antonik P., Ground moving target indication using knowledge based space time adaptive processing, The Record of the IEEE 2000 International Radar Conference, 2000: 735~740
    [106] McDonald K.F., Kuklinski W.S., Track Maintenance and Positional Estimation Via Ground Moving Target Indicator and Geolocation Data Fusion, Proceedings of the 2001 IEEE Radar Conference, 2001: 239~245
    [107] Titi G.W., An overview of the ARPA/NAVY MountainTop Program, Proceedings of the IEEE Adaptive Antenna Systems Symposium, Novermber 7-8, Long Island, New York, 1994
    [108] G.W. Titi. The ARPA/NAVY MountainTop Program: Adaptive Signal Processing for Airborne Early Warning Radar. 1996 International Conference on Acoustics, Speech and Signal Processing, Atlanta, Georgia: 1165~1168
    [109] Seliktar Y., Williams D.B., McClellan J.H., Evaluation of partially adaptive STAP algorithms on the Mountain Top data set, ICASSP-96, Conference Proceedings, 1996 IEEE International Conference on Volume 2, 7-10 May 1996: 1169~1172
    [110] Braham H., MCARM/STAP Data Analysis, Technical Report, AFRL-IF-RS-TR-1999-48, Research Associates for Defense Conversion, Inc, May, 1999
    [111] Fenner D.K., Hoover W.F. Jr., Test results of a space-time adaptive processing system for airborne early warning radar, Radar Conference, 1996, Proceedings of the 1996 IEEE National, 13-16 May 1996 Page(s):88~93
    [112] Brown R.D., Linderman R., Algorithm Development for an Airborne Real-Time STAP Demonstration, IEEE National Radar Conference 1997, 13-15 May 1997: 331~336
    [113] Babu B.N.S., Torres J.A., Melvin, W.L., Processing and evaluation of multichannel airborne radar measurements (MCARM) measured data, Phased Array Systems and Technology, 1996, IEEE International Symposium on 15-18 Oct. 1996: 395~399
    [114] Little M.O., Berry W.P., Real-time multichannel airborne radar measurements, IEEE National Radar Conference 1997, 13-15 May 1997: 138~142
    [115] 陈国良,并行算法的设计与分析,北京:高等教育出版社,2002
    [116] Farina A., Timmoneri L., Real-time STAP techniques, Electrnics & Communication Engineering Journal, 1999, 11(1): 13~22
    [117] Acierno A. D. et al., Mapping QR on parallel computers: a case study for radar application. IEICE Trans. Communications, 1994, 77(10):1264~1271
    [118] Kapteteijin P. et al., Implementation of the recursive QR algorithm on a 2×2CORDIC test-board: a case study for radar application, Proceedings of the 25th European Microwave Conference. Bologna (Italy), 1995: 490~495
    [119] Farina A., Timmoneri L., Parallel algorithms and processing architectures for space-time adaptive processing, Proceedings of CIE International Conference of Radar, 1996: 770~774
    [120] Ahlander A.et al., A Multiple SIMD Approach to Radar Signal Processing, IEEE TENCON-Digital Signal Processing Application 1996: 852~857
    [121] Olszanskyj S.J., Lebak J.M., Bojanczyk A.W., Parallel algorithms for space-time adaptive processing, Proceedings of 9th International Parallel Processing Symposium, 1995: 77~81
    [122] Hwang K., Xu Z., Arakawa M., Benchmark Evaluation of the IBM SP2 for Parallel Signal Processing, IEEE Trans. Parallel and Distributed Systems, 1996, 7(5): 522~535
    [123] Mansur H., Space/time adaptive processing architecture implementations using a high performance scalable computer, 1997 IEEE National Radar Conference, 1997: 325~330
    [124] Bojanczyk A.W., Melvin W.L., Simplifying the computational aspects of STAP, Proceedings of the 1998 IEEE Radar Conference, 1998: 123~128
    [125] Gupta N.D., Antonio J.K., West J.M., Reconfigurable computing for space-time adaptive processing, IEEE Symposium on FPGAs for Custom Computing Machines, 1998: 335~336
    [126] Farina A., Timmoneri L., Real-time STAP techniques, IEE Colloquium onSpace-Time Adaptive Processing, 1998: 1~7
