成年男性吸烟者的噪音变化及空气动力学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
吸烟引起呼吸道疾病发生率增高,导致喉部的各类疾病例如喉部慢性炎症,返流性喉炎,任克氏间隙水肿,从而引起各种嗓音疾病。目前已经有研究对吸烟引起的嗓音基频下降进行了报道,空气动力学方面研究发现最长发声时间下降,但对于吸烟相关嗓音分析的综合性研究较少。非线性动力学研究克服了传统嗓音研究的缺点,目前已经用于大量的病理性及非病理的嗓音样本中,但是吸烟相关嗓音的非线性动力学分析仍然是空白。本文拟对吸烟者及非吸烟者的嗓音进行全面的微扰分析、非线性动力学分析以及空气动力学分析。在此基础上,定量探索吸烟对于喉功能引起的损害的性质,以期建立无创性评估吸烟者嗓音及声带受损程度的检查方法,从而对无症状吸烟者进行宣教,促进无烟运动。
     一、成年男性吸烟者的嗓音微扰分析及非线性动力学分析目标:吸烟导致嗓音变化,若使吸烟者及时察觉嗓音异常改变,可鼓励其进行戒烟。嗓音变化通常是声带病理改变的首发表现。对嗓音的评估研究主要集中在传统的嗓音分析,然而,非线性动力学分析方法已经被证明是客观可靠的评估嗓音的方法。我们将这两种方法一起用于分析正常者及吸烟者的嗓音。方法:本项目为前瞻性研究。共包括73名研究对象,36名非吸烟者及37名吸烟者。每个研究对象录制一段持续的元音发声。数据使用了嗓音分析及关联维数分析。结果用Mann-Whitney秩和检验,回归分析及受试者工作特征(Receiver Operating Characteristics, ROC)对各项研究结果进行分析。结果:吸烟组的D2值明显要比非吸烟组高(p<0.001),频率微扰和振幅微扰分析的参数在抽烟组中较高。逻辑回归分析提示关联维数(Correlation Dimension, D2)有较高的预测能力,ROC分析两种方法未发现有显著性差异。讨论:本研究提示关联维数对于吸烟相关的变化是非常敏感的,临床上可以提示嗓音异常。进一步研究可以集中于用非线性动力学分析方法创建正常嗓音数据库,建立标准阈值,监控吸烟所致的嗓音变化。
     二、成年男性吸烟者的空气动力学分析目标:空气动力学反映的是喉作为传感器将声门下空气动力能转换为声能时的一系列参数。最小发声气流(Phonation Threshold Flow, PTF)作为发声所需最小气流,对于喉部组织、声门结构的微小变化较敏感。我们将比较男性吸烟者与非吸烟者的一系列空气动力学参数,包括PTF、平均气流(Mean Flow Rate, MFR)等,以研究吸烟引起的喉部结构改变。方法:本项目为前瞻性研究。共包括73名研究对象,36名非吸烟者及37名吸烟者。每个研究对象分别进行空气动力学测量。结果用Mann-Whitney秩和检验进行分析。结果:可见吸烟组的声门下压(Subglottal Pressure, SGP)平均均值高于非吸烟组,吸烟组的PTF以及MFR均值低于非吸烟组,但是无统计学意义(p>0.05)。讨论:影响空气动力学结果的因素较多,PTF作为新的空气动力学参数,运用于临床还需要进一步的完善操作规范和技术。进一步研究可以集中于将空气动力学与临床的声学、影像学等结合,以达到全面定量诊断吸烟对于喉功能的影响的作用。
Cigarette smoking is a major disposing factor for an assortment of potentially fatal respiratory ailments. Chronic use of cigarettes often leads to laryngeal problems, such as chronic inflammation, laryngeal reflux, and all kinds of voice disorders. Previous research reported a lower fundamental frequency among smokers' voice. Aerodynamic studies reveal shorter maximum phonation times. However, no systematic voice analysis for smokers has yet been carried out. Nonlinear dynamic analysis is capable of analyzing voice samples that are not suitable for perturbation analysis and has been applied to both pathological and nonpathological voice samples. Nonlinear dynamic analysis has not been previously applied to voices of smokers. In this study, we try to quantify the effects of smoking on voice with systematic perturbation analysis, nonlinear dynamic analysis and aerodynamic analysis. Next, we try to establish a noninvasive system to estimate smokers'voice and laryngeal health, as to educate on no chief complaint smokers and to propaganda nonsmoking movement.
