高温液体环境下热防护服装热湿传递与皮肤烧伤预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
加强热功能防护材料和服装的研究是国家安全发展和振兴纺织产业的重要举措之一。当前热防护服装的研究主要集中在火焰和热辐射等方面的防护性能。然而,消防、石油化工、食品加工等行业的工作人员还遭受高温液体和蒸汽的伤害。传统的热防护服装能否提供有效的高温液体防护性能,保证劳动者的职业健康与安全,是关乎公共安全防护的重要课题。防护服装的防护性能不仅取决于纤维材料与织物的基本物理性能,还与服装的设计特征和合体性等因素有关。本课题正是基于以上需求探索高温液体环境下热防护服装的热湿传递规律,预测服装的防护性能。论文首先从热防护织物层面,研发了新型的高温液体防护性能测试仪,利用该仪器研究了织物基本性能、暴露液体种类以及衣下空气层对织物高温液体防护性能的影响与作用机制,并进一步探讨了影响织物冲击渗透性能的主要因素,阐明了高温液体环境下织物的热湿传递规律;其次从热防护服装整体层面,提出了新型的服装合体性表征方法,全面分析了热防护服装衣下空气层的分布规律;此外,建立了喷淋假人测试系统,探讨了高温液体喷溅环境下服装热湿传递和皮肤烧伤及分布规律;最后,分析了织物实验与假人着装实验之间的联系,建立了服装高温液体防护性能的预测模型。具体的研究内容概括如下:
     1)热防护织物的高温液体飞溅物防护性能研究
     课题研发了新型的织物高温液体飞溅物防护性能测试仪器,其创新点主要包括恒温液体循环加热箱和液体传送装置、液体流量控制钮、皮肤模拟传感器及其分布和皮肤烧伤预测程序。
     选取了常用的7种热防护服用材料,利用研发的测试仪器评价了热防护织物的防护性能,揭示了高温液体环境下织物的热湿传递规律。织物暴露于高温液体飞溅物时,热传递方式主要包括织物表面的对流传导、织物内的热传导和湿传递(液体和蒸汽传递)引起的能量传递。不透性和半透性面料的防护性能明显优于可透性面料,对于不透性面料和半透性面料,面料的厚度决定了其热防护性能;对于可透性面料,减小液体冲击渗透性可以明显地提高其热防护性能。研究证明液体的渗透性是影响热传递和皮肤烧伤的关键因素之一。面料的表面性能和液体的粘度影响液体在织物中渗透性。液体的热扩散性能、湿传递的速率和传递的总量是影响织物系统热防护性能的重要因素。直接暴露于高温液体流位置的皮肤烧伤比其它位置的烧伤严重。
     2)织物液体冲击渗透性能影响因素研究
     基于AATCC42-2000织物液体冲击渗透性测试标准,利用上述的高温液体防护性能测试仪器建立了新型的液体冲击渗透性测试方法,从织物特征、液体的温度、液体的种类、冲击角度和面料配伍等方面深入地探索了影响织物液体冲击渗透性的主要因素。
     研究结果表明具有较高润湿阻力的面料提供优良的防液体吸收和渗透性;液体的冲击渗透性随液体温度的升高而增加;液体的渗透性取决于液体的动力粘度,液体的粘度越大,其渗透量越小,而储存量越大;液体与面料的冲击角度明显地影响液体的渗透性能;添加隔热层可以显著增加液体的储存量,降低液体的渗透量,添加防水透气层后,总的液体储存量明显小于添加隔热层时储存的液体量。
     3)空气层对织物内热湿传递性能的影响研究
     衣下空气层对热防护服装热湿传递性能具有重要的作用。本论文制作了6mm空气层垫片,研究了衣下空气层对织物热湿传递性能的影响。研究表明高温液体环境下,传递至皮肤的热流量取决于面料的性能、液体的性能和测试条件,面料的表面能对热防护面料的热湿传递性能具有重要的作用,不同的液体对皮肤造成不同的伤害,与测试条件也有关;衣下空气层可以显著地降低吸收的总能量,延长二级烧伤的时间,提高织物的热防护性能。空气层对不同织物的热湿传递作用不同,空气层可以减少液体的渗透和蒸汽的传递,显著地提高可透性织物的防护性能;但对于疏水性的可透性面料,蒸汽可以透过润湿的面料并传递至传感器后冷凝释放大量的能量,极大地削弱了空气层对热防护性能的有益作用。
     4)热防护服装衣下空气层的表征
     选取了10种当前典型的工业用热防护服装,利用三维人体扫描仪获得着装前后的三维人体点云数据,通过Rapdiform系列软件开发了一套系统的处理三维人体扫描数据和测量服装衣下空气层的方案,并从服装的面料性能和尺码等方面探索了服装平均衣下空气层、各部位空气层厚度和空气层的整体分布规律。
     服装与人体之间的空气层尺寸取决于人体的几何特征、面料的物理性能和服装的尺码。人体凸面的空气层比凹面的空气层尺寸小;人体部位的围度越大,其空气层相对越小。面料的克重越大,其衣下空气层厚度越大;面料的抗弯刚度越大,衣下空气层尺寸越大。服装的尺码越大,人体各部位的空气层和平均衣下空气层也越大。衣下空气层在人体表面呈不均匀分布。腿部和腰腹部的空气层尺寸较大,而胸部、臀部和手臂处的空气层尺寸较小。
     5)喷淋假人着装防护性能研究
     基于燃烧假人测试系统,构建了喷淋假人测试系统,全面地分析了织物基本性能、服装设计特征和服装尺码等因素对服装热湿传递和皮肤烧伤分布的影响。所测试的服装根据其提供防护性能可以分为七类,半透的和不可透的服装系统的防护性能明显优于可透的服装;面料的厚度对不可透和半透性服装的热防护性能具有一定的影响;面料的克重对服装的热传递性能影响甚微;服装的防水整理对其防护性能产生非常重要的影响。
     服装的尺码对热防护服装的防护性能具有一定的影响,但并不明显。紧身服装与宽松服装之间的防护性能具有显著性差异,但它们与合体服装提供的防护性能之间并没有明显的差异。减少透过服装的湿传递是提高其防护性能的关键因素;保持服装和人体之间的空气层厚度也是提高服装热水喷溅防护性能的重要因素。服装的设计特征影响服装的热防护性能,增加服装的层数可以显著地提高其热防护性能,反光带可以对人体皮肤提供额外的防护。
