MIMO-OFDM系统中自适应CO-STBC/SFBC编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO)技术充分开发空间资源,利用多个天线实现多发多收,在不增加频谱资源和天线发送功率的情况下,可以成倍地提高信道容量。正交频分复用(OFDM)技术是多载波窄带传输的一种,其子载波之间相互正交,可以高效地利用频谱资源。两者结合构成的MIMO-OFDM系统,技术上相互补充,可以充分利用时间、频率和空间三种分集技术,使无线系统对噪声、干扰、多径的容限大大增加。MIMO-OFDM在提高无线链路的传输速率和可靠性方面具有巨大潜力,这些优点使MIMO-OFDM系统成为第四代移动通信系统的热点技术。空时分组码思想是MIMO系统的一种实用的实现方式,作为一种新兴的技术,空时编码在近年来倍受人们的关注。准正交空时分组码(QO-STBC)是在正交空时分组码(OSTBC)的基础上发展起来,通过牺牲一定的正交性来获取全速率。为了将准正交空时分组码的编码矩阵重新正交化,可以引入CO-STBC/SFBC编码技术。本文对MIMO-OFDM系统中的自适应CO-STBC/SFBC编码技术进行了研究,主要工作如下:
     首先,本文研究了CO-STBC/SFBC编码技术,即对QO-STBC/SFBC编码进行信道正交化问题,利用接收端反馈回的信道信息对原来非正交的QO-STBC/SFBC编码的编码矩阵进行部分元素的旋转,使信道间相互正交,并且给出了设计CO-STBC/SFBC编码的原则。同时,在已有CO-STBC/SFBC编码矩阵基础上又提出了两种新的CO-STBC/SFBC编码矩阵形式。通过仿真结果可以证明CO-STBC/SFBC编码能在全编码速率的情况下明显改善QO-STBC/SFBC编码的性能。
     其次,研究了不同CO-STBC/SFBC编码方案的量化问题。在实际中CO-STBC/SFBC编码的反馈角度进行量化会引入误差,不同形式的CO-STBC/SFBC编码方案经过量化后引入的误差范围也不同。本文详细分析了量化过程,并给出了CO-STBC/SFBC编码引入的误差范围。通过仿真可知当系统的反馈比特数在3位以上时与未量化时的性能已经非常接近,在要实现相同的系统性能的前提下,CO-STBC/SFBC B所需的反馈比特位数总是比CO-STBC/SFBC A要多一位。
     再次,本文研究了基于天线选择技术的SFBC-OFDM系统,分别分析了TAS、RAS和TRAS的天线选择方案下系统的平均SNR、中断率、BER等性能指标,并将发射天线选择技术应用到CO-SFBC-OFDM系统中。仿真结果证明了通过使用发射天线选择技术可进一步提高CO-SFBC编码系统的性能。
     最后,在研究自适应调制SFBC-OFDM系统的基础上对自适应调制和天线选择这两种策略的性能进行了比较,并将自适应调制技术使用到CO-SFBC编码的系统中,对基于自适应编码调制技术的CO-SFBC-OFDM系统进行了仿真和分析。仿真结果可证明通过使用自适应调制技术可改善SFBC-OFDM系统及CO-SFBC-OFDM系统的性能,并且在系统中使用自适应调制技术能比使用天线选择技术带来更多的性能增益。
The multi-input-multi-output(MIMO) technology utilizes multiple transmit and receive antennas to fully exploit the spatial resources,which can exponentially improve the channel capacity but do not need extra frequency resources or power of transmit antennas.The orthogonal frequency-division multiplexing(OFDM) is one of the multi-carrier narrow-band transmission technologies which features its orthogonal subcarriers.It can utilize the frequency resources effectively.Therefore,the MIMO-OFDM system integrating the advantages of the two technologies above can significantly increase the tolerance of wireless system toward the noise,disturbance and multipath by effectively using time diversity,frequency diversity and spatial diversity.The MIMO-OFDM technology has great potentials in improving the transmit speed and reliability of wireless link,thus has become a hot technology in the 4~(th) Generation communication.
     The space-time block coding(STBC) is a practical implementation of the MIMO system,and it has attracted much attention in recent years.The quasi-orthogonalized STBC(QO-STBC) is developed based on the orthogonalized STBC(OSTBC) which can acquire full speed at the cost of incomplete orthogonality.However,the non-orthogonal coding matrix of QO-STBC can be retrieved to orthogonal by applying channel-orthogonalized STBC(CO-STBC) or channel-orthogonalized space-frequency block coding(CO-SFBC).
     In this paper,the adaptive CO-STBC/SFBCs in the MIMO-OFDM system are the main topics to be discussed.The general organization of this paper is as below.