     Part one:Perturbation and nonlinear dynamic analysis of adult male smokers Objective:Smoking results in a voice change and the perception by smokers of an abnormal voice may encourage quitting behavior. Moreover, a disordered voice is often the first sign of vocal pathology. Efforts to evaluate voice have focused on classical acoustic analysis; however, nonlinear dynamic analysis has been shown to be a reliable objective method for the evaluation of voice. We compare the discriminatory ability of these two methods applied to normal and smokers'voices. Study Design:Prospective study. Methods:The study included 73 subjects,36 nonsmokers and 37 smokers. A segment of sustain vowel production was obtained from each subject. Acoustic and correlation dimension (D2) analysis was applied to the data. Results were compared with a Mann Whitney rank sum test, regression and ROC analysis. Results:D2 values for smokers were significantly higher than for nonsmokers (p<0.001). Jitter and shimmer analysis showed higher values for these parameters among smokers. Logistic regression indicated a higher predictive power with D2 and ROC analysis found no significant difference between the analysis methods. Discussion:This study indicated that correlation dimension is highly sensitive to changes associated with smoking and has the potential to be implemented clinically as an indicator of abnormal voice. Further research could focus on using nonlinear dynamic analysis to create a normative database, producing standards for monitoring voice changes caused by cigarette smoking.
     Part two:Aerodynamic analysis of adult male smokers Objective:Larynx is an energy transducer that transfers subglottal aerodynamic energy into acoustic energy. Aerodynamic analysis includes a serie of parameters that reveal the laryngeal function. As the minimum airflow required to initiate phonation, PTF is sensitive to subtle changes in laryngeal tissue properties, glottal configuration, and vocal tract loading. We compare the discriminatory ability of the aerodynamic parameters applied to normal and smokers'voices to find out the changes of glottal structure, including PTF and MFR. Study Design:Prospective study. Methods:The study included 73 subjects,36 nonsmokers and 37 smokers. Each subject was measured aerodynamic analysis. Results were compared with a Mann Whitney rank sum test. Results:Mean SGP values for smokers were higher than for nonsmokers, mean PTF and MFR values for smokers were lower than for nonsmokers, but without significant difference (p>0.05). Discussion:Aerodynamic results are influenced by many factors. As a new parameter, PTF requires further technique improvement in order to be applied in the clinic. Further research could focus on combining aerodynamic measurements, acoustic analysis and clinical rigid scope examinations in order to quantitatively diagnose the effects of smoking on larynx.
引文
1. Boyle P. Cancer, cigarette smoking and premature death in Europe:a review including the Recommendations of European Cancer Experts Consensus Meeting, Helsinki, October 1996. Lung Cancer.1997;17:1-60.
    2. Wald NJ, Hackshaw AK. Cigarette smoking:an epidemiological overview. British Medical Bulletin.1996;52:3-11.
    3. Wen CP, Tsai SP, Chen CJ, Cheng TY. The mortality risks of smokers in Taiwan Part I:cause-specific mortality. Preventive Medicine.2004;39:528-535.
    4. Eisner MD, Iribarren C. The influence of cigarette smoking on adult asthma outcomes, Nicotine & Tobacco Research.2007;9:53-56.
