应对水源突发氯苯污染的吹脱—吸附技术效能及机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国社会经济的快速发展、工业化进程的高速推进和人民生活水平的日益提高,一方面水资源开发利用程度不断加大,水体污染尤其是有机物污染日趋严重且突发污染事件频发;另一方面,我国大多数供水企业的水处理工艺相对落后,难以有效应对突发性水污染事件。因此,研发适合我国大多数水厂现状的、高效经济的应急处理技术工艺具有重要的现实意义。
     本文针对水源水可能突发挥发性有机物(VOCs)污染的问题,以氯苯为目标污染物,建立以曝气吹脱和粉末炭(PAC)吸附为核心的应急处理技术工艺,以氯苯作为目标物,研究曝气吹脱和PAC吸附两种技术对水中氯苯的去除效能及其影响因素,并基于两者各自特点和优势,实现两者技术耦合,结合后续常规处理工艺达到高效经济地去除水中VOCs的目的。同时,还开展了活性炭纤维(ACF)吸附吹脱气体中氯苯和水中活性炭表面氯苯脱附规律研究,旨在开发和采取相应技术措施以避免水处理过程中VOCs二次污染。
     曝气吹脱对氯苯的去除效率主要受气水比和水温的影响,吹脱效率与气水比和水温具有正相关性,氯苯初始浓度和原水浊度对曝气吹脱去除率影响不大,共存其他VOCs可提高氯苯吹脱去除效率,表现出协同去除效应。曝气吹脱过程中,气水总传质系数与氯苯初始浓度呈显著线性关系,与单位面积曝气量和水温呈非线性正相关性。当采用50-100的气水比时,氯苯吹脱去除率可达83.73%-91.14%,运行成本约0.033-0.0654元/吨水,处理较为经济高效。当气水比高于100时,曝气吹脱处理变得不经济。
     PAC可快速吸附水中氯苯,5min吸附量即可达到平衡吸附量的80%以上,30min吸附量可达98%以上。PAC对氯苯的吸附效能主要受PAC比表面积和搅拌混合程度影响,受水温、pH值、离子强度等因素影响不大。基于吸附速率和吸附平衡模型参数建立了基于氯苯初始浓度、PAC投量和吸附时间的吸附经验模型,可以较好地预测氯苯不同污染水平下所需的PAC投量。为验证和校核模型预测值,分别开展了小试和中试研究,最终给出了氯苯不同污染水平下所需的PAC投量。另外,中试结果表明PAC吸附阶段是水中氯苯去除的主要阶段,去除率为62.5%-98.9%;常规工艺可去除水中吸附了氯苯的PAC和其他颗粒,进一步去除水中氯苯;作为水质安全保障的最后一道关口,GAC滤柱可以去除煤砂滤池出水中微量氯苯。
     曝气吹脱与PAC吸附耦合技术,可与现有水处理工艺有机结合,充分发挥吹脱和吸附两种技术各自优势,使两种技术分担了不同负荷的污染物去除任务,使得对污染物的可控超标倍数有明显增长,提高了应对水源水发生氯苯污染的处理能力,且能够到取得高效、经济的处理结果。以曝气吹脱-PAC吸附耦合技术为氯苯去除的核心技术、以常规处理单元为水处理工艺主体、以GAC滤池为末端安全关口的应急处理技术工艺,可以作为我国大多数水厂应对水源水突发氯苯污染的应急处理技术工艺。
     竞争性吸附和浓差驱动作用会造成污染物在活性炭上脱附。在直接强竞争吸附物(乙苯)、堵塞孔道型大分子吸附物(PSS)的竞争吸附作用以及浓差驱动作用下,吸附在PAC上的氯苯会出现不同程度地脱附。在乙苯强竞争吸附作用下,氯苯在PAC上快速脱附,20-40min可达到脱附平衡,脱附量可达3%-63%,氯苯脱附量和脱附速率与竞争性吸附物(乙苯)浓度具有正相关性。PSS对氯苯在PAC上的吸附量和脱附量基本无影响,但吸附在PAC大孔中PSS会产生堵塞作用,降低氯苯在PAC上的脱附速率。浓差驱动会导致氯苯在PAC上脱附显著,且脱附量随着浓差梯度增大而增加。在水源水突发氯苯污染消除后,在GAC滤池后续运行中,竞争性吸附造成氯苯脱附的风险较小,而浓差驱动造成氯苯脱附风险很大,因此应在突发污染消除后,建议立即更新GAC滤池的活性炭。
     吹脱气体中的氯苯可用ACF吸附去除,其吸附去除效能与ACF的BET比表面积、微孔容积、表面化学性质,以及相对湿度(RH)和温度等因素有关。BET比表面积和微孔容积越大,ACF对氯苯吸附速率和吸附量越大。RH对氯苯在ACF上吸附具有抑制作用,且随着RH增大而增强,RH高于50%时,ACF对氯苯的吸附量下降明显。水分子竞争性吸附以及其在微孔中的毛细凝结是其抑制氯苯吸附的主要原因。通过浸渍尿素或硫酸铜再在氮气流下高温处理,进行ACF表面化学改性,一方面可降低表面含氧量,减少酸性官能团含量,提高表面憎水性,减轻RH对氯苯吸附的抑制作用;另一方面,改性后ACF表面生成了含氮的碱性官能团,可提高ACF与氯苯之间的π-π色散力,提高ACF对氯苯的吸附速率和吸附量;另外,经硫酸铜浸渍再高温改性后,ACF表面会负载CuO微晶,其对VOCs具有更强的吸附力。温度对ACF吸附氯苯的效能影响显著,随着温度的升高,氯苯吸附量明显降低。
As the fast development of national economy, industrialization process and theescalation of people’s living standard, the water quality of drinking water sourcedecreased caused by the high development and adequate utilization of waterresources, the serious water pollution caused by organic material, and the frequentlysudden water pollution accidents. However, the relatively undeveloped watertreatment process had weak ability to cope with sudden pollution in raw water formost waterworks in china. Consequently, the study of emergency water treatmenttechnology and process had an important current significance.