     First,the CO-STBC/SFBC technologies is introduced,mainly focusing on the orthogonalization of channels in QO-STBC/SFBC.Such orthogonalization can be achieved by rotating some elements in the non-orthogonal coding matrix of QO-STBC/SFBC by utilizing the channel information fed back from the receive antennas.Some principles for designing QO-STBC/SFBC schemes are also provided. Beside of this,two novel forms of coding matrix for CO-STBC/SFBC are proposed based on the existing CO-STBC/SFBC coding matrices.Simulation results demonstrate that the CO-STBC/SFBC schemes can significantly improve the performance of QO-STBC/SFBC at full coding speed.
     Second,the quantization schemes of different CO-STBC/SFBC schemes are investigated.In the actual communication systems,the quantization for the feedback phase angles in the CO-STBC/SFBC schemes is always followed by the quantization errors,and the values of such errors differ from different CO-STBC/SFBC schemes applied.In this paper,the scopes of quantization errors in CO-STBC/SFBC are discussed in details.The theoretical analysis and the related simulations all demonstrate that the performances of the QO-STBC/SFBC systems with over 3 feedback bits are very close to that in the unquantized system.In order to reach the same performance,the number of feedback bits required in the proposed CO-STBC/SFBC Scheme B is always one more than that in the proposed CO-STBC/SFBC Scheme A.
     Next,the SFBC-OFDM system based on the antenna selection technology is investigated,and some performance indices including average signal-to-noise ratio (SNR),outage probability and bit error rate(BER) are analyzed within different antenna selection schemes such as transmit antenna selection(TAS),receive antenna selection(RAS) and transmit and receive antenna selection(TRAS).This paper also makes further research on the implementation of TAS in the CO-SFBC-OFDM systems in order to seek better performance in the whole architecture.Simulation results demonstrate that the overall system performance can be further improved by utilizing TAS in the CO-SFBC-based systems.
     At the end of this paper,a comparison towards the performances between the SFBC-OFDM systems utilizing adaptive modulation and antenna selection is conducted.The adaptive modulation technology is then applied to the CO-SFBC systems,and the CO-SFBC-OFDM system based on the adaptive coding and modulation technology is simulated and analyzed.Simulation results demonstrate that the performances of both the SFBC-OFDM system and the CO-SFBC-OFDM system can be improved by utilizing adaptive modulation technologies,and such adaptive modulation technology can bring more gain improvement than the antenna selection technology.
引文
[1] V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time codes for high data rate wireless communications: performance analysis and code construction. IEEE Transactions on Information Theory, Mar. 1998, 44(2): 1456-1467
    
