MIMO-OFDM系统新型发射分集方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
MIMO(Multiple-Input Multiple-Output)技术充分开发空间资源,利用多个天线实现多发多收,在不增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量,满足未来无线通信中高速数据传输的需求。OFDM(Orthogonal FrequencyDivision Multiplexing)技术是多载波传输的一种,其多载波之间相互正交,可以高效地利用频谱资源。另外,OFDM将总带宽分割为若干个窄带子载波可以有效地抵抗频率选择性衰落。因此充分开发这两种技术的潜力,将二者结合起来(MIMO-OFDM)可以成为新一代移动通信核心技术的解决方案。本论文主要针对MIMO-OFDM系统,设计和研究了四种新型的发射分集方法;并结合阵列信号处理,提出了V-BLAST(Vertical Bell Labs Layered Space-Time)OFDM系统中两种稳健的检测算法。而且通过理论分析与仿真实验进行了验证。主要工作包括以下几个方面内容:
     1.提出了一种可以使基于准正交设计的空时分组码(QOSTBC,Quasi-Orthogonal Space-Time Block Code)获得满分集增益的准正交分组的分层空频时编码(GLSFTBC,Group Layered Space-Frequency-Time Block Coding)-OFDM发射分集方法,即QO-GLSFTBC-OFDM。该方法将4个发射天线分为两组(每组2个),输入的信号经过空频编码(SFBC,Space-Frequency Block Coding)后分成两组,然后每组的数据分别经过空时编码(STBC,Space-Time Block Coding)、OFDM调制后,由相应的发射天线发送。在接收端首先利用子载波分组进行组间干扰抑制,然后对每组分别进行译码,由于每组都是Alamouti编码,因此每组都可以获得满速率和满分集增益,将两组合并后仍可以获得满分集增益。与采用星座图旋转的QOSTBC方法相比,该方法不扩大发射天线发送符号的星座图。从理论分析和计算机仿真的结果都可以看出:该方法在保持QOSTBC满速率优点的前提下,可以同时获得满空间分集增益;而且编码和译码的过程都是基于线性处理的,计算简单。
     2.提出了频率选择性快衰落信道下基于线性星座图预编码(LCP,LinearConstellation Precoding)的分组的分层空频时编码OFDM发射分集方法,即LCP-GLSFTBC-OFDM。该方法的发射机结构基于四级用户码的设计:第一级基于OFDMA(Orthogonal Frequency-Division Multiple Access),主要用来进行组间干扰和码间干扰的抑制;第二级基于STBC,用来获得空间分集增益;第三级基于SFBC,用来获得时间分集增益;第四级基于LCP,用来获得频率分集增益。既克服了当发射天线数目较多时STBC设计复杂的缺点,又克服了传统分组的分层空时编码(GLSTBC,Group Layered Space-Time Block Coding)-OFDM要求信道必须为准静态衰落的弊端,而且编译码的过程都是基于线性处理的,计算简单。理论分析和计算机仿真结果也证明了该方法的有效性。
     3.提出了MIMO-OFDM系统中两种多用户传输方法。第一种是基于子载波分组抑制组间干扰的CDMA多用户传输方法,即分组的分层空频编码(GLSFBC,Group Layered Space-Frequency Block Coding)-OFDM-CDMA(Code-divisionmultiple-access)方法。该方法的发射机结构基于三级用户码的设计:外码(基于OFDMA)主要用来进行组间干扰和码间干扰的抑制;中间级的码(基于SFBC)用来获得空间分集增益;内码(基于CDMA)用来消除多用户干扰。第二种是基于CDMA抑制组间干扰的OFDMA多用户传输方法,即GLSFBC-CDMA-OFDMA方法。该方法的发射机结构也是基于三级用户码的设计:外码(基于OFDMA)主要用来区分多用户和消除码间干扰;中间级的码(基于CDMA)用来消除组间干扰,内码(基于SFBC)用来获得空间分集增益。这两种方法在接收端都只需要一根天线就可以同时消除组间干扰和多用户干扰,因此,大大降低了接收机的复杂度(传统的基于SVD组间干扰抑制方法和基于串行干扰相消的方法需要对每个子载波对应的信道矩阵进行相应的操作,因而复杂度较高;而且需要多个接收天线)。理论分析和计算机仿真结果证明了这两种方法的有效性。
     4.针对实际中信道估计存在误差,从阵列信号处理的角度提出了V-BLASTOFDM系统中两种稳健的检测算法。第一种是向信号子空间投影:将接收数据的协方差矩阵进行特征值分解,得到信号子空间,将存在估计误差的信道矢量向该子空间投影,就可以得到较为准确的信道矢量,然后利用Capon波束形成算法计算出滤波器的系数。第二种是利用信号子空间和噪声子空间相互正交:将接收数据的协方差矩阵进行特征值分解,得到噪声子空间,利用信号子空间和噪声子空间相互正交的关系优化一个代价函数,就可以得到实际信道响应的最优估计,然后利用Capon波束形成算法计算出滤波器的系数。仿真结果表明:当信道估计存在误差时,这两种方法明显优于ZF(Zero-Forcing)和MMSE(Minimum Mean SquareError)算法。
MIMO (Multiple-Input Multiple-Output) technique utilizing multiple antennas to realize multiple transmission and multiple receiving, can exploit space resource adequately and can improve channel capacity without any loss in bandwidth and transmitting power. So it can meet the need of high data transmission in future wireless communications. OFDM (Orthogonal Frequency Division Multiplexing) as a kind of multi-carrier transmission can utilize spectrum resource efficiently. Furthermore, the whole bandwidth is divided into many narrow subcarriers, which can combat frequency selective fading. So the combination of MIMO and OFDM could be core solution for 4th Generation Mobile Communication. Aiming at MIMO-OFDM system, four novel transmitter diversity schemes are designed and studied, and two robust detection algorithms are proposed for V-BLAST (Vertical Bell Labs Layered Space-Time) OFDM systems based on array signal processing theory in this dissertation. Then these methods are verified by theoretical analysis and computer simulations. The primary contributions included in this dissertation can be summarized as follow:
     1. A novel QO-GLSFTBC (Quasi-Orthogonal Group Layered Space-Frequency-Time Block Coding)-OFDM scheme with full-rate and full-diversity is presented for improving the performance of quasi-orthogonal codes. The four transmit antennas are divided into two groups (2 of each group), after SFBC (Space-Frequency Block Coding), the input signals are divided into two groups. After STBC (Space-Time Block Coding) and OFDM modulation, the two groups are transmitted by corresponding antennas. At the receiver, using mutual orthogonality between subcarriers to suppress group interference, then the two groups are decoded, respectively. Because each group is an Alamouti coding, it can achieve full rate and full diversity. Combining the two groups can still achieve full rate and full diversity. Compared to the constellation-rotated quasi-orthogonal codes, the newly proposed scheme has the advantage of not expanding the signal constellation at each transmit antenna. Furthermore, the encoding and decoding process of the proposed method is made of linear processing and only requires simple operation. Both theoretical analysis and simulation results show the validity of the proposed method.