    [127] Linderman M.H., Linderman R.W., Real-Time STAP demonstration on an embedded high perfbrmance computer, IEEE AES Magazine, 1998, 13(3): 15~31
    [128] Liao W., et al., Multi-threaded design a implementation of parallel pipelined STAP on parallel computers with SMP nodes, 13th International and 10th Symposium on Parallel and Distributed Processing, 1999: 448~452
    [129] Janka R., A new development framework based on efficient middleware for real-time embedded heterogeneous multicomputers, IEEE Conference and Workshop on Engineering of Computer-Based Systems, 1999: 261~268
    [130] Hwang K., et al., Resource scaling effects on MPP performance: the STAP benchmark implications, IEEE Traps. PDS, 1999, 10(5): 509~527
    [131] Choudhary A., Wei-Keng L., et al., Design, implementation and evaluation of parallel pipelined STAP on parallel computers, IEEE Trans. AES, 2000, 36(2): 528~548
    [132] Wei-Keng Liao, Choudhary A., Weiner D., Varshney P., Design and evaluation of I/O strategies for parallel pipelined STAP applications, Parallel and Distributed Processing Symposium 2000, Proceedings, 14th International 1-5 May 2000:655~662
    [133] Wei-keng Liao, Choudhary A., Weiner D., Varshney P., Multi-threaded design and implementation of parallel pipelined STAP on parallel computers with SMP nodes, 1999 IPPS/SPDP, Proceedings 12-16 April 1999: 448~452
    [134] Lebak J.M., Bojanczyk A.W., Design and performance evaluation of a portable parallel library for space-time adaptive processing, IEEE Trans. PDS, 2000, 11(3): 287~298
    [135] Myungho Lee, Viktor K, High Throughput-Rate Parallel Algorithms for Space-Time Adaptive Processing, http://www.usc.edu/dept/ceng/prasanna/home.html
    [136] Rajan K., Patnik L. M., Implementation of STAP algorithms on IBM SP2 and on ADSP 21062 dual digital signal processor systems, Microprocessors and Microsystems, 2003, 27(5): 221~227
    [137] 范西昆,王永良,陈辉等,并行实现空时自适应算法,电子学报,2005,33(12): 2222~2225
    [138] Lee K., Bojanczyk A.W., Performance modeling and optimization frameworkfor space-time adaptive processing (STAP), Parallel and Distributed Processing Symposium, 2004, Proceedings, 18th International 26-30 April 2004: 249~257
    [139] Yuhong Zhang, Hajjari A., Adzima L., Himed B., Application of beam domain STAP techniques to space-based radars, System Theory, Proceedings of the Thirty-Sixth Southeastern Symposium, 2004: 112~116
    [140] Page D.A., Himed B., Davis M.E., Improving STAP performance in bistatic space-based radar systems using an efficient expectation-maximization technique, IEEE international Radar Conference, 9-12 May 2005:109~114
    [141] Rabideau D.J., Kogon S.M., A signal processing architecture for space-based GMTI radar, The Record of the 1999 IEEE Radar Conference: 96~101
    [142] Wright P.J., Wells M., STAP for airborne target detection using a space-based phased-array radar, Electronics&Communication Engineering Journal, 1999, 11(1): 23~27
    [143] Maher J., Callahan M., Lynch D., Effects of clutter modeling in evaluating STAP processing for space-based radars, The Record of the IEEE International Radar Conference 2000: 565~570
    [144] Garnham J.W., Application of digital beamforming for look-down, clutter limited, MTI radar-with specific application to space based radar, Proceeding of the 1998 IEEE Aerospace Conference Vol 3, 1998: 349~357
    [145] Rabideau D.J., Kogon S.M., A signal processing architecture for space-based GMTI radar, The Record of the 1999 IEEE Radar Conference: 96~101
    [146] Kogon S.M., Rabideau D.J., Barnes R.M., Clutter mitigation techniques for space-based radar, Proceedings of 1999 IEEE International Conference on Acoustics, Speech, and Signal Processing, 1999 Vol.4: 2323~2326