     皮肤烧伤分布并不均匀,主要发生在高压热水喷溅直接冲击的部位(胸部和腹部)、水流较大的部位(腰臀部和大腿)和空气层较小的部位。服装的平均衣下空气层厚度与整体烧伤、吸收的总能量呈明显的负线性关系。在所测试的服装中,衣下空气层分布与皮肤烧伤之间具有一定的负线性关系。人体各部位平均衣下空气层厚度与皮肤烧伤百分比呈负相关关系。除了盆骨处以外,其它部位空气层厚度与皮肤烧伤的相关性显著(P<0.05)。对于特定的服装来说,人体各部位空气层厚度与皮肤烧伤之间没有明显关系。进一步分析发现除G5以外,人体上肢各部位空气层厚度与皮肤烧伤呈负相关性。
     6)热防护服装高温液体防护性能预测
     针对面料实验和假人着装实验中获得的指标进行相关性分析,结果表明:无空气层时面料实验得到的二级烧伤时间与吸收的总能量显著地线性相关;假人实验获得的皮肤烧伤百分比与吸收的总能量也显著地线性相关;无空气层时面料实验与假人实验中获得的指标之间具有明显的非线性关系;有6mm空气层时面料实验与假人实验中的指标呈显著的线性关系。建立了热防护服装皮肤烧伤百分比与平均衣下空气层和面料的二级烧伤时间之间的回归方程,即PBI=97.671-2.597*T2-1.84*AAG。该模型表明在测量了面料的二级烧伤时间和服装的衣下空气层厚度的前提下,可以准确地预测服装的防护性能。
The emphasis of study on thermal protective materials and clothing is one of the most important approaches to improve national safety development and promote the textile industry. The current studies on thermal protective clothing mainly focus on flame, radiant heat and contact burn. However, the workers in firefighting, petrochemical, and food processing industry will also encounter the hazards of hot liquid splashes and steam. Weather the traditional thermal protective clothing can provide sufficient protection against hot liquid splashes to ensure the occupational health and safety of workers is a hot topic of public health. The protection provided by protective clothing not only depends on fiber and fabric thermo-physical properties, but also relates to garment structure, design features, garment fit and etc. To achieve the above requirements and objectives, the heat and mass transfer through protective clothing under exposure to hot liquid splashes was investigated, and the skin burn injury was predicted. Firstly, a novel bench scale hot liquid splashes tester was developed to investigate the effects of fabric properties, exposure liquid type and air gap on the thermal protection provided by protective materials used for protective clothing; furthermore, the effects on the impact liquid penetration through protective fabrics were explored; and thus the heat and mass transfer through protective materials was clarified. Secondly, a novel method was proposed to characterize the air layer entrapped in thermal protective clothing, and the air gap size and distribution was analyzed; an advanced instrumented spray manikin test system was established to investigate the thermal protection of full scale protective clothing, the effects of material properties, design features and garment size on heat transfer and skin burn injury were investigated. Finally, the correlation between bench scale test and manikin test was analyzed, and the prediction model of overall protective performance was established. The specific research contents were provided as follows.