     2. A novel GLSFTBC-OFDM transmitter diversity scheme based on LCP (Linear Constellation Precoding) is proposed for wireless communications over frequency -selective fast fading channels. That is LCP-GLSFTBC-OFDM. The proposed approach is based on a four-level design of user codes: the first level which is based on OFDMA (Orthogonal Frequency-Division Multiple Access) deals with group interference and intersymbol interference (ISI), the second level which is based on STBC (Space-Time Block Coding) results in space diversity, the third level which is based on SFBC (Space-Frequency Block Coding) obtains time diversity, and the fourth level which is based on LCP results in frequency diversity. The proposed method overcomes the shortcomings of the complexity of STBC matrix when the number of transmit antennas is more than 2 and the weakness of conventional GLSTBC-OFDM, which requires quasi-static fading, furthermore, both encoding and decoding process of the proposed scheme are based on linear processing and require simple operation. Theoretical analysis and simulation results show the validity of the proposed scheme.
     3. Two multiuser transmitter schemes are proposed for MIMO-OFDM systems. The first one is CDMA multiuser transmitter scheme, which is based on subcarrier grouping to suppress group interference. That is GLSFBC (Group Layered Space-Frequency Block Coding)-OFDM-CDMA (Code-division multiple-access). It is based on a three-level design of user codes: the top level (based on OFDMA) deals with group interference and intersymbol interference (ISI), the middle level (based on SFBC) results in space-frequency diversity, and the lower level (based on CDMA) handles multiuser interference. The second one is OFDMA multiuser transmitter scheme, which is based on CDMA to suppress group interference. That is GLSFBC-CDMA-OFDMA. It is also based on a three-level design of user codes: the top level (based on OFDMA) deals with multiuser interference and intersymbol interference (ISI), the middle level (based on CDMA) handles group interference, and the lower level (based on SFBC) results in space-frequency diversity. Both of them only need one receive antenna to distinguish multiple users and suppress group interference simultaneously, so the complexity of the receiver decreases remarkably (the conventional group interference cancellation methods need to operate on the equivalent channel response matrix corresponding to each subcarrier, and need more than one receive antenna). Theoretical analysis and simulation results confirm the validity of the two multiuser transmitter schemes.
     4. Two robust detection algorithms based on array signal processing theory are proposed for V-BLAST OFDM systems with channel estimation error. The first one is projecting onto the signal subspace. The covariance matrix of receive data is eigendecomposed, and the signal subspace is obtained. Then the channel vector (with error) is projected onto the subspace, more accurate channel vector is obtained. According to Capon beamforming algorithm, the filter coefficients are calculated. The second one is according to the mutual orthogonality between the signal subspace and the noise subspace. The covariance matrix of receive data is eigendecomposed, and the noise subspace is obtained. According to the mutual orthogonality between the signal subspace and the noise subspace, a cost function is optimized, then the optimal estimation of the actual channel response is obtained. According to Capon beamforming algorithm, the filter coefficients are calculated. Simulation results show that the performance of the proposed algorithms are better than ZF (Zero-Forcing) and MMSE (Minimum Mean Square Error) algorithms under channel estimation error.
引文
[1]张贤达,保铮.通信信号处理.北京:国防工业出版社,2002.
    [2]尤肖虎,曹淑敏,李建东.第三代移动通信系统发展现状与展望.电子学报,1999,11,27(11).3-8.
    [3]彭林.第三代移动通信技术.北京:电子工业出版社,2003.
    [4]孙立新,尤肖虎,张萍.第三代移动通信.北京:人民邮电出版社,2000.
    [5]郭梯云,杨家玮,李建东.数字移动通信.北京:人民邮电出版社,1995.
    [6]李建东,杨家玮.个人通信.北京:人民邮电出版社,1998.
    [7]S.Ohmori,Y.Yamao and N.Nakajima.The Future Generations of Mobile Communications Based on Broadband Access Technologies.IEEE Communications Magazine,December 2000,38(12).134-142.
    [8]A.Jamalipour and S.Tekinay.Fourth Generation Wireless Networks and Interconnecting Standards.IEEE Personal Communications,October 2001,8(5).8-9.
    [9]P.Mahonen and G.C.Polyzos.European R&D on Fourth-Generation Mobile and Wireless IP Networks.IEEE Personal Communications,December 2001,8(6).6-7.
    [10]H.Sampath,S.Talwar,J.Tellado,et al.A fourth-generation MIMO-OFDM broadband wireless system:design,performance,and field trial results.IEEE Communications Magazine,September 2002,40(9).143-149.
    [11]S.Hara,R.Prasad.Multicarrier Techniques for 4G Mobile Communication.Boston & London:Artech House,2003.
    [12]Y.Neuvo.Future wireless technologies.Proceedings of IEEE 6th Circuits and Systems Symposium on Emerging Technologies:Frontiers of Mobile and Wireless Communications,June 2004,1.1-3.
    [13]陈晨.软件无线电和OFDM系统中的同步技术研究.西安电子科技大学博士论文,2005.
    [14]G.J.Foschini and M.J.Gans.On limits of wireless communications in a fading environment when using multiple antennas.Wireless Personal Communications,March 1998,6(3).311-335.
    [15]E.Telatar.Capacity of multi-antenna Gaussian channels.Europe Transactions on Telecommunications,November 1999,10(6).585-595.
    [16]Ye Li,J.C.Chung and N.R.Sollenberger.Transmitter Diversity for OFDM Systems and Its Impact on High-Rate Data Wireless Networks. IEEE Journal on Selected Areas in Communications, July 1999, 17(7). 1233-1243.
    [17]J. A. C. Bingham. Multicarrier modulation for data transmission: An idea whose time has come. IEEE Communications Magazine, May 1990,28(5). 5-14.
    [18]R. J. Castle, A. E. Jones and T. A. Wilkinson. An experimental study of OFDM at 5.25 GHz in an office environment. IEEE Journal on Selected Areas in Communications, November 2001, 19(11). 2279-2289.