     Emergency water treatment technology based on air stripping and PACadsorption was established to resolve the problem of volatile organic compound(VOC) sudden pollution in raw water. Chlorobenzene (CB) was used as the targetvolatile organic compound (VOC) in this paper. Experiments were conducted tostudy efficiency and influencing factors of VOCs removal by PAC adsorption andair stripping. Based on their respective advantages and characteristics, the twotechnologies of PAC adsorption and air stripping was coupled and then combinedwith the following conventional water treatment process in order to improve VOCsremoval efficiency and decrease the operation cost. Additionally, experiments wasconducted to study the adsorption of VOCs onto ACF from the off-gas emitted byair stripping and the desorption of VOCs from PAC in water, in order to developsome technology to avoid secondary contamination.
     Air-water ratio and temperature were the main factors influencing the removalof CB by air stripping, and the removal of CB was positively correlated with air-water ratio and temperature. However, the removal of CB by air stripping had littlerelationship with CB initial concentration and turbidity. Synergistic removal effectswas found between different VOCs while air stripping.
     A static mass transfer kinetic model was fitted to the experimental data toobtain the overall mass transfer coefficient. The result showed that the overall masstransfer coefficient had linear increasing relationship with CB initial concentration,and had nonlinear increasing relationship with air flowrate and temperature. Adynamic air stripping model was used to study the removal efficiency at differentair-water ratio. It was found that air stripping was efficient and economical at theair-water ratio of500-100with the removal rate of83.73%-91.14%and theoperation cost of0.033-0.065Yuan/t. However, the operation cost would increasewhen the air-water ratio was more than100.
     PAC can adsorb CB from water rapidly with80%and98%of the equilibrium adsorption capacity at5min and30min, respectively. PAC surface area and mixingintensity had an important influence on the adsorption efficiency by PAC, whilefactors such as temperature, pH value and ionic strength had little effect on CBremoval by PAC adsorption. Adsorption kinetics and equilibrium could besuccessfully simulated by the pseudo-second kinetic model and Freundlich model,respectively. Based on the parameters obtained from the models above, a theoreticalformula of PAC dose with initial CB concentration and adsorption time wasestablished and verified by experimental results. And the recommended PAC dosewas given based on the result above. It is concluded from pilot test that the mixtureof PAC and water and the coagulation clarification were the key process to removeCB, and the removal could reach62.5%-98.9%; the conventional treatment processcould intercept the micro flocs and particles carrying CB in water, resulting in thefurther reduce of CB; as a safety guarantee, granular activated carbon filter columnwas the last process to remove CB.
     The combining technology of PAC adsorption and air stripping could integrateinto the conventional water treatment process, and take the advantage of the twotechnology. PAC adsorption and air stripping shared different CB removal load,which could improve the ability of CB removal, and obtain an efficient andeconomical outcome. Emergency treatment process, with the combining technologyof air stripping and PAC adsorption being the core, the conventional water treatmentprocess being the main part, and GAC filter being the last safety guarantee, could beused to cope with VOCs sudden pollution in source water for most waterworks inour country.
     Competitive adsorption and concentration gradient drive would causecontaminant desorption from activated carbon. CB desorption happened withvarying degrees under the influence of competitive adsorption by stronglycompeting background compounds (CB) and pore-blocking background compounds(PSS), and the driving force by concentration gradient. CB desorbed rapidly fromactivated carbon, and reached equilibrium within20-40min. The percent of CBdesorption was3%-63%at equilibrium. It was found that the rate and amount of CBdesorption was positively correlated with the concentration of competitioncompounds (ethylbenzene). PSS had slightly effect on CB adsorption or desorptiononto activated carbon, while it slowed the rate of CB desorption due to the pore-blocking effect of PSS in macropore of activated carbon. The driving force byconcentration gradient influenced CB desorption notably. CB desorption amountincreased with increasing concentration gradient. The percent of CB desorption was32%and40%when the solution of CB and activated carbon equilibrium system wasdiluted to5and10times, respectively. The risk of CB desorption from activatedcarbon was assumed low when competitive adsorption existed, but very high if concentration gradient drive effect became notable, which always existed in theGAC filter having used for a sudden pollution. Therefore, these used activatedcarbon in GAC filter should be replaced if the filter would run after the suddenwater pollution.
     CB in the off-gas emitted by air stripping could be removed efficiently byactivated carbon fiber (ACF) adsorption, whose removal efficiency was concernedwith BET surface area, micropore volumn and surface chemical character of ACF,relative humidity (RH) and temperature. The larger the BET surface area andmicropore volumn, the greater the adsorption rate and capacity. RH had aninhibitory effect on CB adsorption onto ACF. Moreover, with increasing RH, theinhibitory effect becomes more significant. When RH was higher than50%, CBadsorption amount reduce remarkably by more than13%. The main factorsrestraining CB adsorption onto ACF was the competitive adsorption and capillarycondensation of water molecular in micropore. Surface modification of ACF wasconducted by being impregnated with urea or copper sulphate solution and thenheated at800℃in the environment of nitrogen. On the one hand, it was proved thatsurface modification could decrease oxygen content, and reduce acid functionalgroups, and improve surface hydrophobicity of ACF surface, and then lower wateradsorption amount. As a result, the inhibitory effect of RH on CB adsorption wasrelieved. On the other hand, the generation of basic functional groups could increasethe adsorption rate and amount of CB adsorption onto ACF due to the increase in π-π dispersive interactions between the π-electron system of the carbon graphenelayers and the π-electrons of the ring of CB molecular. Additionally, the load ofcopper oxide microcrystal enhanced VOCs adsorption because of the highadsorption bond between copper oxide microcrystal and CB molecular. Temperatureis an important factor to affect CB adsorption onto ACF. Experimental resultsshowed that CB adsorption amount decreased with increasing temperature.
引文
1崔福义.城市给水厂应对突发性水源水质污染技术措施的思考[J].给水排水,2006,32(07):7-9.
    2X.-J. Zhang, C. Chen, P.-F. Lin et al. Emergency Drinking Water TreatmentDuring Source Water Pollution Accidents in China: Origin Analysis,Framework and Technologies[J]. Environmental Science&Technology,2010,45(1):161-167.