    [2] G. C. Raleigh, J. M. Cioffi. Space-Temporal coding for wireless communications. IEEE Transactions on Communications, Mar. 1998, 46(3): 357-366
    
    [3] A. Witteneben. A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation. Proceedings of IEEE International Conference on Communications, May 1993, 3: 1630-1634
    
    [4] G. D. Golden, G. J. Foschini, R. A. Valenzuela. Detection algorithm and initial laboratory result using V-BLAST space-time communication architecture.Electronics Letters, Jan. 1999, 35(1): 14-16
    
    [5] G. J. Foschini, G. D. Golden, R. A. Valenzuela. Simplified processing for high spectral efficiency wireless communication employing multi-element arrays. IEEE Journal on Selected Areas in Communications, Nov. 1999, 17(11): 1841-1852
    [6] G. J. Foschini. Layered space-time architecture for wireless communication in a fading environment when using multiple antennas. Bell Labs Technical Journal,Autumn 1996, 1(2): 41-59
    
    [7] V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time block codes from orthogonal designs. IEEE Transactions on Information Theory, Jul. 1999, 45(5):1456-1467
    
    [8] V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time codes for high data rate wireless communication: performance criterion in the presence of channel estimation,errors, mobility, and multiple paths. IEEE Transactions on Communications, Feb.1999, 47(2): 199-207
    
    [9] V. Tarokh, H. Jafarkhani. A differential detection scheme for transmit diversity. IEEE Journal on Selected Areas in Communications, Jul. 2000, 18(7): 1169-1174
    [10]N.Seshadri,J.H.Winters.Two signaling schemes for improving the error performance of FDD transmission systems using transmitter antenna diversity.Proceedings of IEEE Vehicular Technology Conference,May 1993:508-511
    [11]J.H.Winters.The diversity gain of transmit diversity in wireless systems with Rayleigh fading.IEEE Transactions on Vehicular Technology,Feb.1998,47(1):119-123
    [12]J.H.Winters.On the capacity of radio communication systems with diversity in a Rayleigh fading environment.IEEE Journal on Selected Areas in Communications,Jun.1987,5(5):871-878
    [13]S.M.Alamouti.A Simple Transmit Diversity Technique for Wireless Communications.IEEE Journal on Selected Areas in Communications,Oct.1998,16(8):1451-1458
    [14]H.Jafarkhani.A quasi-orthogonal space-time block code.IEEE Transactions on Communications,Jan.2001,49(1):1-4
    [15]O.Tirkkonen,A.Boariu,A.Hottinen.Minimal nonorthogonality rate 1space-time block code for 3+ Tx antennas.Proceedings of IEEE 6th International Symposium on Spread Spectrum Techniques and Applications,Sep.2000,2:429-432
    [16]C.B.Papadia,G.J.Fosdhini.A space-time coding approach for systems employing four transmit antennas.Proceedings of IEEE International Conference on Acoustics,Speech,and Signal Processing,May 2001,4:2481-2484
    [17]N.Sharma,C.B.Papadias.Improved quasi-orthogonal codes through constellation rotation.IEEE Transactions on Communications,Mar.2003,51(3):332-335
    [18]L.He,H.Ge.Fast ML detection for quasi-orthogonal space-time codes.Conference Record of the 37th Asilomar Conference on Signals,Systems and Computers,Nov.2003:1022-1026
    [19]邓单,朱近康.基于随机旋转的准正交空时分组编码研究.电子与信息学报,2006,28(9):1626-1629
    [20]W.Su,X.G.Xia.Quasi-orthogonal space-time block codes with full diversity. Proceedings of IEEE Global Telecommunications Conference,Nov.2002,2:1098-1102
    [21]W.Su,X.G.Xia.Signal constellations for quasi-orthogonal space-time block codes with full diversity.IEEE Transactions on Information Theory,Oct.2004,50(10):2331-2347
    [22]V.Tarokh,A.F.Naguib,N.Seshadri.Combined array proceeding and space-time coding.IEEE Transactions on Information Theory,May 1999,45(4):1121-1128
    [23]M.Mohammad,S.Al-Ghadhban,B.Woerner.Comparing decoding algorithms for multi-layer space-time block codes.Proceeding of IEEE Southeast Congress,Mar.2004:147-152
    [24]Lin Dai,Sana Sfar,K.B.Letaief.An efficient detector for combined space-time coding and layered proceeding.IEEE Transactions on Communications,Sep.2005,53(9):1438-1442
    [25]李颖,谢显中,王新梅.空时码综述.电子与信息学报,2001,24(12):1973-1979
    [26]P.W.Wolniansk,G.J.Foschini,G.D.Golden.V-BLAST:an aichitecture for realizing veru high data rates over the rich-scattering wireless channel.Proceedings of URSI International Symposium on Signals,Systems,and Electronics,Oct.1998,:295-300
    [27]Li Yongzhao,Xu Xiaohong,Liao Guisheng.Layered space-time block coding over frequency selective fading channels.Proceedingf of 8th World Multi-Conference on Systemics,Cybernetics and Informatics,Jul.2004:18-21
    [28]S.Al-Ghadbvan,R.M.Buehrer,B.Woerner.Outage capacity comparison of multi-layered STBC and V-BLAST systems.Proceedings of IEEE Vehicular Technology Conference,Sep.2005:24-27
    [29]B.M.Hochwald,T.L.Marzetta.Unitary space-time modulation for multiple-antenna communications in Rayleigh flat fading.IEEE Transactions on Information Theory,Mar.2000,46(2):543-564
    [30]B.M.Hochwald,W.Sweldens.Differential unitary space-time modulation.IEEE Transactions on Communications, Dec. 2000, 48(12): 2041-2052
    