    [19] W. Y. Zou and Y. Wu. COFDM: An overview. IEEE Transactions on Broadcasting, March 1995, 41(1). 1-8.
    [20]H. Sari, G Karam and I. Jeanclaude. Transmission techniques for digital terrestrial TV broadcasting. IEEE Communications Magazine, February 1995, 33(2). 100-109.
    
    [21]C. Dubuc, D. Starks, T. Creasy, et al. A MIMO-OFDM Prototype for Next- Generation Wireless WANs. IEEE Communications Magazine, December 2004,42(12). 82-87.
    [22]Kyung Won Park and Yong Soo Cho. An MIMO-OFDM technique for high-speed mobile channels. IEEE Communications Letters, July 2005, 9(7). 604-606.
    [23] G. L. Stuber, J. R. Barry, S. W. Mclaughlin, et al. Broadband MIMO-OFDM Wireless Communications. Proceedings of the IEEE, February 2004, 92(2). 271-294.
    [24]Y. Liu, M. P. Fitz and O. Y. Takeshita. Space time codes: Performance criteria and design for frequency selective fading channels. Proceedings of IEEE International Conference on Communications, June 2001, 9. 2800-2804.
    [25]H. El Gamal, A. R. Hammons, Jr., et al. On the design of space-time and space-frequency codes for MIMO frequency selective fading channels. IEEE Transactions on Information Theory, September 2003,49(9). 2277-2292.
    [26]Z. Liu, Y. Xin and G. Giannakis. Space-time-frequency coded OFDM over frequency-selective fading channels. IEEE Transactions on Signal Processing, October 2002, 50(10). 2465-2476.
    [27]M. Guillaud and D. Slock. Multi-stream coding for MIMO OFDM systems with space-time-frequency spreading. Proceedings of IEEE International Symposium on Wireless Personal Multimedia Communications, October 2002, 1. 120-124.
    [28]Y. (G.) Li, J. H. Winters and N. R. Sollenberger. MIMO-OFDM for wireless communications: Signal detection with enhanced channel estimation. IEEE Transactions on Communications,September 2002,50(9).1471-1477.
    [29]S.Kaiser.Spatial transmit diversity techniques for broadband OFDM systems.Proceedings of IEEE Global Telecommunications Conference,December 2000,3.1824-1828.
    [30]A.Dammann and S.Kaiser.Standard conformable antenna diversity techniques for OFDM and its application to the DVB-T system.Proceedings of IEEE Global Telecommunications Conference,November 2001,5.3100-3105.
    [31]A.Dammann,P.Lusina and M.Bossert.On the equivalence of space-time block coding with multipath propagation and/or cyclic delay diversity in OFDM.Proceedings of IEEE European Wireless,2002.847-851.
    [32]A.N.Mody and G.L.Stuber.Efficient training and synchronization sequence structures for MIMO OFDM systems,presented at the 6th OFDM Workshop 2001,Hamburg,Germany.
    [33]Y.(G.)Li.Simplified channel estimation for OFDM systems with multiple transmit antennas.IEEE Transactions on Wireless Communications,January 2002,1(1).67-75.
    [34]R.Blum,Y.(G.)Li,J.Winters,et al.Improved space-time coding for MIMO-OFDM wireless communications.IEEE Transactions on Communications,November 2001,49(11).1873-1878.
    [35]Y.Gong and K.Letaief.An efficient space-frequency coded wideband OFDM system for wireless communications.Proceedings of IEEE International Conference on Communications,28 April-2 May 2002,1.475-479.
    [36]B.Lu,X.Wang and K.Narayanan.LDPC-based space-time coded OFDM systems over correlated fading channels:Performance analysis and receiver design.IEEE Transactions on Communications,January 2002,50(1).74-88.
    [37]D.Gore and A.J.Paulraj.Space-time block coding with optimal antenna selection.Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,May 2001,4.2441-2444.
    [38]付卫红,杨小牛,曾兴雯等.MIMO-OFDM系统中的空时频编码技术.四川大学学报,2006,10,43(5).1037-1042.
    [39]Shaodan Ma and Tung-Sang Ng.Time-Domain Signal Detection Based on Second-Order Statistics for MIMO-OFDM Systems.IEEE Transactions on Signal Processing,March 2007,55(3).1150-1158.
    [40]王萍,朱琦,阎海亮.基于IEEE802.16e的MIMO-OFDM系统的信道估计.南 京邮电大学学报, 2006, 8,26(4). 90-94.
    [41]V. Tarokh, N. Seshachi and A. R. Calderbank. Space-time codes for high data rate wireless communications: performance analysis and code construction. IEEE Transactions on Information Theory, March 1998,44(2). 744-765.
    [42]V. Tarokh, H. Jafarkhani and A. R. Calderbank. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, July 1999, 45(5). 1456-1467.
    [43]B. M. Hochwald and T. L. Marzetta. Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading. IEEE Transactions on Information Theory, March 2000, 46(2). 543-564.
    [44] V. Tarokh, H. Jafarkhani and A. R. Calderbank. Space-time codes for high data rate wireless communication: performance criterion in the presence of channel estimation, errors, mobility, and multiple paths. IEEE Transactions on Communications, February 1999,47(2). 199-207.
    [45] S. M. Alamouti. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, October 1998, 16(8). 1451-1458.
    [46]B. M. Hochwald, T. L. Marzetta, T. J. Richardson, et al. Systematic design of unitary space-time constellations. IEEE Transactions on Information Theory, September 2000,46(6). 1962-1973.
    [47] V. Tarokh and H. Tafarkhani. A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications, July 2000, 18(7). 1169-1174.
    [48]H. Jafarkhani and V. Tarokh. Multiple transmit antenna differential detection from generalized orthogonal designs. IEEE Transactions on Information Theory, September 2001, 47(6). 2626-2631.
    [49]A. F. Naguib, N. Seshadri and A. R. Calderbank. Increasing data rate over wireless channels. IEEE Signal Processing Magazine, May 2000, 17(3). 76-92.
    [50]A. F. Naguib, V. Tarokh, N. Seshadri, et al. A space-time coding modem for high-data-rate wireless communications. IEEE Journal on Selected Areas in Communications, October 1998, 16(8). 1459-1478.
    [51]R. G. Gallager, Information theory and reliable communication. New York: Wiley, 1968.