    3吴碧君,刘晓勤.挥发性有机物污染控制技术研究进展[J].电力环境保护,2005,21(04):39-42.
    4伊冰.室内空气污染与健康[J].国外医学(卫生学分册),2001,28(03):167-169.
    5刘长福,高建,万丽葵.黑龙江省重要饮用水水源地挥发性有机污染物调查[J].环境与健康杂志,2007,24(11):875-876.
    6张志杰.阜新市集中式饮用水源地有机物污染调查研究[J].辽宁化工,2006,35(03):181-183.
    7朱永娟.长春市饮用水源地有机污染物调查研究[D].长春:吉林农业大学,2006:44-45.
    8程麟钧.北京市地表水源地水质分析研究与评价[D].北京:北京化工大学,2008:68-69.
    9韩方岸,陈连生,吉文亮,等.江苏长江水与苏鲁浙主要地表水VOCs、SVOCs检测[J].预防医学情报杂志,2009,25(03):161-167.
    10李小娟,吉文亮,马永健,等.江苏地区饮用水水源地水中挥发性有机污染物的调查[J].环境与健康杂志,2007,24(11):877-880.
    11韩方岸,胡云,吉文亮,等.长江江苏段主要城区水源有机污染物分布研究[J].实用预防医学,2009,16(01):3-8.
    12戴军升,刘鸣,钱瑾.黄浦江水中挥发性有机化合物污染现状[J].环境与职业医学,2005,22(06):502-505.
    13汤株宁,许智林,文新宇,等.湘江株洲段水质挥发性有机物污染现状及防治对策研究[J].湖南工业大学学报,2008,22(02):63-67.
    14邓超冰,田艳,李新平,等.邕江南宁段和南宁城市内河中的挥发性有机物[J].环境科学与技术,2010,1(01):119-123.
    15V. Linek, J. Sinkule, V. Janda. Design of Packed Aeration Towers to StripVolatile Organic Contaminants from Water[J]. Water Research,1998,32(4):1264-1270.
    16徐晓鸣,王有乐,李焱.超声吹脱处理氨氮废水工艺条件的试验研究[J].兰州理工大学学报,2006,32(03):67-69.
    17张宏丽.吹脱-混凝-SBR法处理垃圾渗滤液工艺研究[D].成都:四川大学,2003:47-52.
    18袁捷,杨宁,周艳军.吹脱法处理高浓度氨氮废水的研究[J].化学工业与工程技术,2009,30(04):55-57.
    19吴方同,苏秋霞,孟了,等.吹脱法去除城市垃圾填埋场渗滤液中的氨氮[J].给水排水,2001,27(06):20-24.
    20廖琳琳,孟了,陈石,等.影响吹脱塔对垃圾渗滤液氨吹脱效率因素研究[J].工业安全与环保,2005,31(06):29-31.
    21胡允良,张振成,翟巍,等.制药废水的氨氮吹脱试验[J].工业水处理,1999,19(04):19-21.
    22王宗平,陶涛,袁居新,等.垃圾渗滤液预处理—氨吹脱[J].给水排水,2001,27(06):15-19.
    23曲晶心,陈均志.空气吹脱法脱除废水中二甲胺的影响因素研究[J].水处理技术,2009,35(12):88-90.
    24郭红霞.四氢呋喃废水的吹脱处理及厌氧特性研究[D].西安:西安建筑科技大学,2004:56-57.
    25徐斌文.吹脱-活性炭气相吸附法处理氯仿废水的研究[J].上海环境科学,1990,9(12):9-13.
    26金彪,李广贺,张旭,等.一种经济有效的含油地下水预处理方法—吹脱法[J].油气田环境保护,1999,9(01):12-15.
    27姜斌,张英,黄国强,等.曝气处理甲苯的传质机理[J].天津大学学报,2005,38(02):163-166.
    28秦传玉,赵勇胜,李雨松,等.空气扰动技术修复氯苯污染地下水的影响因素研究[J].水文地质工程地质,2009,(06):99-103.
    29J. Sutherland, C. Adams, J. Kekobad. Treatment of Mtbe by Air Stripping,Carbon Adsorption, and Advanced Oxidation: Technical and EconomicComparison for Five Groundwaters[J]. Water Research,2004,38(1):193-205.
    30吴方同,苏秋霞,吴淑娟.空气吹脱法去除饮用水中的三卤甲烷[J].给水排水,2009,45(12):26-30.
    31Zamarron. Trihalomethane Reduction through Air Stripping[D]. Texas: theuniversity of Texas,2005:67-71.
    32向华,施俭.曝气吹脱法去除水中三氯乙烯等有机污染物[J].净水技术,2011,30(05):151-154.
    33R.N.M. Anthony L Hines, Hines, Mass Transfer: Fundamentals andApplications[M]. Prentice Hall,1985:76-89.
    34孙华.吹脱法去除高氨氮废水的模型研究[D].上海:上海交通大学,2009:22-31.
    35孙华,申哲民.吹脱法去除氨氮的模型研究[J].环境科学与技术,2009,32(08):84-87.
    36C. Mak, E. Cornu, C. Moresoli et al. Surface Tension, Diffusion and KineticsStudies of an Air-Stripping Process[J]. Separation and Purification Technology,2004,36(2):95-106.
    37张英.地下水曝气(AS)处理有机物的研究[D].天津:天津大学,2004:267-268.
    38A.S. Gow. Microeconomic Theory of Chemical Production Processes:Application to Aqueous VOC Air Stripping Operations[J]. Advances inEnvironmental Research,2004,8(2):267-285.
    39W.Ji. Air Sparging: Experimental and Theoretical Analysis of Flow andNumerical Modeling of Mass Transfer[D]. Connecticut: the University ofConnecticut,1994:96-107.
    40N.J.H. G.L.Hein, J.S. Cierke, Proceedings of the1994National Conference onEnvironmetal Engineering, in, ASCE, NY,1994:556-563.
    41K.-P. Chao, S.K. Ong, M.-C. Huang. Mass Transfer of VOCs in Laboratory-Scale Air Sparging Tank[J]. Journal of Hazardous Materials,2008,152(3):1098-1107.