    [31] B. L. Hughes. Differential space-time modulation. IEEE Transactions on Information Theory, Nov. 2000, 48(12): 2567-2578
    
    [32] B. S. Krongold, D. L. Jones. PAR reduction in OFDM via active constellation extention. IEEE Transactions on Broadcasting, Sep. 2003, 49(3): 258-268
    
    [33] R. Van Nee, G. Awater, M. Morikura. New high-rate wireless LAN Standard. IEEE Communications Magazine, Dec. 1999, 37(12): 82-88
    
    [34] IEEE Std. 802.11a. Wireless medium access control (MAC) and physical layer (PHY) specifications: High-speed physical layer extension in the 5-GHz band. IEEE,1999
    
    [35] ETSI TR 101 475. Broadband radio access networks (BRAN); HIPERLAN type 2; physical (PHY) layer. ETSI BRAN, 2000
    
    [36] ARIB STD-T70. Lower power data communication systems broadband mobile access communication systems (HiSWANa). ARIB, Dec. 2000
    
    [37] Radio Spectrum Management Group. A draft band plan for digital audio broadcasting ECD 2000/5. Dec. 2000
    
    [38] Test Report. Brazilian test report. Comparing ATSC, DVB-T AND ISDB-T digital television standards. ABERT/SET. Feb. 2000
    
    [39] Y. Y. Wu, E. Pliszka, B. Caron. Comparison of terrestrial DTV transmission systems: The ATSC 8-VSB, the DVB-T COFDM, and the ISDB-T BST-OFDM. IEEE Transactions on Broadcasting, June 2000, 46(2): 101-113
    
    [40] IEEE LAN MAN Standards Committee. IEEE draft standard for local and metropolitan area network-part 16: Air interface for fixed broadband wireless access systems - medium access control modification and additional physical layer specifications for 2-11 GHz. 2002
    
    [41] C. Dubuc, D. Starks, T. Creasy. A MIMO-OFDM prototype for next generation wireless WANs. IEEE Communications Magazine, Dec. 2004, 42(12): 82-87
    
    [42] Kyung Won Park, Yong Soo Cho. A MIMO-OFDM technique for high-speed mobile channels. Proceedings of the IEEE, Feb. 2004, 92(2): 271-294
    [43] G L. Stuber, J. R. Barry, S. W. Mclaughlin. Broadband MIMO-OFDM wireless communications. Proceedings of the IEEE, Feb. 2004, 92(2): 271-294
    
    [44] H. Bolcskei, A. J. Paulraj. Space-frequency coded broadband OFDM systems.Proceedings of IEEE Wireless Communications and Networking Conference, Sep.2000: 1-6
    
    [45] W. Zhang, K. B. Letaief, X. G. Xia. Advances in space-time/frequency coding for nest generation broadband wireless communications. Proceedings of IEEE Radio and Wireless Symposium, Jan. 2007, 49(3): 471-474
    
    [46] F. Fazel, H. Jafarkhani. Quasi-orthogonal space-frequency block codes for MIMO-OFDM channels. Proceedings of IEEE International Conference on Communications, Jun. 2006, 12: 5383-5388
    
    [47] D. Rende, T. F. Wong. Bit interleaved space-frequency coded modulation for OFDM systems. IEEE Transactions on Wireless Communications, Sep. 2005, 4 (5):2256-2266
    
    [48] W. Su, Z. Safar, K. J. Ray Liu. Full-rate full-diversity space-frequency codes with optimum coding advantage. IEEE Transactions on Information Theory, Jan.2005, 51 (1): 229-249
    
    [49] H. Sampath, S. Taiwan J. Tellado. A fourth-generation MIMO-OFDM broadband wireless system: design, performance, and field trial results. IEEE Communications Magzine, Sep. 2002, 40(9): 143-149
    