    [52]D. D. N. Bevan, R. Tanner and C. R. Ward. Space-time coding for capacity enhancement in future generation wireless communications networks. Proceedings of IEE Colloquium on Capacity and Range Enhancement Techniques for the Third Generation Mobile Communications and Beyond,February 2000.801-811.
    [53]R.W.Heath and A.J.Paulraj.Multiple antenna arrays for transmitter diversity and space-time coding.Proceedings of IEEE International Conference on Communications,June 1999,1.36-40.
    [54]佟学俭,罗涛.OFDM移动通信技术原理与应用.北京:人民邮电出版社,2003.
    [55]武刚,张雷,唐友喜等.多天线OFDM系统空时频分组码的性能分析.电子科技大学学报,2003,10,32(5).485-489.
    [56]罗微,吴诗其.基于OFDM系统的空时频分组编码方案.系统工程与电子技术,2005,3,27(3).391-394.
    [57]麻清华,杨绿溪,何振亚.相关信道下宽带MIMO-OFDM系统中空时频码的分集度分析.东南大学学报,2007,7,37(4).549-553.
    [58]蒋慧娟,谭笑,沈越泓.一种可变分集增益的空时/时频调制编码新方案.电子与信息学报,2007,4,29(4).979-982.
    [59]姜海宁,罗汉文,田继锋等.用于宽带无线通信的空时频编码OFDM技术.上海交通大学学报.2004,11,38(11).1792-1795.
    [60]樊迅,罗汉文,徐友云等.编码分组空时块码多入多出正交频分复用系统中的迭代接收机.上海交通大学学报,2006,3,40(3).382-386.
    [61]王超,廖桂生,张林让等.智能天线与空时编码技术的性能分析.电波科学学报,2003,6,18(3).252-255.
    [62]S.Baro,G.Bauch and A.Hansmann.Improved codes for space-time trellis coded modulation.IEEE Communications Letters,January 2000,4(1).20-22.
    [63]A.R.Hammons,Jr.and H.El Gamal.On the theory of space-time codes for PSK modulation.IEEE Transactions on Information Theory,March 2000,46(2).525-542.
    [64]V.Tarokh,H.Jafarkhani and A.R.Calderbank.Space-time block codes for high data rates wireless communications:performance results.IEEE Journal on Selected Areas in Communications,March 1999,17(3).451-460.
    [65]G.D.Golden,G.J.Foschini,R.A.Valenzuela,et al.Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture.Electronics Letters,January 1999,35(1).14-16.
    [66]G.J.Foschini,G.D.Golden,R.A.Valenzuela,et al.Simplified processing for high spectral efficiency wireless communication employing multi-element arrays.IEEE Journal on Selected Areas in Communications,November,1999,17(11).1841 - 1852.
    [67]A.Wittneben.Base station modulation diversity for digital SIMULCAST. Proceedings of IEEE Vehicular Technology Conference, May 1991. 848-853.
    [68]N. Seshadri and J. H. Winters. Two signaling schemes for improving the error performance of FDD transmission systems using transmitter antenna diversity. Proceedings of IEEE Vehicular Technology Conference, May 1993. 508-511.
    [69] J. H. Winters. The diversity gain of transmit diversity in wireless systems with Rayleigh fading. IEEE Transactions on Vehicular Technology, February 1998, 47(1).119-123.
    [70] A. Wittneben. A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation. Proceedings of IEEE International Conference on Communications, May 1993, 3. 1630-1634.
    [71 ]P. W. Wolniansky, G. J. Foschini, G. D. Golden, et al. V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. Proceedings of URSI International Symposium on Signals, Systems, and Electronics, 29 September-2 October 1998.295-300.
    [72] G. C. Raleigh and J. M. Cioffi. Spatial-Temporal coding for wireless communications. IEEE Transactions on Communications, March 1998, 46(3). 357-366.
    [73]G. J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Labs Technical Journal, Autumn 1996, 1(2). 41-59.
    [74] J. H. Winters. On the capacity of radio communications systems with diversity in a Rayleigh fading environment. IEEE Journal on selected Areas in Communications, June 1987, 5(5). 871-878.
    [75]B. M. Hochwald and W. Sweldens. Differential unitary space-time modulation. IEEE Transactions on Communications, December 2000, 48(12). 2041-2052.
    [76]B. L. Hughes. Differential space-time modulation. IEEE Transactions on Information Theory, November 2000, 46(7). 2567-2578.
    [77] H. Jafarkhani. A quasi-orthogonal space-time block code. IEEE Transactions on Communications, January 2001, 49(1). 1-4.
    [78] O. Tirkkonen, A. Boariu and A. Hottinen. Minimal nonorthogonality rate 1 space -time block code for 3+ Tx antennas. Proceedings of IEEE 6th International Symposium on Spread Spectrum Techniques and Applications, September 2000, 2. 429-432.
    [79]C. B. Papadias and G. J. Foschini. A space-time coding approach for systems employing four transmit antennas. Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,May 2001,4.2481-2484.
    [80]N.Sharma and C.B.Papadias.Improved quasi-orthogonal codes through constellation rotation.IEEE Transactions on Communications,March 2003,51(3).332-335.
    [81]L.He and H.Ge.Fast ML detection for quasi-orthogonal space-time block codec.Conference Record of the 37th Asilomar Conference on Signals,Systems and Computers,November 2003.1022-1026.
    [82]W.Su and X.G.Xia.Quasi-orthogonal space-time block codes with full diversity.Proceedings of IEEE Global Telecommunications Conference,November 2002,2.1098-1102.
    [83]赵琰,何晨,蒋铃鸽.四天线准正交空时分组码的设计和性能分析.电子学报,2005,12,33(12).2250-2253.
    [84]邓单,朱近康.基于随机旋转的准正交空时分组码研究.电子与信息学报,2006,9,28(9).1626-1629.
    [85]W.Su and X.G.Xia.Signal constellations for quasi-orthogonal space-time block codes with full diversity.IEEE Transactions on Information Theory,October 2004,50(10).2331-2347.
    [86]V.Tarokh,A.F.Naguib and N.Seshadri.Combined Array Processing and Space-Time Coding.IEEE Transactions on Information Theory,May 1999,45(4).1121-1128.
    [87]M.Mohammad,S.Al-Ghadhban,B.Woerner,et al.Comparing Decoding Algorithms for Multi-Layer Space-Time Block Codes.Proceedings of IEEE SoutheastCon,March 2004.147-152.
    [88]S.Al-Ghadhban,B.Woemer.Iterative joint and interference nulling/cancellation decoding algorithms for multigroup space time trellis coded systems.Proceedings of IEEE Wireless Communications and Networking Conference,March 2004,4.2317-2322.