    42W.J. Braida, S.K. Ong. Air Sparging Effectiveness: Laboratory Characterizationof Air-Channel Mass Transfer Zone for VOC Volatilization[J]. Journal ofHazardous Materials,2001,87(1-3):241-258.
    43F.I. Khan, A. Kr. Ghoshal. Removal of Volatile Organic Compounds fromPolluted Air[J]. Journal of Loss Prevention in the Process Industries,2000,13(6):527-545.
    44M.A. Lillo-Ródenas, A.J. Fletcher, K.M. Thomas et al. Competitive Adsorptionof a Benzene-Toluene Mixture on Activated Carbons at Low Concentration[J].Carbon,2006,44(8):1455-1463.
    45Y. Takeuchi, M. Hino, Y. Yoshimura et al. Removal of Single ComponentChlorinated Hydrocarbon Vapor by Activated Carbon of Very High SurfaceArea[J]. Separation and Purification Technology,1999,15(1):79-90.
    46李洪美.活性炭纤维对有机废气吸附性能的研究[D].大连:大连理工大学,2008:67-68.
    47柴春玲,孙艺飞,张建军,等.活性碳纤维吸附废气中的丙烯酸和甲苯[J].化工环保,2010,30(05):383-386.
    48张文智,董艺,刘彦波,等.用活性碳纤维毡回收废气中的氯乙烯[J].化工环保,2006,26(03):255-256.
    49G. Marbán, A.B. Fuertes. Co-adsorption of N-Butane/Water Vapour Mixtureson Activated Carbon Fibre-Based Monoliths[J]. Carbon,2004,42(1):71-81.
    50B.G. Reucroft P J. In: Myers a L, Fundamentals of Adsorption, Proceedings ofthe Engineering Foundation Conference, in, Engineering Foundation, NewYork,1984:471-480.
    51Y. Miyake, M. Suzuki. Removal of Trichloroethylene from Air Stripping Off-Gas by Adsorption on Activated Carbon Fibre[J]. Gas Separation&Purification,1993,7(4):229-234.
    52Y. Miyake, A. Sakoda, H. Yamanashi et al. Activated Carbon Adsorption ofTrichloroethylene (TCE) Vapor Stripped from TCE-Contaminated Water[J].Water Research,2003,37(8):1852-1858.
    53高华生,汪大翚,叶芸春,等.空气湿度对低浓度有机蒸气在活性炭上吸附平衡的影响[J].环境科学学报,2002,22(02):194-198.
    54高华生,汪大翚,叶芸春,等.用修正的polanyi-Dubinin方程描述有机蒸气-水蒸气在活性炭上的吸附平衡[J].化工学报,2001,52(04):357-362.
    55J. Li, Z. Li, B. Liu et al. Effect of Relative Humidity on Adsorption ofFormaldehyde on Modified Activated Carbons[J]. Chinese Journal of ChemicalEngineering,2008,16(6):871-875.
    56M.P. Cal, M.J. Rood, S.M. Larson. Removal of VOCs from Humidified GasStreams Using Activated Carbon Cloth[J]. Gas Separation&Purification,1996,10(2):117-121.
    57Y.-C. Chiang, C.-C. Lee, H.-C. Lee. Characterization of Microstructure andSurface Properties of Heat-Treated Pan-and Rayon-Based Activated CarbonFibers[J]. Journal of Porous Materials,2007,14(2):227-237.
    58李国希,刘晓春,周琼花.氟化活性炭纤维的制备及其憎水性[J].功能材料,2002,33(02):218-219.
    59P.J.M. Carrott, J.M.V. Nabais, M.M.L. Ribeiro Carrott et al. ThermalTreatments of Activated Carbon Fibres Using a Microwave Furnace[J].Microporous and Mesoporous Materials,2001,47(2-3):243-252.
    60J.M. Valente Nabais, P.J.M. Carrott, M.M.L. Ribeiro Carrott et al. Preparationand Modification of Activated Carbon Fibres by Microwave Heating[J].Carbon,2004,42(7):1315-1320.
    61迟广俊,焦婷婷,范君,等.改性活性炭纤维对含乙醇有机废气的吸附性能研究[J].环境科学与技术,2010,33(12):160-163.
    62F.-Y. Yi, X.-D. Lin, S.-X. Chen et al. Adsorption of VOC on ModifiedActivated Carbon Fiber[J]. Journal of Porous Materials,2009,16(5):521-526.
    63陈水挟,陈建良,武清毓.利用铈盐改性修饰活性炭纤维结构[J].新型炭材料,2006,21(03):206-212.
    64周玉军.粉末活性炭处理微污染水源水的实验研究[D].西安:西安建筑科技大学,2007:61-62.
    65张文中,李正兆.粉末活性炭强化处理京杭运河常州段微污染原水[J].中国给水排水,2009,25(03):77-79.
    66周克梅,李维,陈志平,等.投加粉末活性炭处理长江南京段微污染原水研究[J].中国给水排水,2007,23(03):106-108.
    67张素霞,马刚,郭强,等.粉末活性炭技术处理水中臭味物质的应用研究[J].给水排水,2007,33(09):17-22.
    68刘成,高乃云,马晓雁.高藻及微囊藻毒素污染原水的应急处理工艺研究[J].中国给水排水,2006,22(21):9-13.
    69张晓健.松花江和北江水污染事件中的城市供水应急处理技术[J].给水排水,2006,32(06):6-12.
    70崔福义,李伟光,张悦,等.哈尔滨气化厂(达连河)供水系统应对硝基苯污染的措施与效果[J].给水排水,2006,32(06):13-17.
    71张晓健,张悦,王欢,等.无锡自来水事件的城市供水应急除臭处理技术[J].给水排水,2007,33(09):7-12.
    72M. Yang, J. Yu, Z. Li et al. Taihu Lake Not to Blame for Wuxi's Woes[J].Science,2008,319(5860):158.
    73X.-J. Zhang, C. Chen, J.-Q. Ding et al. The2007Water Crisis in Wuxi, China:Analysis of the Origin[J]. Journal of Hazardous Materials,2010,182(1-3):130-135.