     1)Thermal performance of protective fabrics upon hot liquid splashes
     In this study, a new hot liquid tester was developed based on the modification of standard test device described in ASTM F2701.The most important innovations include temperature-controlled circulating reservoir, liquid delivery pipeline, flow control component, skin simulant sensors and skin burn prediction program.
     Seven typical used protective materials in North American market were selected in this study. The protective performance was evaluated by the newly developed apparatus, and the mechanism associated with heat and mass transfer was clarified. Under exposure to hot liquid splashes, the heat transfer modes consist of convection on the fabric surface, thermal conduction and radiation in the fabric and energy transfer associated with mass transfer. The results indicated that impermeable and semipermeable fabrics provided better performance than permeable fabrics, and the fabric thickness greatly affected the protective performance of impermeable and semipermeable fabrics; for the permeable fabrics, the decrease of liquid penetration, could significantly improve the performance of permeable fabrics. It was demonstrated that the mass transfer was one of the key factors influencing the heat transfer and skin burn injury. The surface property of fabric and dynamic viscosity of liquid affected the liquid penetration. Different liquids caused distinct damage to skin, namely the drilling fluid and distilled water resulted in more severe skin burn injury under the same exposure configuration. Thermal diffusivity of liquid, mass transfer rate and total amount of penetration determined the overall protective performance of a fabric system. The skin burn injury at the position under the liquid jet was more severe than other areas, which might be related to impingement force due to liquid jet and liquid penetration performance.
     2) Factors affecting liquid impact penetration
     Based on the standard AATCC42-2000"Water Resistance:Impact Penetration Test" and the newly developed hot liquid splashes tester, a new approach to evaluate the liquid penetration under exposure to hot liquid splashes was proposed.The effects of fabric properties, liquid temperature, liquid type, impingement angle, and fabric combinations on liquid impact penetration were investigated.
     The results indicated that the fabric with higher wetting resistance provided lower liquid absorption and penetration. The liquid penetration increased with the liquid temperature. The dynamic viscosity of liquid greatly affected the penetration, furthermore, the challenge liquid with bigger viscosity caused lower penetrated and higher stored amount of liquid. The impingement angle also showed significant effect on the liquid transfer performance, namely the smaller inclined angle resulted in larger penetrated and absorbed amount of liquid. The addition of thermal liner sharply increased the stored amount of liquid, decreased the penetration; moreover, the involvement of moisture barrier caused more liquid stored in the outer shell, but the total stored amount of liquid was significantly lower than that with thermal liner.
     3) The effect of air gap on heat and mass transfer of protective fabrics
     The air gap has important effect on heat and mass transfer of protective clothing. In this study, an air spacer of6mm was made and added between the fabric and the sensor board to investigate the effect of air gap on thermal protective performance against hot liquid splashes. The results showed that the energy transferred to skin depended on the fabric properties, liquid properties and test configurations. Different liquids caused different damage to skin, which was related to the test condition. The air gap sharply decreased the absorbed energy, extended the second degree burn time, and thus improved thermal protective performance. It was confirmed that keeping the air layer between garment and human skin was a very effective approach to provide high performance. The effect of air gap on protective performance depended on the fabric type. The air gap could decrease the liquid penetration and vapor transfer through permeable fabrics, and thus significantly improve the protective performance. However, for the hydrophobic permeable fabrics, vapor could penetrate through the fabric and condense on the sensor with discharging of energy to sensor, and thus sharply eliminated the positive effect of air gap.
     4) Characterization of air gap in thermal protective clothing
     Ten typical thermal protective clothing for industrial workers was selected, and both the nude and dressed manikin was scanned by Human Solution3D body scanner. The data was processed by a novel developed procedure using Rapidform XOR and XOV software. The local and overall average air gap size and its distribution were analyzed in terms of material properties and garment size.
     It was indicated that the air gap between garment and human skin depended on the body geometry, fabric properties and garment size. The air gap size in the convex area was higher than that in concave area, and the regions with larger circumstance presented smaller air gap. The garment with bigger fabric weight showed larger air gap size. The flexural rigidity also affected the air gap size, namely the garment with higher rigidity fabric presented worse drapability, and thus the air gap was bigger. The larger garment size showed higher local and overall average air gap size. In addition, the air gap distributed unevenly over the human body; the air gap at leg and abdomen was relatively high, while the air gap at chest, hip and arms was relatively low.