    [89]S.Al-Ghadhban,M.Mohammad and B.Woerner.Iterative spatial sequence estimator for multi-group space time trellis coded systems.Proceedings of IEEE Vehicular Technology Conference,September 2004,2.1353-1357.
    [90]S.Al-Ghadhban,R.M.Buehrer and B.Woerner.Outage capacity comparison of multi-layered STBC and V-BLAST systems.Proceedings of IEEE Vehicular Technology Conference,September 2005,1.24-27.
    [91]S.Al-Ghadhban,M.Mohammad,B.Woerner,et al.Performance evaluation of decoding algorithms for multilayered STBC-OFDM systems.Conference Record of the Thirty-Eighth Asilomar Conference on Signals,Systems and Computers,November 2004,1.1208-1212.
    [92]李勇朝,王峰,许晓红等.一种新的混合型空时编码研究.探测与控制学报,2003,12,25(4).42-46.
    [93]许晓红,廖桂生,李勇朝.基于分层结构的空时分组码.电波科学学报,2004,4,19(2).129-134.
    [94]Li Yongzhao,Xu Xiaohong and Liao Guisheng.Layered space-time block coding over frequency selective fading channels.Proceedings of 8th World Multi-Conference on Systemics,Cybernetics and Informatics.July 2004.18-21.
    [95]蒋伯峰.基于时空信道估计的智能天线技术研究.西安交通大学博士论文,2001.
    [96]王文杰.宽带CDMA系统中的时空二维信号处理方法研究.西安交通大学博士论文,2001.
    [97]张平,陶小峰,王卫东.空时码.电子学报,1999,11,28(11).110-113.
    [98]薛义生,朱雪龙.基于逐幸存路径处理的空时格形码自适应解码器.电子学报,2001,10,29(10).1352-1355.
    [99]李舒,康桂霞,韩承德等.一种简单而有效的空时编码.电子学报,2002,1,30(1).94-96.
    [100]李祥明,罗涛,乐光新.正交空时分组码性能估计的一种方法.电子学报,2001,7,29(7).993-995.
    [101]王超,廖桂生,张林让等.多相调制下的空时分组码性能分析.西安电子科技大学学报,2002,2,29(1).82-86.
    [102]李颖,王新梅.网格空时码在WCDMA中的解决方案.电子学报,2003,5,31(5).772-775.
    [103]刘宁,李颖,王新梅.分层空时码检测算法的研究.电子学报,2003,11,31(11).1754-1757.
    [104]王超.多输入多输出无线通信系统空时编码技术研究.西安电子科技大学博士论文,2004.
    [105]李颖,谢显中,王新梅.空时码综述.电子与信息学报,2002,12,24(12).1973-1979.
    [106]李军.宽带无线通信系统中的同步和信道估计算法.西安电子科技大学博士论文,2005.
    [107]李勇朝.基于阵列信号处理的空时编码技术研究.西安电子科技大学博士论文.2005.
    [108]L.J.Cimini.Analysis and simulation of a digital mobile channel using orthogonal frequency division multiplexing. IEEE Transactions on Communications, July 1985, 33(7). 665-675.
    [109] D. Kim and G. L. Stuber. Residual ISI cancellation for OFDM with applications to HDTV broadcasting. IEEE Journal on Selected Areas in Communications, October 1998,16(8). 1590-1599.
    [110]A. Peled and A. Ruiz. Frequency domain data transmission using reduced computional complexity algorithms. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, April 1980, 5. 964-967.
    [111]S. B. Weinstein and P. M. Ebert. Data transmission by frequency-division multiplexing using the discrete Fourier transform. IEEE Transactions on Communications, October 1971,19(5). 628-634.
    [112] B. S. Krongold and D. L. Jones. PAR reduction in OFDM via active constellation extension. IEEE Transactions on Broadcasting, September 2003,49(3). 258-268.
    [113]R. Van Nee, G Awater, M. Morikura, et al. New high-rate wireless LAN Standard. IEEE Communications Magazine, December 1999, 37(12). 82-88.
    [114]IEEE Std. 802.11a. Wireless medium access control (MAC) and physical layer (PHY) specifications: High-speed physical layer extension in the 5-GHz band. IEEE, 1999.
    [115]ETSI TR 101 475. Broadband radio access networks (BRAN); HIPERLAN type 2; physical (PHY) layer. ETSI BRAN, 2000.
    [116]ARIB STD-T70. Lower power data communication systems broadband mobile access communication system (HiSWANa). ARIB, December 2000.
    [117]Telecommunication Standard ETS 300 744. Digital broadcasting systems for television, sound and data services; Framing structure, channel coding and modulation for digital terrestrial television. May 1996.
    [118]Radio Spectrum Management Group. A draft band plan for digital audio broadcasting ECD 2000/5. December 2000.
    [119]Test Report. Brazilian test report. Comparing ATSC, DVB-T AND ISDB-T digital television standards. ABERT/SET. February 2000.
    [120]Y. Y. Wu, E. Pliszka, B. Caron, et al. Comparison of terrestrial DTV transmission systems: The ATSC 8-VSB, the DVB-T COFDM, and the ISDB-T BST-OFDM. IEEE Transactions on Broadcasting, June 2000, 46(2). 101-113.
    [121]IEEE LAN MAN Standards Committee. IEEE draft standard for local and metropolitan area network-part 16: Air interface for fixed broadband wireless access systems - mediam access control modification and additional physical layer specifications for 2-11 GHz.2002.
    [122]A.J.Paulraj,D.A.Gore,R.U.Nabar,et al.An overview of MIMO communications - A key to gigabit wireless.Proceedings of the IEEE,February 2004,92(2).198-218.
    [123]S.Hara and R.Prasad.Overview of multicarrier CDMA.IEEE Communications Magazine,December 1997,35(12).126-133.
    [124]T.Pollet,M.Van Bladel and M.Moeneclaey.BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise.IEEE Transactions on Communications,February/March/April 1995,43(2-4).191-193.
    [125]P.Moose.A technique for orthogonal frequency-division multiplexing frequency offset correction.IEEE Transactions on Communications,October 1994,42(10).2908-2914.
    [126]L.Tomba.On the effect of wiener phase noise in OFDM system.IEEE Transactions on Communications,May 1998,46(5).580-583.
    [127]A.G.Armada and M.Calvo.Phase noise and sub-carrier spacing effects on the performance of an OFDM communication system.IEEE Communications Letters,January 1998,2(1).11-13.