    [147] Melvin W.L., Himed B., Davis M.E., Doubly adaptive bistatic clutter filtering, Proceedings of the 2003 IEEE Radar Conference 2003, 5-8 May 2003:171~178
    [148] Melvin W.L., Callahan M.J., Davis M.E., Comparison of bistatic clutter mitigation algorithms for varying geometries, 2005 IEEE International Radar Conference, 9-12 May 2005: 98~103
    [149] Varadarajan V., Krolik J., Joint space-time interpolation for bistatic STAP, Signals, Systems and Computers, 2003 Conference Record of the Thirty-Seventh Asilomar Conference Vol 1, 9-12 Nov 2003: 60~65
    [150] Melvin W.L., Callahan M.J., Wicks M.C., Bistatic STAP: application to airborne radar, Proceedings of the IEEE Radar Conference, 22-25 April 2002: 1~7
    [151] Himed, B.; Effects of bistatic clutter dispersion on STAP systems Radar, Sonar and Navigation, IEE Proceedings -Volume 150, Issue 1, Feb. 2003: 28~32
    [152] Melvin, W.L., Callahan, M.J., Wicks, M.C., Adaptive clutter cancellation in bistatic radar, Signals, Systems and Computers, Conference Record of the Thirty-Fourth Asilomar, Vol 2, 29 Oct.-1 Nov. 2000: 1125~1130
    [153] Sanyal P.K., Brown R.D., Little M.O., Schneible R.A., Wicks M.C., Space-time adaptive processing bistatic airborne radar, The Record of the 1999 IEEE Radar Conference: 114~118
    [154] Braham H., Michels J.H., Zhang Y., Bistatic STAP Performance Analysis in Radar Applications, Proceedings of the 2001 IEEE Radar Conference: 198~203
    [155] Klemm R., Comparison between monostatic and bistatic antenna configurations for STAP, IEEE Trans. AES, 2000, 36(2): 596~608
    [156] Klemm R., Prospectives in stap research. Proceedings of the 2000 IEEE Sensor Array and Multichannel Signal Processing Workshop: 7~11
    [157] Sedyshev Y.N., Gordienko V.N., The coherent bistatic radar with mufti-stage space-time adaptive processing of signals and jamming, The Record of the IEEE 2000 International Radar Conference: 329~334.
    [158] Tomlinson P.G., Modeling and analysis of monostaticlbistatic space-time adaptive processing for airborne and space-based radar, The Record of the 1999 IEEE Radar Conference: 102~107
    [159] Klemm R., Ambiguities in bistatic STAP radar, Proceedings of IEEE 2000 International Geoscience and Remote Sensing Symposiun, Vol.3, 2000: 1009~1011
    [160] Blum R.S., McDonald K.F., Analysis of STAP algorithms for cases with mismatched steering and clutter statistics Signal Processing, IEEE Trans. SP, 2000, 48(2): 301~310
    [161] McDonald K.F., Blum R.S., Exact performance of STAP algorithms with mismatched steering and clutter statistics, IEEE Trans. SP, 2000, 48(10): 2750~2763
    [162] Herbert G.M., Effects of platform rotation on STAP performance, IEE Proceedings Radar, Sonar and Navigation, 2005, 152(1): 2~8
    [163] Herbert G.M., Techniques for improving STAP performance in high PRF applications, Electronics Letters, Volume 39, Issue 23, 13 Nov. 2003: 1674~1676
    [164] Techau P.M., Effects of receiver filtering on hot clutter mitigation, The Record of the 1999 IEEE Radar Conference: 84~89
    [165] Sarkar T.K., Adve R.S., Wicks M.C., Effects of mutual coupling and channel mismatch on space-time adaptive processing algorithms. Proceedings of 2000 IEEE International Conference on Phased Array Systems and Technology, 2000: 545~548
    [166] Friel E.M., Pasala K.M., Effects of mutual coupling on the performance of STAP antenna arrays, IEEE Trans. AES, 2000, 36(2): 518~527
    [167] Kim Y.L., Pillai S.U., Guerci J.R., Optimal loading factor for minimal sample support space-time adaptive radar, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, Vol.4, 1998: 2505~2508