     5) Protective performance evaluation using instrumented spray manikin
     A new instrumented spray manikin test system was established based on the flame manikin test system, which was the only apparatus to evaluate the protective performance of protective clothing upon hot liquid splashes. The effects of fabric properties, design features, and garment size on heat and mass transfer and skin burn injury distribution were investigated. The newly developed spray manikin test system was proved to be capable of differentiating the selected protective clothing in terms of absorbed energy and percentage of skin burn. The tested protective clothing was divided into seven categories according to the protective performance. The impermeable and semipermeable garments provided better performance than those of permeable garments. The thickness of fabric and design features showed effects on the performance of impermeable and semipermeable clothing. The effect of fabric weight on heat transfer through protective clothing system seems to be minimal.The water repellency treatment showed great effect on protection.
     The size of garment showed effects on thermal protection of permeable garments, but these were not significant. The difference between the tight clothing and the loose clothing was significant, but there was no significant difference between the fit garment and the tight or loose garment. Minimizing mass transfer was recognized as the critical factor for protection from hot water. Maintaining a proper air gap between the garment and human body was a critical factor in improving thermal performance. The design features also affected the overall performance. Adding fabric layers could improve thermal protective performance of garments. The reflective tape could provide extra protection and decrease skin burn injury.
     The skin burn injury distributed unevenly, and mainly occurred at the areas of compression upon water spray (chest and abdomen), heavy water flow (waist, hip and leg) and small air gap.The overall average air gap size showed significant negative correlation with the percentage of skin burn and total absorbed energy. Generally, the air gap distribution and skin burn distribution presented negative relationship. The negative correlation between local average air gap size and skin burn injury was presented. Moreover, the relationship was significant except pelvis (P<0.05). For a specific garment, the air gap at a certain area didn't correlate well with the average air gap size. The air gap size at upper extremity negatively correlated with the skin burn injury, except the garment G5.
     6) Prediction of performance of protective clothing upon hot liquid splashes
     The correlation between the parameters obtained in bench scale test and manikin test was conducted. The results showed that the second degree burn time significantly linearly correlated with the absorbed energy in bench scale test without air gap, and the percentage of skin burn was also significantly linearly related to the absorbed energy; the indices obtained in bench scale test without air gap were significantly nonlinearly correlated with those measured in manikin test respectively; the correlation was linear when there was a6mm air spacer. In addition, the prediction model of percentage of skin burn was established based on the second degree burn time and average air gap size, namely PBI=97.671-2.597*T2-1.84*AAG. This model indicated that the percentage of skin burn could be predicted if the second degree burn time of the fabric and the average air gap size of the garment were known.
引文
[1]BARKER R L, YENER M. Evaluating the resistance of some protective fabrics to molten iron [J].Text Res J,1981,51(8):533-41.
    [2]ROSSI R, INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers [J]. International Journal of Occupational Safety and Ergonomics,2004, 10(3):239-45.
    [3]SATI R, CROWN E M, ACKERMAN M, et al. Protection from steam at high pressures: Development of a test device and protocol [J]. International Journal of Occupational Safety and Ergonomics,2008,14(1):29-41.
    [4]MAKINEN H, NIEMINEN K, MAKI S, et al. Development of a test method against hot alkaline chemical splashes [J]. International Journal of Occupational Safety and Ergonomics,2008,14(1):19-28.
    [5]BARR D, GREGSON W, REILLY T. The thermal ergonomics of firefighting reviewed [J]. Applied Ergonomics,2010,41(1):161-72.
    [6]CROWN E M, DALE J D. Protection for workers in the oil and gas industries [M]//SCOTT R. Textiles for Protection. Cambridge, UK; Woodhead Publishing.2005: 699-713.
    [7]DESRUELLE A V, SCHMID B. The steam laboratory of the Institut de Medecine Navale du Service de Sante des Armees:a set of tools in the service of the French Navy [J]. European Journal of Applied Physiology,2004,92(6):630-5.
    [8]SHARP(SAFETY & HEALTH ASSESSMENT & RESEARCH FOR PREVENTION). Burn Injury Facts-Scald Burns in Restaurant Workers [R] Washington:Washington State Department of Labor and Industries,2009.
    [9]YU S H, STRICKFADEN M, CROWN E M, et al. Garment specifications and mock-ups for protection from steam and hot water; proceedings of the Performance of Protective Clothing and Equipment:Emerging Issues and Technologies ASTM STP1544, West Conshohocken, F,2012 [C]. American Society for Testing and Materials.