    [128]V.Tarokh and H.Jafarkhani.On the computation and reduction of the peak-to-average power ratio in multicarrier communication.IEEE Transactions on Communications,January 2000,48(1).37-44.
    [129]J.A.Davis and J.Jedwab.Peak-to-Mean Power Control in OFDM,Golay Complementary Sequences and Reed-Muller Codes.IEEE Transactions on Information Theory,November 1999,45(7).2397-2417.
    [130]A.D.S.Jayalath and C.Tellambura.Reducing the Peak-to-Average Power Ratio of Orthogonal Frequency Division Multiplexing Signal through Bit or Symbol Interleaving.Electronic Letters,June 2000,36(13).1161-1163.
    [131]H.Bolcskei,D.Gesbert and A.J.Paulraj.On the capacity of OFDM-based spatial multiplexing systems.IEEE Transactions on Communications,February 2002,50(2).225-234.
    [132]B.Lu,X.Wang.Space-time code design in OFDM systems.Proceedings of IEEE Global Telecommunications Conference,27 November-1 December 2000,2.1000-1004.
    [133]H.Bolcskei and A.J.Paulraj.Space-frequency codes for broadband fading channels. Proceedings of IEEE International Symposium on Information Theory, June 2001, 219.
    [134]H. Bolcskei, M. Borgmann and A. J. Paulraj. Impact of the propagation environment on the performance of space-frequency coded MIMO-OFDM. IEEE Journal on Selected Areas in Communications, April 2003, 21(3). 427-439.
    [135]A. N. Mody and G. L. Stuber. Sampling frequency offset estimation and time tracking for MIMO OFDM systems. presented at the 8th OFDM Workshop 2003, Hamburg, Germany.
    [136]A. N. Mody and G. L. Stuber. Receiver implementation for a MIMO OFDM system. Proceedings of IEEE Global Telecommunications Conference, November 2002,1.716-720.
    [137]Y. (G.) Li, N. Seshadri and S. Ariyavisitakul. Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. Journal on Selected Areas in Communications, March 1999,17(3). 461-471.
    [138]Y. (G.) Li, L. J. Cimini, Jr., et al. Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Transactions on Communications, July 1998,46(7). 902-915.
    [139]L. Giangaspero, L. Agarossi, G. Paltenghi, et al. Co-Channel Interference Cancellation Based on MIMO OFDM Systems. IEEE Wireless Communications, December 2002,9(6). 8-17.
    [140]K. F. Lee and Douglas B. Williams. A space-frequency transmitter diversity technique for OFDM systems. Proceedings of IEEE Global Telecommunications Conference, November 2000. 1473-1477.
    [141]K. F. Lee and Douglas B. Williams. A space-time coded transmitter diversity technique for frequency selective fading channels. Proceedings of IEEE Sensor Array and Multichannel Signal Processing Workshop, March 2000. 149-152.
    [142]J. Cheng, H. Wang and S. Cheng. Space-Time Block Coded Transmit Diversity for OFDM system in Mobile Channels. Proceedings of IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, September 2002, 1.208-211.
    [143]GuangHua Yang, Dongxu Shen and V.O.K Li. UEP for Video Transmission in Space-Time Coded OFDM Systems. Proceedings of Twenty-third Annual Joint Conference of the IEEE Computer and Communications Societies, March 2004, 2. 1200-1210.
    [144]Lin Dai,Sana Sfar and K.B.Letaief.An Efficient Detector for Combined Space-Time Coding and Layered Processing.IEEE Transactions on Communications,September 2005,53(9).1438-1442.
    [145]H.Bolcskei and A.J.Paulraj.Space-frequency coded broadband OFDM systems.Proceedings of IEEE Wireless Communications and Networking Conference,September 2000,1.1-6.
    [146]H.Bolcskei,M.Borgmann and A.J.Paulraj.Space-frequency coded MIMO-OFDM with variable multiplexing-diversity tradeoff.Proceedings of IEEE International Conference on Communications,May 2003,4.2837-2841.
    [147]A.F.Molisch,M.Z.Win and J.H.Winters.Space-time-frequency(STF)coding for MIMO-OFDM systems.IEEE Communications Letters,September 2002,6(9).370-372.
    [148]赵铮,殷勤业,吴晓军.基于子空间的空时分组码的解码.电子学报,2003,2,31(2).203-206.
    [149]曹炎焱,曹雪虹,贾锋.BLAST-OFDM系统中基于QR分解的检测算法.南京邮电大学学报,2006,12,26(6).31-35.
    [150]王启星,李宝金,常永宇等.MIMO-CDMA系统中改进的分层空频接收方案.北京邮电大学学报,2006,10,29(5).71-74.
    [151]龚汉东,叶梧,冯穗力等.多用户OFDM系统的子载波分配算法.华南理工大学学报,2006,6,34(6).12-16.
    [152]赵铮,殷勤业,张建国.基于旋转不变子空间的垂直分层空时码.西安交通大学学报,2003,4,37(4).384-387.
    [153]A.Stamoulis,Z.Liu and G.B.Giannakis.Space-Time Block-Coded OFDMA With Linear Precoding for Multirate Services.IEEE Transactions on Signal Processing,January 2002,50(1).119-129.
    [154]Weifeng Su,Zoltan Safar,Masoud Olfat,et al.Obtaining full-diversity spacefrequency codes from space-time codes via mapping.IEEE Transactions on Signal Processing,November 2003,51(11).2905-2916.
    [155]Y.Gong and K.Letaief.An efficient space-frequency coded OFDM system for broadband wireless communications.IEEE Transactions on Communications,November 2003,51(11).2019-2029.
    [156]侯晓,郑宝玉,罗汉文等.MIMO-OFDM蜂窝系统中优选训练序列及信道估计.上海交通大学学报,2004,11,38(11).1810-1813.
    [157]李汀,杨绿溪.MIMO-OFDM无线通信系统鲁棒的二维导频辅助信道估计.扬 州大学学报,2004,2,7(1).32-35.
    [158]罗涛,滕勇,佟学俭等.OFDM系统中空时分组编码技术.北京邮电大学学报,2004,2,27(1).45-49.
    [159]韩冰,高西奇,尤肖虎.OFDM系统的一种新的信道参数估计方法.应用科学学报,2004,3,22(1).41-45.
    [160]邹黎,赵玉萍,王兵等.ST-OFDM系统中的载波频率偏差估计算法.北京大学学报,2004,1,40(1).91-98.