    [168] PiIlai S.U., Guerci J.R., Kim Y.L., Generalized forward/backward subaperture smoothing techniques for sample starved STAP, Proceedings of the 1998 IEEE International Conference on Acoustics, Speech and Signal Processing, Vo1.4,1998: 2501~2504
    [169] Zatman M., Marshall D., Forward-backward averaging in the presence of array manifold errors, IEEE Trans. AP, 1998 11(46): 1700~1704
    [170] Pillai S.U., Kim Y.L., Guerci J.R., Generalized forward/backward subaperture smoothing techniques for sample starved STAP, IEEE Trans. SP, 2000, 48(12): 3569~3574
    [171] Klemm R., Adaptive airborne MTI with tapered antenna arrays, IEE Proc. Radar, Sonar&Navig, 1998, 145(2):
    [172] Adve R.S., Hale T.B., Wicks M.C., Practical joint domain localised adaptive processing in homogeneous and nonhomogeneous environments. 1. Homogeneous environments, IEE Proc. Radar, Sonar & Navigation, 2000, 147(2): 47~65
    [173] Adve R.S., Hale T.B., Wicks M.C., Practical joint domain localised adaptive processing in homogeneous and nonhomogeneous environments. 2. Nonhomogeneous environments, IEE Proc. Radar, Sonar & Navigation, 2000, 147(2): 66~74
    [174] Ward J., Cramer-Rao bounds for target angle and Doppler estimation with space-time adaptive processing radar, Conference Record of the Twenty-Ninth Asilomar Conference on Signals, Systems and Computers, Vol.2, 1995:1198~1202
    [175] Jiang N., Li J., Space-Time Processing for Airborne High Range Resolution Phased Array Radar, The Record of the IEEE 2000 International Radar Conference: 264~269
    [176] Raspanti R.et al., Cramer-Rao bounds for target angle and Doppler estimation for airborne radar in Cauchy interference, Proceedings of 8th IEEE Signal Processing Workshop on Statistical Signal and Array Processing, 1996: 534~537
    [177] Ward J., Maximum likelihood angle and velocity estimation with space-time adaptive processing radar, Conference Record of the Thirtieth Asilomar Conference on Signals, Systems and Computers, 1996: 1265~1267
    [178] Ward J., Hatke G.F., An efficient rooting algorithm for simultaneous angle and Doppler estimation with space-time adaptive processing radar, Conference Record of the Thirty-First Asilomar Conference on Signals, Systems&Computers, 1997, Vol.2: 1215~1218
    [179] Tsakalides P., Raspanti R., Nikias C.L., Angle/Doppler estimation in heavy-tailed clutter backgrounds, IEEE Trans. AES, 1999, 35(2): 419~436
    [180] Catton J.A., huga Y., Ishimaru A., Velocity measurement using angular-and frequency-correlation techniques, The Record of the IEEE 2000 International Radar Conference, 2000: 155~159
    [181] Rabideau D.J., Clutter and jammer multipath cancellation in airborne adaptive radar, IEEE Trans. AES,2000, 36(2): 565~583
    [182] Seliktar Y., VJilliams D.B., Holder E.J., Beam-augmented STAP for joint clutter and jammer multipath mitigation, IEE Proc. Radar, Sonar & Navigation,2000, 147(5): 225~232
    [183] Thompson E.A., Pasala K.M., Space-time adaptive processing of curved antenna arrays, IEEE Antennas and Propagation Society International, Vo1.4, 1997: 2430~2433
    [184] Jouny L., Beamspace STAP for circular arrays, IEEE 1999 International Symposium of Antennas and Propagation Society, Vo1.2,1999: 784~787
    [185] Virga K.L., Zhang H., Spatial beamformer weighting sets for circular array STAP, Proceedings of 2000 IEEE International Conference on Phased Array Systems and Technology, 2000: 561~564
    [186] M.Zatman. Circular array STAP, IEEE Trans. AES, 2000, 36(2): 510 -517.
    [187] Sarkar, T.K., Adve R., Space-time adaptive processing using circular arrays,IEEE Antennas and Propagation Magazine, 2001, 43(1): 138~143
    [188] 龚耀寰,自适应滤波,北京:电子工业出版社,2003
    [189] 张艳,分布并行算法设计、分析与实现,成都:电子科技大学博士学位论文,2001 年

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700