    [50] Y. G. Li, L. J. Cimini, Jr.. Robust channel estimation for OFDM systems with rapid dispersive fading channels. IEEE Transactions on Communications, Jul. 1998,46(7): 902-915
    
    [51] Y. G. Li, J. H. Winters, N. R. Sollenberger. MIMO-OFDM for wireless communications: signal detection with enhanced channel estimation. IEEE Transactions on Communications, Sep. 2002, 50(9): 1471-1477
    
    [52] Y. G. Li. Simplified channel estimation for OFDM systems with multiple transmit antennas. IEEE Transactions on Wireless Communications, Jan. 2002, 1(1): 67-75
    
    [53] Y. G. Li, N. Seshadri, S. Ariyavisitakul. Channel estimation for OFDM systems with transmitter diversity in mobile wireless channels. Journal on Selected Areas in Communications, Mar. 1999, 17(3): 461-471
    
    [54] L. Giangaspero, L. Agarossi, G Paltenghi. Co-channel interference cancellation based on MIMO-OFDM systems. IEEE Wireless Communications, Dec. 2002, 9(6):8-17
    
    [55] S. Al-Ghadbvan, M. Mohammad, B. Woerner. Performance evaluation of decoding algotithms for multilayered STBC-OFDM systems. Conference Record of the 13th Asilomar Conference on Signals, Systems, and Computers, Nov. 2004, 1:1208-1212
    
    [56] B. Lu, X. Wang. Space-time code design in OFDM systems. Proceedings of IEEE Telecommunications Conference, Dec. 2000, 2: 1000-1004
    
    [57] K. F. Lee, Douglas B. Williams. A space-frequency transmitter diversity technique for OFDM systems. Proceedings of IEEE Telecommunications Conference, Dec. 2000: 1473-1477
    
    [58] H. Bolcskei, M. Borgmann, A. J. Paulraj. Space-frequency coded MIMO-OFDM with variable multiplexing-diversity tradeoff. Proceedings of IEEE Vehicular International Conference on Communications, May 2003, 4: 2837-2841
    
    [59] A. F. Molisch, M. Z. Win, J. H. Winters. Space-time-frequency coding for MIMO-OFDM systems. IEEE Communication Letters, Sep. 2002, 6(9): 370-372
    
    [60] Z. Liu, Y. Xin, G. Giannakis. Space-time-frequency coded OFDM over frequency-selective fading channels. IEEE Transactions on Signal Proceeding, Oct.2002, 50(10): 2465-2476
    
    [61] Weifeng Su , Zoltan Safar , Masoud Olfat. Obtaining full-diversity space-frequency codes from space-time codes via mapping. IEEE Transactions on Signal Proceeding, Nov. 2003, 51(11): 2905-2916
    
    [62] Y. Gong, K. Letaief. An efficient space-frequency coded OFDM system for broadband wireless communications. IEEE Transactions on Commmunications, Nov.2003, 51(11): 2019-2029
    