    [161]吴晓军,李星,王继龙.V-BLAST OFDM系统的频率选择性信道盲估计.通信学报,2004,10,25(10).93-101.
    [162]苏鹏程,孙军,乔艳涛等.分层空时OFDM系统中多用户检测技术.上海交通大学学报,2004,10,38(SUP).53-56.
    [163]张红伟,罗汉文,宋文涛等.基于循环延迟分集的空时频编码策略.上海交通大学学报,2004,11,38(11).1806-1809.
    [164]潘亚汉,曹志刚.简单空时编码发射机分集自适应OFDM系统.清华大学学报,2002,7,42(7).957-960.
    [165]罗微,李少谦,吴诗其等.瑞利衰落下的空时频(STF)分组编码OFDM系统.电波科学学报,2003,10,18(5).502-508.
    [166]李颖,李佳,王新梅.一种改进的分层空时码检测算法.通信学报,2003,3,24(3).113-118.
    [167]吕浚哲,张海林,刘增基.一种高效率的空频传输体制.系统工程与电子技术,2004,3,26(3).301-303.
    [168]余志坚,仇佩亮.一种基于OFDM的空频码的设计.电路与系统学报,2003,4,8(2).10-13.
    [169]杨恒,隗炜,张贤达.一种结合空时编码的MC-DS-CDMA方法.清华大学学报,2002,9,42(9).1245-1252.
    [170]郑夏雨,邱玲,朱近康.一种结合频率扩展编码的空时码MIMO OFDM系统性能及实现.电子与信息学报,2004,11,26(11).1799-1807.
    [171]薛艺,蒋铃鸽,何晨.一种频选衰落信道上的STFC-OFDM技术.上海交通大学学报,2004,11,38(11).1832-1836.
    [172]强永全,王皎,李道本.一种时空频分组码编码方案和检测算法.电路与系统学报,2004,4,9(2).1-4.
    [173]W.C.Jakes,Microwave Mobile Communications.New Jersey:IEEE Press,1993.
    [174][美]格雷戈里.D.德金著,朱世华 等译,空-时无线信道.西安:西安交通大学出版社,2004.
    [175]T.S.Rappaport,Wireless Communications Principles and Practice.Prentice-Hall,Inc.,1996.
    [176]R.H.Clarke.A statistical theory of mobile radio reception.Bell Systems Technical Journal,1968,47(6).957-1000.
    [177]赵铮.基于多输入多输出天线系统的盲估计及降维处理方法研究.西安交通大学博士论文,2003.
    [178]ETSI.Channel models for HIPERLAN/2 in difference indoor scenarios.ETSI EP BRAN 3ERI085B,March 1998.
    [179]杨宝国.OFDM无线通信系统中的定时恢复和信道估计算法.清华大学博士论文,2000.
    [180]Daniel Ka Chun So.MIMO wireless communications in frequency selective fading channels.PhD thesis of Hong Kong University of Science and Technology,2003.
    [181]D.Gesbert,M.Shafi,D.Shiu,et al.From theory to practice an overview of MIMO space-time coded wireless systems.IEEE Journal on Selected Areas in Communications,Aprial 2003,21(3).281-302.
    [182]D.A.Gore and A.J.Paulraj.MIMO antenna subset selection with space-time coding.IEEE Transactions on Signal Processing,October 2002,50(10).2580-2588.
    [183]T.L.Marzetta and B.M.Hochwald.Capacity of a mobile multiple-antenna communication link in rayleigh flat fading.IEEE Transactions on Information Theory,January 1999,45(1).139-157.
    [184]L.Zheng and D.N.C.Tse.Diversity and multiplexing:A fundamental tradeoff in multiple-antenna channels.IEEE Transactions on Information Theory,May 2003,49(5).1073-1096.
    [185]Z.Wang and G.B.Giannakis.Wireless multicarrier communications:Where Fourier meets Shannon.IEEE Signal Processing Magazine,May 2000,17(3).29-48.
    [186]Onur Oguz,Umit Aygolu and Erdal Panayirci.A Novel Space-Time-Frequency Coded System Design for OFDM over Fast Fading Channels.Proceedings of IEEE 12th Signal Processing and Communications Applications Conference,April 2004.68-71.
    [187]Y.Gong and K B Lateif.Space-frequency-time coded OFDM for broadband wireless communications.Proceedings of IEEE Global Telecommunications Conference,November 2001,1.519-523.
    [188]X.Wang,T.T.Tjhung,Y.Wu,et al.SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization.IEEE Transactions on Broadcasting,June 2003,49(2).170-177.
    [189]H.L.Van Trees.Optimum Array Processing:Part Ⅳ of Detection,Estimation,and Modulation Theory.New York:Wiley,2002.
    [190]郭庆华,廖桂生.一种稳健的自适应波束形成器.电子与信息学报,2004,1,26(1).146-150.
    [191]D.Agrawal,V.Tarokh,A.F.Naguib,et al.Space-Time Coded OFDM for High Data-Rate Wireless Communication Over Wideband Channels.Proceedings of IEEE Vehicular Technology Conference,May 1998.2232-2236.
    [192]Yan Xin and G.B.Giannakis.High-Rate Space-Time Layered OFDM.IEEE Communications Letters,May 2002,6(5).187-189.
    [193]Z.Liu,G.B.Giannakis,B.Muquet,et al.Space-time coding for broadband wireless communications.Wireless Communications and Mobile Computing,January-March 2001,1(1).35-53.
    [194]H.Sampath,V.Erceg and A.J.Paulraj.Performance Analysis of Linear Precoding Based on Field Trials Results of MIMO-OFDM System.IEEE Transactions on Wireless Communications,March 2005,4(2).404-409.
    [195]G.H.Golub and C.F.van Loan,Matrix Computations,3~(rd)ed.Baltimore,MD:Johns Hopkins Univ.Press,1996.
    [196]Eunseok Ko,Daesik Hong.Improved Space-Time Block Coding With Frequency Diversity for OFDM Systems.Proceedings of IEEE International Conference on Communications,June 2004,6.3217-3220.
    [197]Pan Yuh Joo,JungJe Son and DaeEop Kang.Novel Design of STBC for OFDM/OFDMA using Frequency Diversity.IEEE 802.16 Broadband Wireless Access Working Group< http://ieee802.org/16>
    [198]Z.Liu,Y.Xin and G.B.Giannakis.Linear Constellation Precoding for OFDM With Maximum Multipath Diversity and Coding Gains.IEEE Transactions on Communications,March 2003,51(3).416-427.
