MIMO-OFDM系统中的空时频编码研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO)技术是无线移动通信领域智能天线技术的重大突破,它能成倍地提升系统的信道容量和频带利用率。而正交频分复用(OFDM)技术具有抗多径和频率选择性衰落等优点。将两种技术结合的MIMO-OFDM系统能提供更好的系统性能,是未来无线通信高速数据传输最具希望的解决方案之一。
     为了在MIMO-OFDM系统中充分利用分集增益带来的好处,结合空时编码(STC)技术的MIMO-OFDM系统,不仅充分利用MIMO系统、OFDM系统各自的优势,还利用了分集增益,虽能从理论上证明了其系统能获得的最大分集增益为发、收天线数以及多径数的乘积,即满分集增益。但是,现有的MIMO-OFDM系统下的空时编码(STC)不能保证获得满分集增益,因此,为了在MIMO-OFDM系统下得到满分集增益,MIMO-OFDM系统的空时频编码(STFC)被提出。
     本文送入详细研究了MIMO-OFDM系统中的空时频编码技术,研究的主要内容及研究成果如下:
     首先,阐述了本文的研究背景和意义,介绍了无线通信发展的概况,MIMO-OFDM系统的空时频编码技术的研究现状及未来的发展方向。
     其次,对无线通信的信道特性进行了介绍和分析,介绍了MIMO系统、OFDM系统、空时分组编码(STBC)原理,重点研究了MIMO-OFDM-STBC系统,分析了MIMO-OFDM-STBC系统性能,并对其误码率性能进行了性能仿真和比较。
     然后,重点对MIMO-OFDM系统的空时频编码(STFC)进行了研究:从空时频编码成对错误概率出发,研究了空时频编码(STFC)的设计准则。为了减少空时频码编译码(STFC)复杂度,同时保持分集增益和编码增益,研究了基于子载波分组的空时频分组编码(STFBC),根据其设计准则,该系统能获得最大分集增益,还能获得最大的编码增益。为了在发送天线数大于2时空时频分组码(STFBC)能获得满码率,同时保持满分集增益,本文研究了一种准正交空时频分组编码(QOSTFBC)方法,该方法不仅能获得最大的分集增益,还能获得满码率。该方法的仿真结果表明,本文所研究的QOSTFBC方法,虽能在性能上比STFBC得性能要差点,但是该方法能获得满码率,频谱利用率得到提高。为了进一步提高空时频分组编码(STFBC)的系统性能,结合串行级联编码思想,本文提出了一种串行级联空时频分组编码(SCSTFBC)方法,该编码方法在保持STFBC码满分集增益的基础上,该方法的编码增益比之空时频分组编码(STFBC)的编码增益有了较大的提高。仿真结果表明,在较高信噪比下,本文所提出的SCSTFBC方法比空时频分组编码(STFBC)方法,其比特误码率性能和编码增益都得到了有效的改善。
     最后,提出了一种新的基于扩展码的空时频编码方法,该方法通过构造扩展码,把数据符号扩展到时域、空域、频域上,然后通过设置合适的参数,使系统在频率选择性衰落信道下获得满空间分集和满频率分集,由于在接收端使用的是MMSE检测,所以其译码复杂度不高。仿真结果表明,随着发收天线数的增加,本文建议方法的性能得到不断地改善,且与STFBC方法相比,本文所提的方法要好4dB左右。
Multiple input multiple output (MIMO) is well known as a great breakthrough in smartantenna techniques of wireless mobile communication areas. It can exponentially improve thesystem capacity and spectral efficiency by transmiting the different information with differenttransmits with the same spectral band. The Orthogonal Frequency Division Multiplexing (OFDM)has the ability to overcome the multi-path interference and frequency selective fading. TheMIMO-OFDM system which combined MIMO and OFDM can future improve the transfer rates,enhanced communication reliability, and provide better performance. It is a most promisingcommunication system for the future wireless communication.