    [63] A. Stamoulis, Z. Liu, G. B. Giannakis. Space-time blocked-coded OFDMA with linear precoding for multirate service.IEEE Transactions on Signal Processing,Jan.2002,Sep.2005,50(1):119-129
    [64]Onur Oguz,Umit Aygolu,Erdal Panayirci.A novel space-time-frequency coded system design for OFDM over fast fading channels.Proceedings of IEEE12th Signal Proceeding and Communications Applications Conference,Apr.2004:68-71
    [65]Eunseok Ko,Daesik Hong.Improved space-time block coding with frequency diversity for OFDM systems.Proceedings of IEEE International Conference on Communications,Jun.2004,6:3217-3220
    [66]Z.Liu,Y.Xin,G.B.Giannakis.Linear constellation precoding for OFDN with maximum multipath diversity and coding gains.IEEE Transactions on Communications,Mar.2003,51(3):416-427
    [67]S.Kaiser,K.Fazel.A flexible spread-spectrum multi-carrier multiple-access system for multi-media applications.Proceedings of IEEE International Symposium on Personal Indoor and Mobile Radio Communications,Sep.1997,1:100-104
    [68]E.Akay,E.Ayanoglu.Achieving full frequency and space diversity in wireless systems via BIAM,OFDM,STBC,and Viterbi decoding.IEEE Transactions on Communications,Dec.2006,54(12):2164-2172
    [69]C.C.Tu.A full-diversity space-time-frequency coded MIMO-OFDM system with linear decoding complexity.Proceedings of IEEE Wireless Telecommunications Symposium,April.2006:1-10
    [70]C.C.Tu.Space-time-frequency coded MIMO-OFDM system:achieving full-diversity invariant to channel variations.Proceedings of IEEE 17th International Symposium on Personal,Indoor and Mobile Radio Communications,Sep.2006:1-5
    [71]Y.Huang,J.Wang,K.Higuchi,A new layered space-time-frequency architecture with LDPC coding for OFDM MIMO mutiplexing.Proceedings of IEEE Wireless Communications and Networking Conference,2006,2:833-838
    [72]S.U.Hwang,J.Seo.A layered space-time-frequency coded OFDM for next generation mobile multimedia systems.Proceedings of IEEE Conference on Consumer Electronics,Jan.2007:1-2
    [73]J.Chusing,L.Wuttisittikulkij,S.Segkhoontod.Achieving rate two space-time-frequency codes for multiband UWB-MIMO communication systems using rotated multidimensional modulation.Proceedings of IEEE Fifth Annual Conference on Communication Networks and Services Research,May 2007:294-301
    [74]W.Zhang,X.G.Xia,P.C.Ching.High-rate full-diversity space-time-frequency codes for broadband MIMO block-fading channels.IEEE Transactions on Communications,Jan.2007,55(1):25-34
    [75]W.Su,Z.Safar,K.J.Ray Liu.Towards maximum achievable diversity in space,time,and frequency:performance analysis and code design.IEEE Transactions on Communications,Jul.2005,4(4):1847-1857
    [76]M.G.Roozbahani,B.H.Khalaj.Rate-maximizing adaption in multiantenna OFDM systems with space-time-frequency coding.Proceedings of IEEE Vehicular International Conference on Communications,Jun.2006,6:2905-2910
    [77]S.Li,D.Huang,K.B.Letaief.Reduced complexity receiver design for MIMO-OFDM systems with space-time-frequency coding.Proceedings of IEEE Global Telecommunications Conference,Nov.2006:1-5
    [78]F.Liu,L.Chen.Space-time-frequency diversity hybrid ARQ for MIMO-OFDM systems.Proceedings of 10th IEEE Singapore International Conference on Communication systems,Oct.2006:1-5
    [79]W.Zhang,X.G.Xia,P.C.Ching.Full-diversity and fast ML decoding properties of general orthogonal space-time block codes for MIMO-OFDM systems.IEEE Transactions on Wireless Communications,May 2007,6(5):1647-1653
    [80]武钢,张雷,唐友喜等.多天线OFDM系统空时频分组码的性能分析.电子科技大学学报,2003,32(5):485-489
    [81]罗微,吴诗其.基于OFDM系统的空时频分组编码方案.系统工程与电子技术,2005,3,27(3):391-394
    [82]麻清华,杨绿溪,何振亚.相关信道下宽带MIMO-OFDM系统中空时频码的分集度分析.东南大学学报,2007,7,37(4):549-553
    [83]蒋惠娟,谭笑,沈越泓.一种可变分集增益的空时/时频调制编码新方案.电 子与信息学报,2007,4,29(4):979-982
    [84]姜海宁,罗汉文,田继锋等.用于宽带无线通信的空时频编码OFDM技术.上海交通大学学报,2004,11,38(11):1792-1795
    [85]罗涛,腾勇,佟学俭等.OFDM系统中的空时分组编码技术.北京邮电大学学报,2004,2,27(1):45-49
    [86]苏鹏程,孙军,乔艳涛等.分层空时OFDM西系统中多用户检测技术.上海交通大学学报,2004,10,38(SUP):52-56
    [87]张红伟,罗汉文,宋文涛等.基于循环延迟分集的空时频编码策略.上海交通大学学报,2004,11,38(11):1806-1809
    [88]潘亚汉,曹志刚.简单空时编码发射机分集自适应OFDM系统.清华大学学报,2002,7,42(7):957-960
    [89]罗微,李少谦,吴诗其等.瑞利衰落下的空时频(STF)分组编码OFDM系统.电波科学学报,2003,10,18(5):502-508
    [90]余志坚,仇佩量.一种基于OFDM的空频码的设计.电路与系统学报,2003,4,8(2):10-13
    [91]杨恒,隗炜,张贤达.一种结合空时编码的MC-DS-CDMA方法.清华大学学报,2002,9,42(9):1245-1252
    [92]郑夏雨,邱玲,朱近康.一种结合频率扩展编码的空时码MIMO-OFDM系统性能及实现.电子与信息学报,2004,11,26(11):1799-1807
    [93]薛艺,蒋铃鸽,何晨.一种频选衰落信道上的STF-OFDM技术.上海交通大学学报,2004,11,38(11):1832-1826
    [94]强永全,王皎,李道本.一种时空频分组码编码方案和检测算法.电路与系统学报,2004,4,9(22):1-4
    [95]孙立新,尤肖虎,张萍.第三代移动通信.北京:人民邮电出版社,2000:19-79
    [96]李建东,杨家玮.个人通信.北京:人民邮电出版社,1998:5-46
    [97]S.Ohmori,Y.Yamao,N.Nakajima.The future generation of mobile communications based on broadband access technologies.IEEE Communications Magazine,Dec.2000,38(12):134-142
    [98] Y. Neuvo. Future wireless technologies. Proceedings of IEEE 6th Circuits and Systems Symposium on Emerging Technologies: Frontiers of Mobile and Wireless Communications, Jun. 2004, 1: 1-3
    