    [199]刘毅,张海林.有限反馈多用户MIMO-OFDMA下行链路预编码.西安电子科技大学学报,2007,2,34(1).71-75.
    [200]宋高俊,周正中,钟俊.宽带非相干空时频分组编码.电子科技大学学报,2006,4,35(2).168-170.
    [201]卢小峰,朱光喜,韦耿.基于OFDM系统的差分空频时编码.通信学报,2006,12,27(12).116-121.
    [202]池连刚,武妍艳,张欣等.基于V-BLAST OFDM系统的天线选择算法.北京邮电大学学报,2006,12,29(6).94-97.
    [203]Stefan Kaiser.OFDM Code-Division Multiplexing in Fading Channels.IEEE Transactions on Communications,August,2002,50(8).1266-1273.
    [204]Kilsik Ha and Kwang Bok Lee.OFDM-CDM with V-BLAST detection and its extension to MIMO systems.Proceedings of IEEE Vehicular Technology Conference,April 2003.764-768.
    [205]A.F.Naguib,N.Seshadri and A.R.Calderbank.Applications of space-time block codes and interference suppression for high capacity and high data rate wireless systems.Conference Record of the Thirty-second Asilomar Conference on Signals,Systems & Computers,November 1998,2.1803-1810
    [206]S.Sfar,R.D.Murch and K.B.Letaief.Achieving high capacities in CDMA systems using multiuser detection based on BLAST.Proceedings of IEEE International Conference on Communications,June 2001,2.565-569.
    [207]S.Kaiser and K.Fazel.A flexible spread-spectrum multi-carrier multiple-access system for multi-media applications.Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications,September 1997,1.100-104.
    [208]D.Rende and T.F.Wong.Bit Interleaved Space-Frequency Coded Modulation for OFDM Systems.IEEE Transactions on Wireless Communications,September 2005,4(5).2256-2266.
    [209]战金龙,廖桂生,李勇朝.LSTBC+OFDM分层方法的一种改进.电波科学学报,2005,12,20(6).810-814.
    [210]战金龙,廖桂生,李国民.V-BLAST OFDM系统中一种新的检测算法.西安电子科技大学学报,2007,4,34(2).194-198.
    [211]S.Park,H.Kim and H.Baik.A simple STF-OFDM transmission scheme with maximum frequency diversity gain.Proceedings of IEEE International Symposium on Circuits and Systems,May 2004,4.Ⅳ-101-104.
    [212]E.Akay and E.Ayanoglu.Achieving Full Frequency and Space Diversity in Wireless Systems via BICM,OFDM,STBC,and Viterbi Decoding.IEEE Transactions on Communications,December 2006,54(12).2164-2172.
    [213]C.C.Tu.A Full-Diversity Space-Time-Frequency Coded MIMO-OFDM System with Linear Decoding Complexity.Proceedings of IEEE Wireless Telecommunications Symposium, April 2006. 1-10.
    
    [214]S. U. Hwang and J. Seo. A Layered Space-Time-Frequency Coded OFDM for Next Generation Mobile Multimedia Systems. Proceedings of IEEE International Conference on Consumer Electronics, January 2007.1-2.
    
    [215]Y. Huang, J. Wang, K. Higuchi, et al. A new layered space-time-frequency architecture with LDPC coding for OFDM MIMO multiplexing. Proceedings of IEEE Wireless Communications and Networking Conference, 2006,2. 833-838.
    
    [216]Y. Huang, J. Wang, K. Higuchi, et al. A Novel Layered Space-Time-Frequency Architecture with Convolutional Coding. Proceedings of IEEE 65th Vehicular Technology Conference, April 2007. 1816-1820.
    
    [217]J. Chusing, L. Wuttisittikulkij and S. Segkhoontod. Achieving Rate Two Space-Time-Frequency Codes for Multiband UWB-MIMO Communication Systems Using Rotated Multidimensional Modulation. Proceedings of IEEE Fifth Annual Conference on Communication Networks and Services Research, May 2007.294-301.
    
    [218]W. Zhang, K. B. Letaief, X. G. Xia, et al. Advances in Space-Time/Frequency Coding for Next Generation Broadband Wireless Communications. Proceedings of IEEE Radio and Wireless Symposium, January 2007. 471-474.
    
    [219]W. Zhang, X. G. Xia and P. C. Ching. High-Rate Full-Diversity Space-Time- Frequency Codes for Broadband MIMO Block-Fading Channels. IEEE Transactions on Communications, January 2007, 55(1). 25-34.
    
    [220]W. Su, Z. Safar and K. J. Ray Liu. Towards maximum achievable diversity in space, time, and frequency: performance analysis and code design. IEEE Transactions on Wireless Communications, July 2005, 4(4). 1847-1857.
    
    [221]F. Fazel and H. Jafarkhani. Quasi-Orthogonal Space-Frequency Block Codes for MIMO OFDM Channels. Proceedings of IEEE International Conference on Communications, June 2006, 12. 5383-5388.
    
    [222]M. G. Roozbahani and B. H. Khalaj. Rate-Maximizing Adaptation in Multiantenna OFDM Systems with Space-Time-Frequency Coding. Proceedings of IEEE International Conference on Communications, June 2006, 6. 2905-2910.
    
    [223]S. Li, D. Huang, K. B. Letaief, et al. Reduced Complexity Receiver Design for MIMO-OFDM Systems with Space-Time-Frequency Coding. Proceedings of IEEE Global Telecommunications Conference, November 2006. 1-5.
    
    [224]C. C. Tu. Space-Time-Frequency Coded MIMO-OFDM System: Achieving Full-Diversity Invariant to Channel Variations.Proceedings of IEEE 17th International Symposium on Personal,Indoor and Mobile Radio Communications,September 2006.1-5.
    [225]F.Liu and L.Chen.Space-Time-Frequency Diversity Hybrid ARQ for MIMO-OFDM Systems.Proceedings of 10th IEEE Singapore International Conference on Communication systems,October 2006.1-5.
    [226]W.Zhang,X.G.Xia and P.C.Ching.Full-Diversity and Fast ML Decoding Properties of General Orthogonal Space-Time Block Codes for MIMO-OFDM Systems.IEEE Transactions on Wireless Communications,May 2007,6(5).1647-1653.
    [227]W.Su,Z.Safar and K.J.Ray Liu.Full-rate full-diversity space-frequency codes with optimum coding advantage.IEEE Transactions on Information Theory,January 2005,51(1).229-249.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700