     In order to make full use of the diversity gain benefits in MIMO-OFDM system, theMIMO-OFDM system combining with space-time coding not only make full use of the MIMOsystem、OFDM system advantage respectively and but also get the diversity gain. whiletheoretically it is proved that the system can obtain the maximum diversity gain for the product oftransmit antennas, receive antenna number and multipath number, namely the full diversity gain.However, the existing MIMO-OFDM system can not ensure the full diversity gain under thespace-time coding ( STC ), therefore, to ensure the full diversity gain in the MIMO-OFDMsystem, space-time-frequency coding ( STFC ) in MIMO-OFDM system is put forward. In thispaper, space time frequency coding technology is studied detailly in the MIMO-OFDM system.
     First of all, the paper describes the research background and the significance, introduced thegeneral situation of the development of wireless communication, MIMO-OFDM system codingtechnology research and the development direction in the future.
     Secondly, the wireless communication channel characteristics are introduced and analyzed,introduced MIMO system, OFDM system, STBC principle, focuses on the analysis ofMIMO-OFDM-STBC system, MIMO-OFDM-STBC system performance, and the performanceof BER performance is analysed and compared.
     Then, focus on MIMO-OFDM system space-time-frequency coding ( STFC ): fromspace-time-frequency coding pairwise error probability, studied space-time-frequency coding( STFC ) design guidelines. In order to reduce the complexity of the space time frequency code( STFC ) and maintain the diversity gain and coding gain, space-time-frequency block coding( STFBC ) is studied based on subcarrier grouping, according to the design criteria, the systemcan obtain the maximum diversity gain and the maximum coding gain.when transmit antennanumber is larger than 2, In order to obtain a full rate in the space time frequency block code ( STFBC ) and maintain the full diversity gain, a kind of quasi orthogonal space time frequencyblock coding ( QOSTFBC ) method is proposed, the method can not only obtain the maximumdiversity gain and but also obtain full rate. The simulation resulus show that the performance ofthe proposed mothod is less than STFBC,but the mothod can obtain the full rate ,the efficiency offrequency spectrum can be increased. In order to further improve the system performance ofspace time frequency block coding ( STFBC ), combined with serial concatenated coding theory,this paper presents a serial concatenated space time frequency block coding ( SCSTFBC ) method.on the basis of maintaining the full diversity gain of STFBC,the coding gain of SCSTFBC isgreatly improved than STFBC.The simulation results show that, in the higher SNR, the proposedmethod is better than STFBC, and the performance of bit error rate and coding gain can beeffectively improved.
     Finally, this paper puts forward a new space-time-frequency coding method on basis ofspreading code, this method does not use the existing space-time codes to construct aspace-time-frequency coding and apply the concept of spreading code in the OFDM-CDMAsystem, the data symbols are spreaded to the time domain, spatial domain, frequency domain, andthen by setting appropriate parameters, the system can obtain full spatial diversity and fullfrequency diversity in frequency selective fading channel, because the receiver use MMSEdetection, the decoding complexity is not high. The simulation results show that, with the increaseof the number of ransmit antennas and receive antenna number, the proposed method is improvedcontinually ,and the BER performance of the proposed method is 4 dB than STFBC.
引文
[1] TelatarE. Capacity of multi-antenna Gaussian channels. AT&T-Bell Labs Internal Tech .Memo.June 1995.
    [2] Foschini G. J.and Gans M. J. On limits of wireless communication in a fading environment when using multiple anternnas[J]. Wireless Personal Commun. 1998,6(3):311-335.
    [3] Airgo. Airgo networks to demonstrate TRUE MIMO technology at consumer electronics. 2005.
    [4] Altheors. Atheros communications launches smar-antenna wireless chipset delivering MIMO performance to standard 802.11 products. Jan 2005.
    [5] Linksys. Linksys announces new line of MIMO-base wireless-G products. Jan 2005.