    5. Samet JM. Adverse effects of smoke exposure on the upper airway. Tobacco Control.2004;13(suppl.):i57-i60.
    6. Fitzpatrick TM, Blair EA. Upper airway complications of smoking. Clinics in Chest Medicine.2000;21(1):147-157.
    7. Dworkin JP. Laryngitis:Types, Causes and Treatments. Otolaryngologic Clinics of North America.2008;41:419-436.
    8. DeWeese DD, Saunders WH. Textbook of Otolaryngology. St. Louis, MO:The C.V.Mosby Company.1982:96-110.
    9. Ballenger JJ. Disease of the Nose, Throat, Ear, Head and Neck. Philadelphia, PA: Lea & Febiger.1985:549-602.
    10. Sorensen D, Horii Y. Cigarette smoking and voice fundamental frequency. Jounal of communication disorders.1982;15:135-144.
    11. Gonzalez J, Carpi A. Early effects of smoking on the voice:A multidimensional study. Medical Science Monitor.2004;10:CR649-656.
    12.万萍,黄昭鸣。烟酒习惯对嗓音的影响初步研究。临床耳鼻咽喉头颈外科杂志。2008:22:686-687.
    13. Awan SN, Alphonso V A. Effects of smoking on respiratory capacity and control. Clinical Linguistics & Phonetics.2007;21:623-636.
    14. Awan, S. N.,& Morrow, D. L. Videostroboscopic characteristics of young adult female smokers vs.nonsmokers. Journal of Voice,2007; 21,211-223.
    15. Titze IR, Baken R, Herzel H. Evidence of chaos in vocal fold vibration. In:I. R. Titze, ed. Vocal Fold Physiology:New Frontiers in Basic Science. San Diego, CA:Singular Publishing Group,1993:143-188.
    16. Titze IR. Workshop on Acoustic Voice Analysis:Summary Statement. Denver, CO:National Center for Voice and Speech.1995.1-36.
    17. Herzel H, Berry D, Titze I, Steinecke I. Nonlinear dynamics of the voice:Signal analysis and biomechanical modeling. Chaos.1995;5:30-34.
    18. Jiang JJ, Zhang Y, Stern J. Modeling of chaotic vibrations in symmetric vocal folds. Journal of Acoustic Society of America.2001;110:2120-2128.
    19. Zhang Y, Jiang JJ, Wallace SM. Comparison of nonlinear dynamic methods and perturbation methods for voice analysis. Journal of Acoustic Society of America. 2005;118:2551-2560.
    20. Jiang JJ, Zhang Y, McGilligan C. Chaos in voice, from modeling to measurement. Journal of Voice.2006;20:2-17.
    21. Little MA, McSharry PE, Roberts SJ, Costello DA, Moroz IM. Exploiting Nonlinear Recurrence and Fractal Scaling Properties for Voice Disorder Detection, Biomedical Engineering Online.2007;6:23-42.
    22. Herzel H, Mende W, Wermke K. Bifurcation and chaos in newborn infant cries. Physics Letters A.1990;145:418-424.
    23. Rahn DA, Chou M, Jiang JJ, Zhang Y. Phonatory impairment in Parkinson's disease:evidence from nonlinear dynamic analysis and perturbation analysis. Journal of Voice.2007;21:64-71.
    24. Butte CJ, Zhang Y, Song HQ, Jiang JJ. Perturbation and nonlinear dynamic dnalysis of different singing styles. Journal of Voice.2009;23(6):647-52.
    25. Gelfer MP, Fendel DM. Comparisons of jitter, shimmer, and signal-to-noise ratio from directly digitized versus taped voice samples. Journal of Voice.1995;9:378-382.
    26. Milenkovic P, Read C. CSpeech version 4 user's manual. Madison, WI: University of Wisconsin; 1992.
    27. Kay Elemetrics Corp. Multi-Dimensional Voice Program:Software Instruction Manual. Pine Brook, NJ:1993.
    28. Titze IR, Liang H. Comparison of FO Extraction Method for High-Precision Voice Perturbation Measurements. J Speech Hear Res.1993;36:1120-1133.
    29. Bielamowicz S, Kreiman J, Gerratt BR, Dauer MS, Berke GS. Comparision of voice analysis systems for perturbation measurement. J Speech Hear Res. 1996;39:126-134.