    [10]TAYLOR A J, MCGWIN G, CROSS J M, et al. Serious occupational burn injuries treated at a regional burn center [J]. J Burn Care Rehabil,2002,23(4):244-8.
    [11]EN FORM. Fatality caused by steam from boiler blow down valve [J/OL] 2004,
    [12]NATIONAL BURN REPOSITORY.2011 Annual Report Dataset Version 7.0 [R]: American Burn Association,2011.
    [13]ASTM F 2701-08. Standard Test Method for Evaluating Heat Transfer through Materials for Protective Clothing Upon Contact with a Hot Liquid Splash [S]. West Conshohocken, PA, USA.2008.
    [14]TORVI D A, HADJISOPHOCLEOUS G V. Research in protective clothing for firefighters:State of the art and future directions [J]. Fire Technology,1999,35(2): 111-30.
    [15]王敏,李小辉.我国建成国际领先的服装燃烧假人系统—“东华火人”[J].个体化防护装备,2011,5:54-5.
    [16]GUIDOTTI T. Firefighting hazards [M]//STELLMAN J M. Encyclopaedia of Occupational Health and Safety:Chemical, industries and occupations International labor office.1998:95.4-.8.
    [17]NFPA 1971. Standard on protective ensembles for structural firefighting and proximity firefighting [S]. Quincy, MA, USA.2007.
    [18]GA 10-2002.消防员灭火防护服[S].2002.
    [19]BAJAJ P. Heat and flame protection [M]//HORRACKS A R, AN AND S C. Handbook of technical textiles. The Textile Institute, Woodhead Publishing Limited.2000:223-63.
    [20]HUYER D W, CORKUM S H. Reducing the incidence of tap-water scalds:Strategies for physicians [J]. Can Med Assoc J,1997,156(6):841-4.
    [21]ACKERMAN M Y, CROWN E M, DALE J D, et al. Project update:Protection from steam and hot water hazards; proceedings of the Protective Clothing Systems for Safety '11, Edmonton, Alberta, Canada, F,2011 [C].
    [22]ADAMS C. Can high-pressure steam cut a body in half? [J/OL] 2006,
    [23]MURTAZA G. Development of fabrics for steam and hot water protection [D]. Edmonton, AB; University of Alberta,2012.
    [24]LAWSON J R. Fire fighter's protective clothing and thermal environments of structural fire fighting [R] NIST, NISTIR 5804, Gaithersburg, MD,1996.
    [25]BARKER R, DEATON S, LISTON G, et al. A CB Protective Firefighter Turnout Suit [J]. International Journal of Occupational Safety and Ergonomics,2010,16(2):135-52.
    [26]杨宗城.烧伤治疗学[M].北京:人民卫生出版社,2006.
    [27]BERRY M F, HOLMES J H, SCHWAB C W. Burn Management [M]//ATLURI P, KARAKOUSIS G C, PORRETT P M, et al. The Surgical Review:An Integrated Basic and Clinical Science Study Guide. Philadelphia; Lippincott Williams and Wilkins.2006: 289-307.
    [28]PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm [J]. Journal of Applied Physiology,1948,1(2):93-122.
    [29]CATTANEO C. A form of heat conduction equation which eliminates the paradox of instantaneous propagation [J]. Comptes Rendus,1958,247(4):431-3.
    [30]LIU J, CHEN X, XU L X. New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating [J]. IEEE Trans Biomed Eng,1999,46(4):420-8.
    [31]HENRIQUES F C, MORITZ A R. Studies of thermal injury:I. The conduction of heat to and through skin and the temperature attained therein [J]. American Journal of Pathology, 1947,23(4):531-49.
    [32]STOLL A M, GREENE L C. Relationship between pain and tissue damage due to thermal radiation [J]. Journal of Applied Physiology,1959,14(3):373-82.
    [33]DILLER K R, HAYES L J. Analysis of tissue injury by burning:comparison of in situ and skin flap models [J]. Int J Heat Mass Transf,1991,34(6):1393-406.
    [34]MEHTA A K, WONG F. Summary report from fuels research laboratory [R] Massachusetts Institute of Technology, Cambridge, Massachusetts,1972.
    [35]ASTM 457-96. Standard Test Method for Measuring heat transfer rate using a thermal capacitance (slug) calorimeter obsolete [S]. West Conshohocken, PA, USA.1996.
    [36]李双会,朱华.阻燃抗热防护服装材料及其檢测手段的现状及发展趋势[J].中国安全生产科学技术,2006,2(6):10-3.