    [6] Hui S.Y and Yeung K .H. Chanlleges in the migration to 4G mobile systems[J]. IEEE Commun.Magazine.2003 41(12).pp:54-59.
    [7] http://grouper.ieee.org/groups/802/20/Contribution.html. IEEE 802.20 Contribution document of IEEE802.20.
    [8] A.J.Paulraj and Kailath T. Increasing capacity in wireless broadcast systems using distributed transmission/directional receiption. 1996. pp:345-599.
    [9] Gerard J. Foschini. Layered space-time architectures for wireless communication in a fading environment when using multi-element antennas[J]. Bell Labs Technical Journal. Autumn 1996. pp.41-59.
    [10] S.M. Alamouti. A simple transmit diversity technique for wireless communications[J]. IEEE Journal on Selected Areas in Communications, 16(8):1451-1458, October 1998.
    [11] Vahid Tarokh, Hamid Jafarkhani, A. R. Calderbank. Space-Time Block Codes from Orthogonal Designs [J]. IEEE Transactions on Information Theory, 1999,45(5).
    [12] G. Ganesan and P. Stoica, Space-time block codes: A maximum SNR approach[J]. IEEE Trans. Inform. Theory, vol. 47, pp. 1650–1656, May.2001.
    [13] H. Jafarkhani, A quasi-orthogonal space-time block code[J] .IEEE Trans Commun., vol. 49, pp. 1–4, Jan.2001.
    [14] O. Tirkkonen, A. Boariu, and A. Hottinen,. Minimal nonorthogonalityrate 1 space-time block code for 3+ Tx antennas[J]. in Proc. IEEE 6th Int.Symp. Spread-Spectrum Techniques and Applications (ISSSTA2000),Sept. 2000, pp. 429–432.
    [15] C. B. Papadias and G. J. Foschini, Capacity-approaching space-time codes for systems employing four transmitter antennas[J]. IEEE Trans.Inform. Theory, vol. 49, pp. 726–732, Mar. 2003.
    [16] Weifeng Su, Xiang-Gen Xia. Signal Constellations for Quasi-Orthogonal Space–Time Block Codes With Full Diversity[J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2004. 50(10):123-131.
    [17] V. Tarokh and N.Seshadri. Space codes for high data ratewireless communication:performance criterionand codes construction[J]. IEEE Trans .on Inform .Theory. 1998, 44(2), pp:744-765.
    [18] G.D Forney. Concatenated codes. Cambridge, MA:MIT Press, 1966.
    [19] Wwoong Gon Kim. B.Ku and H.Y.Yang. Serially concatenated space-time codes for high rate wireless communication systems[J]. Electronic Letters.36(7). pp:646-648.
    [20] B.L Hughes. Diferential space-time modulation[J]. IEEE Trans.on IT,2000. pp:2567-2578.
    [21] Aktas E and Mitra U. Blind equalization for an application of unitary space-time modulation in ISI channels[J]. IEEE Trans.on Signal Processing . 2003.51(11):2931-2942.
    [22] H. B lcskei and A. Paulraj, Space-frequency coded broadband OFDMsystems[J]. in Proc. of Wireless Commun. Networking Conf., Chicago, 2000, 23–28, pp: 1–6.
    [23] Z. Liu and G. B. Giannakis, Space-time block coded multiple accessthrough frequency-selective fading channels[J]. IEEE Trans. Commun., 2001. 49(5), pp:1033–1044.
    [24] S. Zhou and G. B. Giannakis. Space-time coding with maximum diversity gains over frequency-selective fading channels. IEEE Signal Processing Lett., 2001, 8(3),pp: 269–272.
    [25] Z. Liu, Y. Xin, and G. B. Giannakis. Space-time-frequency coded OFDM over frequency-selective fading channels[J]. IEEE Trans. Signal Processing, 2002. 50(31), pp: 2465-2476.
    [26] Zhiqiang Liu.Yah Xin.GB.Giannlds. Space-time-frequency block coded OFDM with subcarrier grouping and constellation precoding[J]. IEEE International Conference on Acoustics. Speech, and signal Processing,2002.pp:2205-2208.