    30. Karnell MP, Scherer RS, Fischer LB. Comparison of fundamental frequency and perturbation measurements among three analysis systems. J Voice.1995;9:383-393.
    31. Moon FC. Chaotic and fractal dynamics:an introduction for applied scientists and engineer. New York, NY:John Wiley & Sons, Inc;1992.
    32. Ott E, Sauer T, Yorke JA, eds. Coping with Chaos. New York, NY:John Wiley & Sons, Inc.; 1994.
    33. Grassberger P, Procaccia I. Measuring the strangeness of strange attractors. Physica D-Nonlinear phenomena.1983;9:189-208.
    34. Packard NH, Crutchfield JP, Farmer JD, Shaw RS. Geometry from a time series. Physical Review Letters.1980;45:712.
    35. Takens F. Detecting strange attractors in turbulence. In:Rand DA, Young LS, eds. Lecture Notes in Mathematics. Berlin:Springer-Verlag; 1981:366-381.
    36. Guimaraes I,& Abberton E. Health and voice quality in smokers:an exploratory investigation. Logopedics, phoniatrics, vocology.2005;30:185-91.
    37. Damborenea TJ, Fernandez LR, Llorente AE, Naya GMJ, Marin GC, Rueda GP, Ortiz GA. The effect of tobacco consumption on acoustic voice analysis. Acta Otorrinolaringologica Espanola.1999;50:448-452.
    38. Rabinov CR, Kreiman J, Gerratt BR, Bielamowicz S. Comparing reliability of perceptual ratings of roughness and acoustic measure of jitter. Journal of Speech Language and Hearing Research.1995;38:26-32.
    39. Gilbert HR, Weismer GG. The effects of smoking on the speaking fundamental frequency of adult women. Journal of Psycho linguistic Research.1974;3:225-231.
    40. Murphy CH, Doyle PC. The effects of cigarette smoking on voice fundamental frequency. Otolaryngology-Head and Neck Surgery.1987;97:376-380.
    41. Glas K, Hoppe U, Eysholdt U, Rosanowski F. Smoking, carcinophobia and Voice Handicap Index. Folia Phoniatrica et Logopaedica.2008;60:195-198.
    42. Marcotullio D, Magliulo G, Pezone T. Reinke's edema and risk factors:clinical and histopathologic aspects. American Journal of Otolaryngology.2002;23(2):81-84.
    43. Gaafar HA, Al-Mansour AH. The effect of cigarette smoke on the vocal cord mucosa of the rabbit. The journal of Laryngology and Otology.1981;95:721-729.
    44. Isik ACU, Kalender Y, Yardimci S, Ergun A. Environmental tobacco smoke in rats. The Journal of Otolaryngology.2004;33(6):382-386.
    1. Boyle P. Cancer, cigarette smoking and premature death in Europe:a review including the Recommendations of European Cancer Experts Consensus Meeting, Helsinki, October 1996. Lung Cancer.1997; 17:1-60.
    2. Wald NJ, Hackshaw AK. Cigarette smoking:an epidemiological overview. British Medical Bulletin.1996;52:3-11.
    3. Wen CP, Tsai SP, Chen CJ, Cheng TY. The mortality risks of smokers in Taiwan Part I:cause-specific mortality. Preventive Medicine.2004; 39:528-535.
    4. Eisner MD, Iribarren C. The influence of cigarette smoking on adult asthma outcomes, Nicotine & Tobacco Research.2007; 9:53-56.
    5. Samet JM. Adverse effects of smoke exposure on the upper airway. Tobacco Control.2004;13(suppl.):i57-i60.
    6. Fitzpatrick TM, Blair EA. Upper airway complications of smoking. Clinics in Chest Medicine.2000; 21(1):147-157.
    7. Gold, D. R., Wang, X., Wypij, D., Speizer, F. E., Ware, J. H., Dockery, D. W. Effects of cigarettesmoking on lung function in adolescent boys and girls. New England Journal of Medicine.1996; 335,931-937.