    [99] J. K. Milleth, K. Giridhar, D. Jalihal. On channel orthogonalization using space-time block coding with partial feedback. IEEE Transactions on Communications, Jun. 2006, 54(6): 1121-1130
    
    [100] B. Badic, M. Rupp, H. Weinrichter. Quasi-orthogonal space-time block codes:approaching optimality. Proceedings of the 13th European Signal Processing Conference, Sep. 2005: 103-110
    
    [101] O. Tiekkonen, A. Boariu, A. Hottinen. Minimal nonorthogonality rate 1 space-time block code for 3+ Tx antennas. Proceedings of IEEE 6th Int. Symp.Spread-Spectrum Techniques and Applications (ISSSTA 2000), Sep. 2000: 429-432
    
    [102] C. Papadias, G. Foschini. Capacity-approaching space-time codes for system employing four transmitter antennas. IEEE Transactions on Information Theory, Mar.2003, 49(3): 726-733
    
    [103] M. Chen, C. Chen, H. Li. Deriving new quasi-orthogonal space-time block codes and relaxed designing viewpoints with full transmit diversity. IEEE International Conference on Communications (ICC 2005), Jun. 2005, 2: 2922-2926
    
    [104] J. M. Paredes, A. B. Gershman, M. G. Alkhansari. A new full-rate full-diversity space-time bloke code with nonvanishing determinants and simplifiedmaximum-likelihood decoding. IEEE Transactions on Signal Processing, Jun. 2008,56(6): 2461-2469
    
    [105] J. K. Milleth, K. Giridhar, D. Jalihal. Performance of transmit diversity scheme with quantized phase-only feedback. International Conference on Signal Processing & Communications (SPCOM 2004), Dec. 2004: 239-243
    
    [106] V. Tarokh, H. Jafarkhani, A. R. Calderbank. Space-time block coding for wireless communications: performance results. IEEE Journal on Selected Areas in Communications, Mar. 1999, 17(3): 451-460
    