    [37]张培,门峻,康茹.阻燃防护服防火性能及发展趋势[J].安全,健康和环境,2008,8(8):21-3.
    [38]李利君,李风.耐高温阻燃防护服研究进展[J].消防技术与产品信息,2009,4:12-6.
    [39]ASTM D 4108-87. Standard on Test Method for Thermal Protective Performance of Materials for Clothing by Open-Flame Method [S]. West Conshohocken, PA, USA. 1987.
    [40]EN 469. Protective Clothing for Firefighter:Performance Requirements and Test Method for Protective Clothing for Firefighting [S]. United Kingdom.2005.
    [41]ISO 9151. Protective clothing against heat and Flame-determination of heat transmission on exposure to flame [S]. Geneve, Switzerland.1995.
    [42]ASTM F 1939-99. Standard Test Method for Radiant Protective Performance of Flame Resistance Materials [S]. West Conshohocken, PA, USA.1999.
    [43]NFPA 1977. Standard on Protective Clothing and Equipment for Wildland Fire Fighting [S]. Quincy, MA, USA.2005.
    [44]ASTM F 1060-08. Standard Test Method for Thermal Protective Performance of Materials for Protective Clothing for Hot Surface Contact [S]. West Conshohocken, PA, USA.2008.
    [45]2731-11 A F. Standard Test Method for Measuring the Transmitted and Stored Energy of Firefighter Protective Clothing Systems [S]. West Conshohocken, PA.2011.
    [46]ASTM F1930-12. Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Flash Fire Simulations Using an Instrumented Manikin [S]. West Conshohocken, PA, USA.2012.
    [47]ISO 13506.3. Protective Clothing Against Heat and Flame Test Method for Complete Garments Prediction of Burn Injury Using an Instrumented Manikin [S]. Geneva, Switzerland.2004.
    [48]GB 8965.1-2009.防护服装阻燃防护第1部分:阻燃服[S].2009.
    [49]GB/T 23467-2009.用假人评估轰燃条件下服装阻燃性能的测试方法[S].2009.
    [50]谌玉红,郝俊勤,蒋毅.战场燃烧环境与单兵阻燃防护[J].中国个体防护装备,2007,2:19-21.
    [51]冯爱芬,张永久.用于检测服装隔热防火性能的假人系统[J].中国个体防护装备,2004,2:23-4.
    [52]梅瑞华.燃烧假人系统烧伤分析软件平台的设计与实现[D].哈尔滨,黑龙江;哈尔滨工业大学,2007.
    [53]蒋毅,谌玉红,陈强.燃烧假人测试方法中燃烧系统研究[J].中国个体防护装备,2007,5:5-8.
    [54]WOODWARD A B. Fire Scenarios for an Improved Fabric Flammability Test [D]; Worcester Polytechnic Institute,2003.
    [55]DALE J D, CROWN E M, ACKERMAN M Y, et al. Instrumented Mannequin Evaluation of Thermal Protective Clothing.; proceedings of the Performance of Protective Clothing:Fourth Volume, ASTM STP 1133, West Conshohocken, PA, USA, F, 1992 [C]. American Society for Testing and Materials.
    [56]ELLISON A D, GROCH T M, HIGGINS B A, et al. Thermal Manikin Testing of Fire Fighter Ensembles. [D]; Worcester Polytechnic Institute,2006.
    [57]CAMENZIND M A, DALE J D, ROSSI R M. Manikin test for flame engulfment evaluation of protective clothing:Historical review and development of a new ISO standard [J]. Fire Mater,2007,31(5):285-95.
    [58]STOLL A M. Thermal Protection Capacity of Aviator's Textiles [J]. Aerospace Medcine, 1962,33:846-50.
    [59]NORTON M J T, KADOLPH S J, JOHNSON R F, et al. Design, construction, and use of Minnesota woman, a thermally instrumented mannequin [J]. Text Res J,1985,55(1): 5-12.
    [60]DALE J D, CROWN E M, ACKERMAN M Y, et al. Instrumented Mannequin Evaluation of Thermal Protective Clothing [M]//MCBRIARTY J P, HENRY N W. Performance of Protective Clothing:Fourth Volume, ASTM STP 1133. West Conshohocken, PA; American Society for Testing and Materials.1992:717-33.
    [61]MAH T, SONG G W. Investigation of the contribution of garment design to thermal protection. Part 1:Characterizing air gaps using three-dimensional body scanning for women's protective clothing [J]. Text Res J,2010,80(13):1317-29.
    [62]PAWAR M, BARKER R L, SHALEV I, et al. Analyzing the Performance of Protective Garments in Manikin Fire Tests; proceedings of the the Fifth Scandinavian Symposium on Protective Clothing, Elsinore, Denmark, F,1997 [C].