    8. Jensen, E. J., Dahl, R., Steffensen, F. Bronchial reactivity to cigarette smoke, relation to lung function, respiratory symptoms, serum-immunoglobin E and blood esonophil and leukocyte counts. Respiratory Medicine.2000; 94,119-127.
    9. Ingo R. Titze. The Myoelastic Aerodynamic Theory of Phonation. Iowa city, IA: National Center for Voice and Speech; 2006.
    10. Ingo Titze, PhD. Principles of Voice Production. Iowa city, IA:National Center for Voice and Speech; 2000.
    11. Colton, R., Casper, J. Understanding voice problems:A physiological perspective for diagnosis and treatment, second edition. Baltimore, MD:Williams & Wilkins. 1996.
    12. Linda Lee, Joseph C Stemple, Diane Geiger, Rebecca Goldwasser. Effects of environmental tobacco smoke on objective measures of voice production. The Laryngoscope.1999; 109:1531-1534.
    13. Awan SN, Alphonso V A. Effects of smoking on respiratory capacity and control. Clinical Linguistics & Phonetics.2007; 21:623-636.
    14.Jiang J,庄佩云,Rives A。气流空气动力学检查。韩德民,Sataloff RT,主编,嗓音医学。北京:人民卫生出版社,2007,91-93.
    15.费菲,魏春生,蒋家琪。空气动力学检查在喉科中的应用进展。听力学及言语疾病杂志。2009;17:606-608。
    16. Yiu EM, Yuen YM, Whitehill T, Winkworth A. Reliability and applicability of aerodynamic measures in dysphonia assessment. Clin Linguist Phon.2004; 18: 463-478.
    17. Peiyun Zhuang, Alicia J Sprecher, Matthew R Hoffman, Yi Zhang, Marios Fourakis, Jack J.Jiang, Chun Sheng Wei. Phonation threshold flow measurements in normal and pathological phonation. The Laryngoscope.2009; 119:811-815.
    18. Phonatory Aerodynamic System. Instruction Manual. Kaypentax, Lincoln Park, NJ.2006.
    19. Jiang JJ, Tao C. The minimum glottal airflow to initiate vocal fold oscillation. J Acoust Soc Am.2007; 121(5):2873-81.
    20. Hottinger DG, Tao C, Jiang JJ. Comparing phonation threshold flow and pressure by abducting excised larynges. Laryngoscope.2007 Sep; 117(9):1695-9.
    21. Witt RE, Regner MF, Tao C, Rieves AL, Zhuang P, Jiang JJ. Effect of dehydration on phonation threshold flow in excised canine larynges. Ann Otol Rhinol Laryngol.2009 Feb; 118(2):154-9.
    22. Regner MF, Tao C, Zhuang P, Jiang JJ. Onset and offset phonation threshold flow in excised canine larynges. Laryngoscope.2008 Jul; 118(7):1313-7.
    23. Tao C, Jiang JJ. The phonation critical condition in rectangular glottis with wide prephonatory gaps. J Acoust Soc Am.2008; 123:1637-1641.
    24. Titze IR. Vocal efficiency. J Voice 1992; 6:135-138.
    25. Hertegard S, Gauffin J, Lindestad PA. A Comparison of subglottal and intraoral pressure measurements during phonation. J Voice 1995; 9:149-155.
    26. Judith RS, Thomas JH. A clinical method for estimating laryngeal airway resistance during vowel production. Journal of Speech and Hearing Disorders. 1981 May; 46:138-146.
    27. William J Chapin, Matthew R Hoffman, Adam L Rieves, Jack J Jiang. Comparison of labial and mechanical interruption for measurement of aerodynamic parameters. Journal of Voice. Article in press.
    1. van den Berg J. Myoelastic-aerodynamic theory of voice production. Journal of Speech, Language and Hearing Research.1958;1(3):227.