    74W. Rudzinski, W. Plazinski. Theoretical Description of the Kinetics of SoluteAdsorption at Heterogeneous Solid/Solution Interfaces: On the Possibility ofDistinguishing between the Diffusional and the Surface Reaction KineticsModels[J]. Applied Surface Science,2007,253(13):5827-5840.
    75S. Lagergren. Kungliga Svenska Vetenkapsademiens[J]. Handlingar,1898,24:1-39.
    76W. Rudzinski, W. Plazinski. Studies of the Kinetics of Solute Adsorption atSolid/Solution Interfaces: On the Possibility of Distinguishing between theDiffusional and the Surface Reaction Kinetic Models by Studying the Pseudo-First-Order Kinetics[J]. The Journal of Physical Chemistry C,2007,111(41):15100-15110.
    77C. Pelekani, V.L. Snoeyink. A Kinetic and Equilibrium Study of CompetitiveAdsorption between Atrazine and Congo Red Dye on Activated Carbon: TheImportance of Pore Size Distribution[J]. Carbon,2001,39(1):25-37.
    78G. Blanchard, M. Maunaye, G. Martin. Removal of Heavy Metals from Watersby Means of Natural Zeolites[J]. Water Research,1984,18(12):1501-1507.
    79T.D. Duong, M. Hoang, K.L. Nguyen. Sorption of Na+, Ca2+Ions fromAqueous Solution onto Unbleached Kraft Fibers-Kinetics and EquilibriumStudies[J]. Journal of Colloid and Interface Science,2005,287(2):438-443.
    80Y.S. Ho, G. Mckay. The Kinetics of Sorption of Divalent Metal Ions ontoSphagnum Moss Peat[J]. Water Research,2000,34(3):735-742.
    81Y. Shu, L. Li, Q. Zhang et al. Equilibrium, Kinetics and ThermodynamicStudies for Sorption of Chlorobenzenes on Ctmab Modified Bentonite andKaolinite[J]. Journal of Hazardous Materials,2010,173(1-3):47-53.
    82I.a.W. Tan, A.L. Ahmad, B.H. Hameed. Adsorption Isotherms, Kinetics,Thermodynamics and Desorption Studies of2,4,6-Trichlorophenol on Oil PalmEmpty Fruit Bunch-Based Activated Carbon[J]. Journal of Hazardous Materials,2009,164(2-3):473-482.
    83V.C. Srivastava, M.M. Swamy, I.D. Mall et al. Adsorptive Removal of Phenolby Bagasse Fly Ash and Activated Carbon: Equilibrium, Kinetics andThermodynamics[J]. Colloids and Surfaces A: Physicochemical andEngineering Aspects,2006,272(1-2):89-104.
    84S. Azizian, B. Yahyaei. Adsorption of18-Crown-6from Aqueous Solution onGranular Activated Carbon: A Kinetic Modeling Study[J]. Journal of Colloidand Interface Science,2006,299(1):112-115.
    85C.W. Cheung, J.F. Porter, G. Mckay. Sorption Kinetics for the Removal ofCopper and Zinc from Effluents Using Bone Char[J]. Separation andPurification Technology,2000,19(1-2):55-64.
    86S. Azizian. Kinetic Models of Sorption: A Theoretical Analysis[J]. Journal ofColloid and Interface Science,2004,276(1):47-52.
    87W. Rudzinski, W. Plazinski. Kinetics of Solute Adsorption at Solid/SolutionInterfaces: A Theoretical Development of the Empirical Pseudo-First andPseudo-Second Order Kinetic Rate Equations, Based on Applying theStatistical Rate Theory of Interfacial Transport[J]. The Journal of PhysicalChemistry B,2006,110(33):16514-16525.
    88W. Plazinski, W. Rudzinski. A Novel Two-Resistance Model for Description ofthe Adsorption Kinetics onto Porous Particles[J]. Langmuir,2010,26(2):802-808.
    89S. Azizian. A Novel and Simple Method for Finding the Heterogeneity ofAdsorbents on the Basis of Adsorption Kinetic Data[J]. Journal of Colloid andInterface Science,2006,302(1):76-81.
    90S. Azizian, M. Haerifar, J. Basiri-Parsa. Extended Geometric Method: A SimpleApproach to Derive Adsorption Rate Constants of Langmuir-FreundlichKinetics[J]. Chemosphere,2007,68(11):2040-2046.
    91D.D. Do, Adsorption Analysis: Equilibrium and Kinetics[M].1st ed. ed.London: Imperial College Press,1988:46-53.
    92B. Al-Duri, G. Mckay. Prediction of Binary Systems for Kinetics of BatchAdsorption Using Basic Dyes onto Activated Carbon[J]. Chemical EngineeringScience,1991,46(1):193-204.
    93C. Sheindorf, M. Rebhun, M. Sheintuch. Organic Pollutants Adsorption fromMulticomponent Systems Modeled by Freundlich Type Isotherm[J]. WaterResearch,1982,16(3):357-362.
    94A.L. Myers, J.M. Prausnitz. Thermodynamics of Mixed-Gas Adsorption[J].AIChE Journal,1965,11(1):121-127.
    95E.H. Smith. Evaluation of Multicomponent Adsorption Equilibria for OrganicMixtures onto Activated Carbon[J]. Water Research,1991,25(2):125-134.
    96K.K.H. Choy, J.F. Porter, G. Mckay. Single and Multicomponent EquilibriumStudies for the Adsorption of Acidic Dyes on Carbon from Effluents[J].Langmuir,2004,20(22):9646-9656.
    97M.R. Graham, R.S. Summers, M.R. Simpson et al. Modeling EquilibriumAdsorption of2-Methylisoborneol and Geosmin in Natural Waters[J]. WaterResearch,2000,34(8):2291-2300.
    98S. Qi, L. Schideman, B.J. Mari as et al. Simplification of the Iast for ActivatedCarbon Adsorption of Trace Organic Compounds from Natural Water[J]. WaterResearch,2007,41(2):440-448.
    99L.C. Schideman, B.J. Mari as, V.L. Snoeyink et al. Three-ComponentCompetitive Adsorption Model for Fixed-Bed and Moving-Bed GranularActivated Carbon Adsorbers. Part I. Model Development[J]. EnvironmentalScience&Technology,2006,40(21):6805-6811.