    [107] T. K. Y. Lo. Maximum ratio transmission. IEEE Transactions on Communications,Oct.1999,47(10):1458-1461
    [108]A.Gorokhov,D.Gore,A.J.Paulraj.Receiver antenna selection for MIMO spatial multiplexing:theory and algorithms.IEEE Transactions on Signal Processing,Nov.2003,51(11):2796-2807
    [109]Robert W.Heath,Davie J.Love.Multi-mode selection for spatial multiplexing systems with linear receivers.IEEE Transactions on Signal Processing,Aug.2005,53(8):3042-3056
    [110]朱耀麟.MIMO系统中发射天线选择算法算法研究.上海交通大学,博士学位论文,2007:39-56
    [111]A.F.Molish,M.Z.Win,Choi Yang-Seok,J.H.Winters.Capacity of MIMO systems with antenna selection.IEEE Transactions on Communications,Sep.2005,4(7):1759-1772
    [112]A.Gorokhov.Antenna selection algorithms for MEA transmission systems.IEEE International Conference on Acoustics,Speech,and Signal Processing,Aug.2002,3:2857-2860
    [113]M.Gharavi-Alkhansari,A.B.Gershman.Fast antenna subset selection in MIMO systems.IEEE Transactions on Signal Processing,Feb.2004,52(2):339-347
    [114]李鸿林,韩丽娟,于士军.MIMO系统一种新的天线选择算法.应用科技,2008,1:47
    [115]X.B.Liang,X.G.Xia.On the nonexistence of rate-one generalized complex orthogonal designs.IEEE Transactions on Information Theory,Nov.2003,49(11):2984-2989
    [116]I.Baceci,T.M.Duman,Y.Altunbasak.Performance of MIMO antenna selection for space-time coded OFDM systems.Proceedings of IEEE Wireless Communication and Networking Conference,Mar.2004,2:987-992
    [117]M.Torabi,M.R.Soleymani.Performance evaluation of space-frequency coded OFDM systems over frequency selective fading channels.Proceedings of IEEE Canada Conference on Electrical and Computer Engineering,May 2003,3:1699-1702
    [118]M.Torabi,S.Aissa,M.R.Soleymani.MIMO-OFDM systems with imperfect channel information:capacity,outage and BER performance.IEEE International Conference on Communications,,Jun.2006,12:5342-5347
    [119]D.Gore,A.Paulraj.MIMO antenna subset selection with space-time coding.IEEE Transactions on Signal Processing,Oct.2002,50(10):2580-2588
    [120]R.M.Pyndiah.Near-optimum of product codes:block turbo codes.IEEE Transactions on Communications,Aug.1998,46:1003-1010
    [121]M.Torabi.Antenna selection for MIMO-OFDM systems.IEEE Transactions on Communications,,Jan.2008,88(10):2431-2441
    [122]汪裕民.OFDM关键技术与应用.北京:机械工业出版社,1998,10:131-143
    [123]Chengkang Pan,Yueming Cai,Youyun Xu.Adaptive subcarrier and power allocation for multiuser MIMO-OFDM systems.IEEE International Conference on Communications,May.2005,4:2631-2635
    [124]尹长川,罗涛,乐光新.北京:北京邮电大学出版社,2004,7:199
    [125]R.V.Nee.A new OFDM standard for high rate wireless LAN in the 5GHz band.IEEE Vehicular Technology Conference,Sep.2006,9:258-262
    [126]S.Catreux,V.Erceg,D.Gesbert.Adaptive modulation and MIMO coding for broadband wireless data networks.IEEE Communications Magazine,Jun.2002,40(6):108-115
    [127]S.Ye,R.S.Blum,L.J.Cimini.Adaptive modulation for variable-rate OFDM systems.IEEE Transactions on Communications,,Aug.2002,2:767-771
    [128]M.Torabi.Multicarrier systems with antenna diversity for wireless communications.Dissertation,Electrical and Computer Engineering Department,Concordia University,Canada,2002:121-130
    [129]G.Femenias.BER performance of linear STBC from orthogonal designs over MIMO correlated nakagami-m fading channel.IEEE Transactions on Vehicular Technology,2004,53(2):307-317
    [130]M.Torabi.Adaptive modulation for space-frequency block coded OFDM systems.International Journal of Electronics and Communications,Aug.2008,62(2): 521-533
    
    [131] J. Kim, S. J. Ariyavistakul. Optimum 4-transmit-antenna STBC/SFBC with angle feedback and a near-optimum 1-bit feedback scheme. IEEE Communications Letters, Nov. 2007, 11(11): 868-870
    
    [132] J. Kim, S. L. Ariyavisitakul, N. Seshadri. STBC/SFBC for 4 transmit antennas with 1-bit feedback. IEEE International Conference on Communications, May. 2008:3943-3947
    
    [133] S. Lambotharan, C. Toker. Close-loop space time block coding techniques for OFDM based broadband wireless access systems. IEEE Transactions on Consumer Electronics, Aug. 2005, 51: 765-769

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700