    2. Titze IR. The physics of small-amplitude oscillation of the vocal folds. J Acoust Soc Am.1988;83:1536.
    3. Titze IR. Phonation threshold pressure:A missing link in glottal aerodynamics. J Acoust Soc Am.1991;90:2344.
    4. Titze I, Baken R, Herzel H. Evidence of chaos in vocal fold vibration. Vocal fold physiology:frontiers in basic science.1993:143-88.
    5. Jiang JJ, Titze IR. A methodological study of hemilaryngeal phonation. Laryngoscope.1993;103(8).
    6. Cooper D. Research in laryngeal physiology with excised larynges. Otolaryngolgy-Head and Neck Surgery;3:1766-1776.
    7. Ferrein A. De la formation de la voix de l'homme. Memoires de l'Academie Royale des Sciences, Paris:409-32.
    8. Muller J, Mueller J. Handbuch der physiologie des menschen fur vorlesungen. J. Holscher; 1837.
    9. Muller J. Ueber die compensation der physischen kraefte am menschlichen stimmorgan:Mit bemerkungen ueber die stimme der saeugethiere, voegel und amphibien. A. Hirschwald; 1839.
    10. Zimmerman FA. High-speed motion pictures of the human vocal cords. Bell Laboratories.1940;18:203-8.
    11. Jiang, Jack J, MD, PhD, Yumoto E, MD, Lin SJ, Kadota Y, MD, Kurokawa H, MD, Hanson DG, MD. Quantitative measurement of mucosal wave by high-speed photography in excised larynges. Annals of Otology, Rhino logy and Laryngology. 1998;107(2):98-103.
    12. Tao C, Zhang Y, Jiang JJ. Extracting physiologically relevant parameters of vocal folds from high-speed video image series. IEEE transactions on biomedical engineering.2007;54(5):794-801.
    13. Zhang Y, Bieging E, Tsui H, Jiang, Jack J, MD, PhD. Efficient and effective extraction of vocal fold vibratory patterns from high-speed digital imaging. Journal of Voice.2008.
    14. von LEDEN H. The mechanism of phonation:A search for a rational theory of voice production. Archives of Otolaryngology-Head and Neck Surgery. 1961;74(6):660.
    15. Chan RW, Titze IR. Effect of postmortem changes and freezing on the viscoelastic properties of vocal fold tissues. Ann Biomed Eng.2003;31(4):482-91.
    16. Baer T. Measurement of vibration patterns of excised larynxes. J Acoust Soc Am. 1973;54:318.
    17. Effat KG. The laryngeal dissection larboratory. The Journal of Laryngology & Otology.2005; 119:981-4.
    18. Gorti GK, Birchall MA, Haverson K, Macchiarini P, Bailey M. A preclinical model for laryngeal transplantation:Anatomy and mucosal immunology of the porcine larynx. Transplantation.1999;68(11):1638.
    19. Happak W, Zrunek M, Pechmann U, Streinzer W. Comparative histochemistry of human and sheep laryngeal muscles. Acta Otolaryngologica.1989;107:283-8.
    20. Jiang, Jack J, MD, PhD, Raviv JR, MD, Hanson DF, MD. Comparison of the phonaiton-related structures among pig, dog, white-tailed deer, and human larynges. Annals of Otology, Rhino logy and Laryngology.2001;110(12):1120-5.
    21. Kim MJ, MD, Hunter, Eric J., Ph. D., Titze, Ingo R, Ph. D. Comparison of human, canine and ovine laryngeal dimensions. Annals of Otology, Rhino logy and Laryngology.2004;113:60-8.
    22. Alipour F, Jaiswal S. Phonatory characteristics of excised pig, sheep, and cow larynges. The Journal of the Acoustical Society of America.2008;123:4572-81.
    23. Alipour F, Jaiswal S. Glottal airflow resistance in excised pig, sheep, and cow larynges. Journal of Voice.2009;23(1):40-50.