    [63]BARKER R L. A review of gaps and limitations in test methods for first responder protective clothing and equipment [R] Pittsburgh, Pennsylvania:National Institute for Occupational Safety and Health,2005.
    [64]BEHNKE W P, GESHURY A J, BARKER R L. Thermo-Man and Thermo-Leg:Large scale test methods for evaluating thermal protective performance [M]//MABRIARTY J P, NORMAN W H. Performance of protective clothing, ASTM STP 1133. West Conshohocken PA; American Society for Testing and Materials.1992:266-80.
    [65]ISO 9150-1988. Protective clothing--Determination of behaviour of materials on impact of small splashes of molten metal [S]. Geneva, Switzerland.1988.
    [66]BS EN 373-1993. Protective clothing-Assessment ofresistance of materials to molten metal splash [S].1993.
    [67]ASTM F 955-07. Standard Test Method for Evaluating Heat Transfer through Materials for Protective Clothing Upon Contact with Molten Substances [S]. West Conshohocken, PA, United States.2007.
    [68]GB/T 17599-1998.防护服用织物-防热性能-抗熔融金属滴冲击性能的测定[S].1998.
    [69]GB 8965.2-2009.防护服装-阻燃防护第2部分:焊接服[S].2009.
    [70]JALBANI S H, ACKERMAN M Y, CROWN B M, et al. Modification of ASTM F 2701-08 apparatus for use in evaluating protection from low pressure hot water jets [M]. 9th symposium on performance of protective clothing and equipment:emerging issues and technologies. Anaheim, California; ASTM Committee F23 on Personal Protective Clothing and Equipment.2011.
    [71]ROSSI R,INDELICATO E, BOLLI W. Hot steam transfer through heat protective clothing layers [J]. International Journal of Occupational Safety and Ergonomics,2004, 10:239-45.
    [72]ACKERMAN M Y, CROWN E M, DALE J D, et al. Development of a Test Apparatus/Method and Material Specifications for Protection from Steam under Pressure; proceedings of the 9th symposium on performance of protective clothing and equipment: emerging issues and technologies, Anaheim, California, F,2011 [C].
    [73]PERKINS R M. Insulative values of single-layer fabrics for thermal protective clothing [J]. Text Res J,1979,49(4):202-12.
    [74]SHALEV I, BARKER R L. Analysis of heat transfer characteristics of fabrics in an open flame exposure [J]. Text Res J,1983,53(8):475-82.
    [75]SHALEV I, BARKER R L. A comparison of laboratory methods for evaluating thermal protective performance in convective/radiant exposures [J].Text Res J,1984,54(10): 648-54.
    [76]SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters [J]. Text Res J,2000,70(7):567-73.
    [77]BARKER R L. The Effect of Nomex/Kevlar Fiber Blend Ratio and Fabric Weight on Fabric Performance in Static and Dynamic TPP Tests; proceedings of the Performance of Protective Clothing:Fifth Volume, ASTM STP 1237,, Philadelphia, PA, USA, F,1996 [C]. American Society for Testing and Materials.
    [78]NEAL T. Hot liquid test results on NASCO materials [R] Neal Associates Ltd., Guilford, CT,2006.
    [79]ACKERMAN M Y, SONG G W, GHOLAMREZA F, et al. Analyzing thermal protective clothing performance against the impact of small splashes of hot liquid [M].9th symposium on performance of protective clothing and equipment:emerging issues and technologies. Anaheim, California; ASTM Committee F23 on Personal Protective Clothing and Equipment.2011.
    [80]万志琴,张渭源.织物有效辐射系数的理论探讨与实验研究[J].中国纺织大学学报,2000,26(1):44-7.
    [81]万志琴.织物热防护中的吸热特性研究[J].纺织学报,2004,25(2):43-6.
    [82]华涛.热防护服热防护性能的分析与探讨[J].产业用纺织品,2002,20(8):28-31.
    [83]石宏亮,崔建伟.高温工作服面料隔热性能研究[J].上海纺织科技,2001,29(4):51-3.
    [84]叶键青.芳砜纶的热稳定性分析[J].东华大学学报(自然科学版),2005,31(2):13-6.
    [85]丁雪梅,吴雄英Nomex/帛混纺耐热阻燃织物的研制[J].产业用纺织品,1998,16(2):14-7.
    [86]朱方龙.热防护服隔热防护性能测试方法及皮肤烧伤度评价准则[J].中国个体防护装备,2006,4:26-31.