    [27] Zhiqiang Liu. Yan Xin. GB. Giannkis. Space-time-frequency trellis codin for frequency-selective fading channels. IEEE VTC Spring May 2002. pp:145-149.
    [28] Z. Liu, Y. Xin, and G. B. Giannakis. Linear constellation precoding for OFDM with maximum multipath diversity and coding gains. in Proc.35th Asilomar Conf. Signals, Syst., Comput., Pacific Grove, CA, Nov4–7, 2001, pp; 1445–1449.
    [29] Sang-Soon Park and Han-Kyong Kim. A Simple STF-OFDM Transmission Scheme with Maximum Frequency Diversity Gain.IEEE.2004: 101-104.
    [30]袁伟.宽带无线通信系统中空时频码的研究[D].西安:西安电子科技大学出版社, 2007.
    [31] Hongwei Zhang, Hanwen Luo, Wenjun Zhang and Xingzhao Liu. A New Space-Time-Frequency MIMO-OFDM Scheme with Cyclic Delay Diversity. .IEEE, 2004: 647-650.
    [32] Qian Ma .Differential Space-Time-Frequency Coded OFDM With Maximum Multipath Diversity[J]. IEEE TRANSACTIONS WIRELESS COMMUNONS, 2005, 4(5),PP: 2232-2243.
    [33] Yuanliang Huang and Jiangzhou Wang. A New Layered Space-Time-Frequency Architecturewith LDPC Coding for OFDM MIMO Multiplexing[J]. IEEE Communications Society subject matter experts for publication in the WCNC. 2006: 833-838.
    [34]麻清华,杨绿溪,何振亚.一种简单的空时频编码设计方法[J].信号处理学报.2008. 24(5) :849-852.
    [35]王东锋,周兴建,王建英,王春蓉.一种基于旋转变换和正交设计的满分集空时频编码技术[J].电子技术.2008. 48(11) :65-70.
    [36]Penghong Chu and Wen Zhong.An Improved Space-time-frequency code using digital phase sweeping[J].IEEE.2008.Vol 64~69.
    [37] M. Al-Mahmoud, M. D. Zoltowski. A novel approach to space-time-frequency coded MIMO-OFDM over frequency selective fading channels[J]. IEEE International Conference on Acoustics, Speech and Signal Processing, 2010: 2554–2557.
    [38]Guosen Yue andLi Zhang.A Multilayer space-time-frequency coding Scheme for MIMO-OFDM.IEEE.2009.
    [39]杨大成.移动传播环境:理论基础,分析方法和建模技术[M].北京:机械工业出版社, 2003.
    [40] Andreas F. Molisch著,田斌,帖翊,任光亮译.无线通信[M].北京:电子工业出版社, 2008.
    [41]李仲令,李少谦,唐友喜等.现代无线与移动通信技术[M].北京:科学出版社, 2006.
    [42]樊昌信,曹丽娜.通信原理第6版[M].北京:国防工业出版社, 2006
    [43]王文博,郑侃.宽带无线通信OFDM技术(第二版)[M].北京:人民邮电出版社, 2007.
    [44] C. E. Shannon. A mathematical theory of communication. Bell System Technical Journal, 1948. 27(4) pp:623-635.
    [45] R. G. Gallager. Information Theory and Reliable Communication. New York: Wiley, 1968, pp. 167-169.
    [46] Telatar I. E. Capacity of Multi-antenna Gaussian Channels[J]. European Transactions on Telecommunications, 2000, 10(6): 585-589.
    [47] G. J. Foschini, M. J. Gans, On limits of wireless communication in a fading environment when using multiple antennas. Wireless Personal Communication, Mar 1998, 6(3), pp: 311-335.
    [48] G.J. Foschini. The Capacity of Linear Channels with Additive Gaussian Noise. Bell syst. Tech. 1970, pp.81-94.