    24. Titze I. The myoelastic aerodynamic theory of phonation. National Center for Voice and Speech; 2006.
    25. Verdolini-Marston K, Titze IR, Druker DG. Changes in phonation threshold pressure with induced conditions of hydration. J Voice.1990;4(2):142-51.
    26. Witt RE, Regner MF, Tao C, Rieves AL, Zhuang P, Jiang JJ. Effect of dehydration on phonation threshold flow in excised canine larynges. Ann Otol Rhinol Laryngol.2009 Feb; 118(2):154-9.
    27. Doellinger, Michael and Berry, David A. Visualization and quantification of the medical surface dynamics of an excised human vocal fold during phonation. The Journal of Voice.2006;20(3):401-13.
    28. Dollinger M, Berry DA. Computation of the three-dimensional medial surface dynamics of the vocal folds. J Biomech.2006;39(2):369-74.
    29. Titze IR, Martin DW. Principles of voice production. J Acoust Soc Am. 1998;104:1148.
    30. Zhuang P, Sprecher AJ, Hoffman MR, Zhang Y, Fourakis M, Jiang JJ, et al. Phonation threshold flow measurements in normal and pathological phonation. Laryngoscope.2009; 119(4).
    31. Verdolini-Marston K, Titze IR, Druker DG. Changes in phonation threshold pressure with induced conditions of hydration. J Voice.1990;4(2):142-51.
    32. Chagnon F, Stone R. Nodules and polyps. Organic voice disorders:Assessment and treatment.Wm.S.Brown, Jr.; BP Vinson; and MA Crary (Editors).Singular Publishing Group, Inc., San Diego, California.1996.
    33. Berry DA, Herzel H, Titze IR, Story BH. Bifurcations in excised larynx experiments. Journal of Voice.1996;10(2):129-38.
    34. Czerwonka L, Ford CN, Machi AT, Leverson GE, Jiang JJ. AP positioning of medialization thyroplasty in an excised larynx model. Laryngoscope. 2009;119(3):591.
    35. Baer T. Investigation of phonation using excised larynxes.[dissertation]. Massachusetts Institute of Technology.; 1975.
    36. Lucero JC. The minimum lung pressure to sustain vocal fold oscillation. J Acoust Soc Am.1995;98:779.
    37. Zhang Y, Jiang JJ. Chaotic vibrations of a vocal fold model with a unilateral polyp. J Acoust Soc Am.2004 March 2004;115(3):1266-9.
    38. Zhang Y, Reynders WJ, Jiang JJ, Tateya I. Determination of phonation instability pressure and phonation pressure range in excised larynges. Journal of Speech, Language, and Hearing Research.2007;50(3):611.
    39. Jiang JJ, Zhang Y, Stern J. Modeling of chaotic vibrations in symmetric vocal folds. J Acoust Soc Am.2001;110:2120.
    40. Hottinger DG, Tao C, Jiang JJ. Comparing phonation threshold flow and pressure by abducting excised larynges. Laryngoscope.2007 Sep; 117(9):1695-9.
    41. Jiang JJ, Tao C. The minimum glottal airflow to initiate vocal fold oscillation. J Acoust Soc Am.2007;121(5):2873-81.
    42. Regner MF, Tao C, Zhuang P, Jiang JJ. Onset and offset phonation threshold flow in excised canine larynges. Laryngoscope.2008 Jul;118(7):1313-7.
    43. Titze I. Workshop on acoustic voice analysis. summary statement. National Center for Voice and Speech, Denver, CO.1995:36.
    44. Gelfer MP, Fendel DM. Comparisons of jitter, shimmer, and signal-to-noise ratio from directly digitized versus taped voice samples. Journal of Voice. 1995;9(4):378-82.
    45. Zhang Y, Jiang JJ, Wallace SM, Zhou L. Comparison of nonlinear dynamic methods and perturbation methods for voice analysis. J Acoust Soc Am. 2005;118:2551.
    46. Jiang JJ, Zhang Y, Ford CN. Nonlinear dynamics of phonations in excised larynx experiments. J Acoust Soc Am.2003;114:2198.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700