    100L.C. Schideman, V.L. Snoeyink, B.J. Mari as et al. Application of a Three-Component Competitive Adsorption Model to Evaluate and Optimize GranularActivated Carbon Systems[J]. Water Research,2007,41(15):3289-3298.
    101C. Pelekani, V.L. Snoeyink. Competitive Adsorption between Atrazine andMethylene Blue on Activated Carbon: The Importance of Pore SizeDistribution[J]. Carbon,2000,38(10):1423-1436.
    102C. Pelekani, V.L. Snoeyink. Competitive Adsorption in Natural Water: Role ofActivated Carbon Pore Size[J]. Water Research,1999,33(5):1209-1219.
    103K. Ebie, F. Li, Y. Azuma et al. Pore Distribution Effect of Activated Carbon inAdsorbing Organic Micropollutants from Natural Water[J]. Water Research,2001,35(1):167-179.
    104G. Newcombe, M. Drikas, R. Hayes. Influence of Characterised NaturalOrganic Material on Activated Carbon Adsorption: II. Effect on Pore VolumeDistribution and Adsorption of2-Methylisoborneol[J]. Water Research,1997,31(5):1065-1073.
    105Q. Li, V.L. Snoeyink, B.J. Mari as et al. Pore Blockage Effect of NOM onAtrazine Adsorption Kinetics of PAC: The Roles of PAC Pore Size Distributionand NOM Molecular Weight[J]. Water Research,2003,37(20):4863-4872.
    106S. Azizian, H. Bashiri, H. Iloukhani. Statistical Rate Theory Approach toKinetics of Competitive Adsorption at the Solid/Solution Interface[J]. TheJournal of Physical Chemistry C,2008,112(27):10251-10255.
    107Q. Li, B.J. Mari as, V.L. Snoeyink et al. Three-Component CompetitiveAdsorption Model for Flow-through PAC Systems.1. Model Development andVerification with a PAC/Membrane System[J]. Environmental Science&Technology,2003,37(13):2997-3004.
    108P.C. To, B.J. Marinas, V.L. Snoeyink et al. Effect of Strongly CompetingBackground Compounds on the Kinetics of Trace Organic ContaminantDesorption from Activated Carbon[J]. Environmental Science&Technology,2008,42(7):2606-2611.
    109M.C. Carter, W.J.J. Weber, K.P. Olmstead. Effects of Background DissolvedOrganic Matter on Tce Adsorption by GAC[J]. Jornal of American WaterWorks Association,1992,84(8):81-89.
    110P.C. To, B.J. Mari as, V.L. Snoeyink et al. Effect of Pore-Blocking BackgroundCompounds on the Kinetics of Trace Organic Contaminant Desorption fromActivated Carbon[J]. Environmental Science&Technology,2008,42(13):4825-4830.
    111T. Lebeau, C. Lelièvre, D. Wolbert et al. Effect of Natural Organic MatterLoading on the Atrazine Adsorption Capacity of an Aging Powdered ActivatedCarbon Slurry[J]. Water Research,1999,33(7):1695-1705.
    112X.-K. Zhao, G.-P. Yang, P. Wu et al. Study on Adsorption of Chlorobenzene onMarine Sediment[J]. Journal of Colloid and Interface Science,2001,243(2):273-279.
    113阿里巴巴化工频道,我国氯苯产品发展快应面向国外市场[OL],2006.http://info.china.alibaba.com/news/detail/v0-d6068474.html
    114R. Feltens, I. M gel, C. R der-Stolinski et al. Chlorobenzene Induces OxidativeStress in Human Lung Epithelial Cells in Vitro[J]. Toxicology and AppliedPharmacology,2010,242(1):100-108.
    115W. Peirano, Health Assessment Document for Chlorinated Benzenes. FinalReport, in, U.S. Environmental Protection Agency, Washington, D.C.,1985.
    116P.M.G. René P. Schwarzenbach, Dieter M. Imboden, Environmental OrganicChemistry[M]. John Willey&sons, Inc.,2003:46-49.
    117H.P. Boehm, Chemical Identification of Surface Groups[M]. Academic Press,1966:57-59.
    118R.D. Allan, And Parmele, C. S., Treatment Technology for Removal ofDissolved Gasoline Components from Ground Water[M]. Columbus, Ohio:National Symposium on Aquifer Restoration and Ground-Water Monitoring,1983:51-59.
    119J.H. Smith, D.C. Bomberger, D.L. Haynes. Volatilization Rates of Intermediateand Low Volatility Chemicals from Water[J]. Chemosphere,1981,10(3):281-289.
    120C. Yurteri, D.F. Ryan, J.J. Callow et al. The Effect of Chemical Composition ofWater on Henry's Law Constant[J]. Journal of Water Pollution ControlFederation,1987,59(11):950-956.
    121M. Alaee, R.M. Whittal, W.M.J. Strachan. The Effect of Water Temperature andComposition on Henry's Law Constant for Various Pah's[J]. Chemosphere,1996,32(6):1153-1164.
    122M.T. Dhotre, K. Ekambara, J.B. Joshi. Cfd Simulation of Sparger Design andHeight to Diameter Ratio on Gas Hold-up Profiles in Bubble ColumnReactors[J]. Experimental Thermal and Fluid Science,2004,28(5):407-421.
    123A. Behkish, R. Lemoine, R. Oukaci et al. Novel Correlations for Gas Holdup inLarge-Scale Slurry Bubble Column Reactors Operating under ElevatedPressures and Temperatures[J]. Chemical Engineering Journal,2006,115(3):157-171.
    124S.C. Saxena, Z.D. Chen. Hydrodynamics and Heat Transfer of Baffled andUnbaffled Slurry Bubble Columns[J]. Reviews in Chemical Engineering,1994,10(3-4):193-400.
    125S. Verma, K.T. Valsaraj, D.M. Wetzel et al. Direct Comparison ofCountercurrent and Cascade Crossflow Air Stripping under Field Conditions[J].Water Research,1994,28(11):2253-2261.