    [49] D. Gesbert, H. Bolckei, D. A. Gore, et al. MIMO Wireless Channel: Capacity and Performance Prediction. Proc. Globercon 2000, pp:1083-1088.
    [50]任品毅.无线通信中的空时分组编码[M].西安:西安交通大学出版社. 2006.
    [51] J G Proakis. Digital Communications,3rded [M]. New York: McGraw-Hill, 1995.
    [52] Z. Wang and G. B. Giannakis, Wireless multicarrier communications:Where fourier meets Shannon[J]. IEEE Signal Processing Mag., 2000, 17(2), pp: 29–48.
    [53] D. L. G eckel, Coded modulation with nonstandard signal sets for wireless ofdm systems[J]. in Proc. Int. Conf. Commun., Vancouver, BC,Canada, 1999, pp: 791–795.
    [54]贺贤孝.算术平均-几何平均不等式的经典证明[J].数学通报, 1995 ,pp:39-43.
    [55] G. B. Giannakis . Space-time diversity systems based on linear constellation precoding[J]. IEEE Trans. Wireless Commun. 2002.
    [56] J. Boutros and E. Viterbo. Signal space diversity: A power- and band-width-efficient diversity technique for the rayleigh fading channel. IEEE Trans. Inform. Theory, 1998, 44(20), pp:1453–1467.
    [57] X. Giraud, E. Boutillon, and J. C. Belfiore. Algebraic tools to build modulation schemes for fading channels[J]. IEEE Trans. Inform. Theory, 1997. 43(14), pp: 938–952.
    [58] G.D Forney. Concatenated codes. Cambridge, MA:MIT Press, 1966.
    [59] C.E Shannon. A matgematical theory of communication. USA Bell Systematic Technical Journal. Vol.27. July-Oct. 1948:397-423.
    [60] C.Berrou and P. Thitimajshima. Near Shannon limit error-correcting coding and decoding :Turbo-codes[J]. Proc.ICC’93. Geneva, Switzerland. May 1993:1064-1074.
    [61] S.Bendetto andG. Montorsi. Serial concatenation interleaved codes:performance analysis, design and iterative decoding[J].. TDA Progress Report. 1996. 1-26.
    [62] D.Divsalar and F.Pollara . Hybrid concatenated codes and iterative decoding[J].. TDA Progress Report.42-130,1997:1-23.
    [63]C.Berrou and P. Thitimajshima. Near optimum error correcting coding and decoding:Turbo-codes. IEEE Trans[J].. Commum.1996. 44(10), pp:1261-1271 .
    [64] C.Berrou and P. Thitimajshima. Reflections on the prize paper: Near optimum error correcting coding and decoding:trubo-codes[J].. IEEE Inform .Theory Society Newsletter .1998. 48(2), pp:23-31.
    [65] R.Doostnejad,T.J,Lim. On spreading codes for the down-link in a multiuser MIMO-OFDM system[J].. In Porc. IEEE 58thveh. Technol. Conf.Orlando , FL.Oct. 2003. Vol.4.pp:498-502.
    [66] Z.Luo,Y.Xin,and M.Zhao.Double-orthogonal coded space-time-frequency spread CDMA scheme[J]. IEEE Sel. Areas.vol.24.no.6.pp.1244-1255,jun.2006.
    [67] Siyang Liu,Zhengdong Luo. Spreading Code Design for Downlink Space-time-frequency Spreading CDMA[J].. pp:2933-2945.
    [68] H. V. Poor and S. Verdu. Probability of Error in MMSE Multiuser Detection[J].. IEEE Transactions on Information Theory, 1997 43(20), pp; 858-871.
    [69] Tolga M.Duman等著,艾渤等译. MIMO通信系统编码[M].北京:电子工业出版社. 2008.
    [70]张贤达.矩阵分析与应用[M].北京:清华大学出版社.2011.
    [71]黄正华.线性代数第5版[M].北京:高等教育出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700