    126D. Lelinski. Air Sparged Hydrocyclone Treatment of Water Contaminated withVolatile Organic Compouds[D]. Utach: the University of Utach,2002:104-106.
    127M.J. Wilhelm, V.D. Adams, J.G. Curtis et al. Carbon Adsorption and Air-Stripping Removal of Mtbe from River Water[J]. Journal of EnvironmentalEngineering,2002,128(9):813-823.
    128P. H., Liao, A. et al., Removal of Nitrogen from Swine Manure Wastewaters byAmmonia Stripping[M]. Kidlington, ROYAUME-UNI: Elsevier,1995:58-61.
    129G. J., Particles in Water Properties and Processes[M]. Boca Raton: CRC Press,2006:46-54.
    130H.P.V.L. Jacques Buffle, Environmental Particles: Environmental Analyticaland Physical Chemistry Series[M]. Chelsea: Lewis: CRC Press;1edition1992:74-77.
    131钟润生.颗粒表面有机物吸附对混凝和沉淀影响的研究[D].北京:清华大学,2009:201-202.
    132L.W. De Jonge, C. Kjaergaard, P. Moldrup. Colloids and Colloid-FacilitatedTransport of Contaminants in Soils: An Introduction[J]. Vadose Zone Journal,2004,3(2):321-325.
    133A. Günay, E. Arslankaya, I. Tosun. Lead Removal from Aqueous Solution byNatural and Pretreated Clinoptilolite: Adsorption Equilibrium and Kinetics[J].Journal of Hazardous Materials,2007,146(1-2):362-371.
    134Y.S. Ho, J.C.Y. Ng, G. Mckay. Kinetics of Pollutant Sorption by Biosorbents:Review[J]. Separation and Purification Technology,2000,29(2):189-232.
    135Q. Zhang, J. Crittenden, K. Hristovski et al. User-Oriented Batch ReactorSolutions to the Homogeneous Surface Diffusion Model for DifferentActivated Carbon Dosages[J]. Water Research,2009,43(7):1859-1866.
    136D.L. Sparks, Kinetics of Soil Chemical Processes [M]. New York: AcademicPress,1989:210-212.
    137曹达文,张小满,李景华.粉末活性炭在水体中强制分散及其作用研究[J].中国给水排水,1997,13(06):18-20.
    138李丽.不同级分腐植酸的分子结构特征及其对菲的吸附行为的影响[D].广州:中国科学院广州地球化学研究所,2003:17-22.
    139G. Newcombe, J. Morrison, C. Hepplewhite et al. Simultaneous Adsorption ofMIB and NOM onto Activated Carbon: Ii. Competitive Effects[J]. Carbon,2002,40(12):2147-2156.
    140M.C. Carter, W.J. Weber. Modeling Adsorption of Tce by Activated CarbonPreloaded by Background Organic Matter[J]. Environmental Science&Technology,1994,28(4):614-623.
    141C. Hepplewhite, G. Newcombe, D.R.U. Knappe. NOM and MIB, Who Wins inthe Competition for Activated Carbon Adsorption Sites?[J]. Water Science andTechnology,2004,49(9):257-265.
    142Z. Yu, S. Peldszus, P.M. Huck. Adsorption Characteristics of SelectedPharmaceuticals and an Endocrine Disrupting Compound-Naproxen,Carbamazepine and Nonylphenol on Activated Carbon[J]. Water Research,2008,42(12):2873-2882.
    143W.J.W. Kilduff Je, Factors Affecting the Impacts of Dissolved Organic MatterPreloading on the GAC Adsorption of Trichloroethylene, in: Proc AWWA AnnConf, Proc AWWA Ann Conf,1997:991–1008.
    144Q. Li, V.L. Snoeyink, B.J. Mari as et al. Elucidating Competitive AdsorptionMechanisms of Atrazine and NOM Using Model Compounds[J]. WaterResearch,2003,37(4):773-784.
    145G. Newcombe, J. Morrison, C. Hepplewhite. Simultaneous Adsorption of MIBand NOM onto Activated Carbon. I. Characterisation of the System and NOMAdsorption[J]. Carbon,2002,40(12):2135-2146.
    146F. Li, A. Yuasa, K. Ebie et al. Factors Affecting the Adsorption Capacity ofDissolved Organic Matter onto Activated Carbon: Modified IsothermAnalysis[J]. Water Research,2002,36(18):4592-4604.
    147Y.S. Al-Degs, M.I. El-Barghouthi, A.H. El-Sheikh et al. Effect of Solution Ph,Ionic Strength, and Temperature on Adsorption Behavior of Reactive Dyes onActivated Carbon[J]. Dyes and Pigments,2008,77(1):16-23.
    148崔福义.城市供水应对突发性水质污染若干技术问题的思考[J].给水排水,2009,45(8):1-3.
    149L. Axe, P. Trivedi. Intraparticle Surface Diffusion of Metal Contaminants andTheir Attenuation in Microporous Amorphous Al, Fe, and Mn Oxides[J].Journal of Colloid and Interface Science,2002,247(2):259-265.
    150Friedman. Mathematical Modeling of Multicomponent Adsorption in Batch andFixed-Bed Reactors[D].Houton, MI: Michigan Technological University,1984:93-95.
    151金鹏康.腐植酸混凝的化学成因、形态学特征及动力学研究[D].西安:西安建筑科技大学,2005:120-121.
    152M.R. Collins, G.L. Amy, C. Steelink. Molecular Weight Distribution,Carboxylic Acidity, and Humic Substances Content of Aquatic Organic Matter:Implications for Removal During Water Treatment[J]. Environmental Science&Technology,1986,20(10):1028-1032.
    153李旭辉,于水利,赵晴,等. NOM的亲疏水性及分子质量分布对超滤膜污染的影响[J].中国给水排水,2010,26(17):31-34.
    154Y.-C. Chiang, P.-C. Chiang, C.-P. Huang. Effects of Pore Structure andTemperature on VOC Adsorption on Activated Carbon[J]. Carbon,2001,39(4):523-534.
    155A.M. Mastral, T. García, M.S. Callén et al. Assessement of PhenanthreneRemoval from Hot Gas by Porous Carbons[J]. Energy&Fuels,2000,15(1):1-7.
    156余纯丽,任建敏,傅敏,等.活性炭纤维的改性及其微孔结构[J].环境科学学报,2008,28(04):714-719.
    157乔志军,李家俊,赵乃勤,等.高温热处理对活性炭纤维微孔及表面性能的影响[J].新型炭材料,2004,19(01):53-56.
    158杨全红,郑经堂,王茂章,等.用SEM和XRD研究改性活性炭纤维的结构[J].新型碳材料,1998,13(04):61-65.
    159W.T. Tsai, C.Y. Chang, C.Y. Ho et al. Simplified Description of AdsorptionBreakthrough Curves of1,1-Dichloro-1-Fluoroethane (HCFC-141b) onActivated Carbon with Temperature Effect[J]. Journal of Colloid and InterfaceScience,1999,214(2):455-458.
    160V.C. Srivastava, B. Prasad, I.M. Mishra et al. Prediction of BreakthroughCurves for Sorptive Removal of Phenol by Bagasse Fly Ash Packed Bed[J].Industrial&Engineering Chemistry Research,2008,47(5):1603-1613.
    161Y. Yh, N. Jh. Application of Gas Adsorption Kinetics. I. A Theoretical Modelfor Respirator Cartridge Service Life.[J]. American Industrial HygieneAssociation Journal,1984,45(8):509-516.
    162Y. Yh, N. Jh. Application of Gas Adsorption Kinetics-II. A Theoretical Modelfor Respirator Cartridge Service Life and Its Practical Applications[J].American Industrial Hygiene Association Journal,1984,45(8):517-524.
    163A. Shiue, W. Den, Y.-H. Kang et al. Validation and Application of AdsorptionBreakthrough Models for the Chemical Filters Used in the Make-up Air Unit(Mau) of a Cleanroom[J]. Building and Environment,2011,46(2):468-477.
    164L.A. Jonas, J.A. Rehrmann. Predictive Equations in Gas Adsorption Kinetics[J].Carbon,1973,11(1):59-64.
    165R.M. Clark. Evaluating the Cost and Performance of Field-Scale GranularActivated Carbon Systems[J]. Environmental Science&Technology,1987,21(6):573-580.
    166S. Singh, V.C. Srivastava, I.D. Mall. Fixed-Bed Study for Adsorptive Removalof Furfural by Activated Carbon[J]. Colloids and Surfaces A: Physicochemicaland Engineering Aspects,2009,332(1):50-56.
    167V.I. gueda, B.D. Crittenden, J.A. Delgado et al. Effect of Channel Geometry,Degree of Activation, Relative Humidity and Temperature on the Performanceof Binderless Activated Carbon Monoliths in the Removal of Dichloromethanefrom Air[J]. Separation and Purification Technology,2011,78(2):154-163.
    168M.M. Dubinin, H.F. Stoeckli. Homogeneous and Heterogeneous MicroporeStructures in Carbonaceous Adsorbents[J]. Journal of Colloid and InterfaceScience,1980,75(1):34-42.
    169H.-C. Shin, J.-W. Park, K. Park et al. Removal Characteristics of TraceCompounds of Landfill Gas by Activated Carbon Adsorption[J]. EnvironmentalPollution,2002,119(2):227-236.
    170V.E. Owen Mk, Jaffe Lb, Sparks Le, The Effect of Relative Humidity onGaseous Air Cleaner Media Performances: Toluene Adsorption by ActivatedCarbon, in: in Proceedings’ of Engineering Solutions to Indoor Air QualityProblems, VIP-51, Research Triangle Park, NC: Air and Waste ManagementAssociation,1996:551-562.
    171F. Stoeckli, L. Currit, A. Laederach et al. Water Adsorption in CarbonsDescribed by the Dubinin-Astakhov and Dubinin-Serpinski Equations[J].Journal of the Chemical Society, Faraday Transactions,1994,90(24):3689-3691.
    172J. Pei, J.S. Zhang. Determination of Adsorption Isotherm and DiffusionCoefficient of Toluene on Activated Carbon at Low Concentrations[J].Building and Environment,2012,48(0):66-76.
    173M. A.Ch. The Kelvin Equation[J]. Journal of Colloid and Interface Science,2008,317(2):643-648.
    174T. Wt. Study of Activated Carbon Adsorption and Catalyst Combustion ofVOCs[D].Taipei: National Taiwan University,1994:78-84.
    175Z.-H. Huang, F. Kang, K.-M. Liang et al. Breakthrough of Methyethylketoneand Benzene Vapors in Activated Carbon Fiber Beds[J]. Journal of HazardousMaterials,2003,98(1-3):107-115.
    176C.L. Chuang, P.C. Chiang, E.E. Chang. Modeling VOCs Adsorption ontoActivated Carbon[J]. Chemosphere,2003,53(1):17-27.
    177K.S.W.S. S.J. Gregg, Adsorption, Surface Area, and Porosity [M].2nd ed ed.London: Academic Press,1982:107-115.
    178袁艳梅,陈长安,张丽,等.活性碳纤维改性技术研究进展[J].化工环保,2009,29(04):331-334.
    179李新艳,秦志宏.活性炭纤维的研究进展[J].化工生产与技术,2011,18(04):43-45.
    180曹晓强,黄学敏,刘胜荣,等.微波改性活性炭对甲苯吸附性能的实验研究[J].西安建筑科技大学学报(自然科学版),2008,40(02):249-253.
    181G.G. Stavropoulos, P. Samaras, G.P. Sakellaropoulos. Effect of ActivatedCarbons Modification on Porosity, Surface Structure and Phenol Adsorption[J].Journal of Hazardous Materials,2008,151(2–3):414-421.
    182J. Rivera-Utrilla, M. Sánchez-Polo. Ozonation of Naphthalenesulphonic Acid inthe Aqueous Phase in the Presence of Basic Activated Carbons[J]. Langmuir,2004,20(21):9217-9222.
    183陈水挟,罗颖,董国华,等.载贵金属活性碳纤维对氙吸附性能的研究[J].高技术通讯,2005,15(2):47-50.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700