    [87]朱方龙,张渭源.基于人体皮肤热模型的热防护服评价方法研究[J].中国安全科学学报,2007,11(11):134-40.
    [88]ZHU F L, ZHANG W Y. Evaluation of thermal performance of flame-resistant fabrics considering thermal wave influence in human skin model [J]. Journal of Fire Sciences, 2006,24(6):465-85.
    [89]李俊,王云仪,张向辉.消防服多层织物系统的组合构成与性能研究[J].东华大学学报(自然科学版),2008,34(4):410-5.
    [90]王云仪,宗艺晶,李俊.消防服用国产新型织物的热防护性能研究[J].纺织导报,2008,8:98-100.
    [91]李红燕,吴宣润,张渭源.热防护服织物性能与综合防护能力的关系[J].纺织学报,2008,29(9):59-61.
    [92]崔志英,张渭源.强热流量下耐热阻燃织物的热防护性能[J].纺织学报,2008,29(9):56-8.
    [93]CUI Z Y, WAN Y M,., Y. Z W. Thermal Protective Performance and Moisture Transmission of Firefighter Protective Clothing Based on Orthogonal Design [J]. Journal of Industrial Textiles,2010,39(4):1-10.
    [94]SAWCYN C M J. Heat transfer model of horizontal air gaps in bench top testing of thermal protective fabrics [D]. Saskatoon, Canada; University of Saskatchewan,2003.
    [95]TORVI D A. Heat Transfer in Thin Fibrous Materials under High Heat Flux Conditions [D]. Edmonton, AB; University of Alberta,1997.
    [96]TORVI D A, DALE J D, FAULKNER B. Influence of air gaps on bench-top test results of flame resistant fabrics [J]. Journal of Fire Protection Engineering,1999,10(1):1-12.
    [97]SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics [J]. Text Res J,2009,79(7):632-44.
    [98]LEE C, KIM I Y, WOOD A. Investigation and correlation of manikin and bench-scale fire testing of clothing systems [J]. Fire Mater,2002,26(6):269-78.
    [99]VEGHTE J H. Design Criteria for Fire Fighters Protective Clothing [M]. Janesville Apparel,1981.
    [100]LEE Y M, BARKER R L. Effect of moisture on the thermal protective performance of heat-resistant fabrics [J]. Journal of Fire Sciences,1986,4(5):315-31.
    [101]M KINEN H, SMOLANDER J, VUORINEN H. Simulation of the effect of moisture content in underwear and on the skin surface on steam burns of fire fighters [M]//MANSDORF S Z, SAGER R, NIELSEN A P. Performance of Protective Clothing: ASTM STP 989. West Conshohocken PA; American Society for Testing and Materials. 1988:415-21.
    [102]ROSSI R M, ZIMMERLI T. Influence of humidity on the radiant, convective and contact heat transmission through protective clothing materials [M]//JOHNSON J S, MANSDORF S Z. Performance of Protective Clothing. Philadelphia; American Society for Testing and Materials.1995.
    [103]LAWSON L K, CROWN E M, ACKERMAN M Y, et al. Moisture effects in heat transfer through clothing systems for wildland firefighters [J]. Internal Journal of Occupational Safety and Ergonomics,2004,10:227-38.
    [104]BARKER R L, GUERTH-SCHACHER C, GRIMES R V, et al. Effects of moisture on the thermal protective performance of firefighter protective clothing in low-level radiant heat exposures [J]. Text Res J,2006,76(1):27-31.
    [105]SONG G W, PASKALUK S, SATI R, et al. Thermal protective performance of protective clothing used for low radiant heat protection [J]. Text Res J,2011,81(3): 311-23.
    [106]LAWSON J R, VETTON R L. Thermal Measurements for Fire Fighter's Protective Clothing; proceedings of the Thermal measurements:The foundation of fire standards, ASTM STP 1427, West Conshohocken, PA, F,2002 [C]. ASTM International.
    [107]LI J, LU Y H, LI X H. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fire [J]. Text Res J,2012,83(12):1235-43.
    [108]WANG Y Y, LU Y H, LI J, et al. Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance [J]. Fibers and Polymers,2012,13(5): 647-52.
    [109]李红燕.单层织物湿态热防护性能测试与分析[J].纺织学报,2009,30(12):95-9.
    [110]徐兰娣,戴国定,杨晓华等.消防员防护装备用织物的热防护性能研究[J].消防科学与技术,2008,27(5):339-43.
    [111]崔志英,杨海燕.热辐射对消防服热防护性能及耐久性的影响[J].材料科学与工程学报,2012,30(4):625-30.
    [112]KIRKPATRICK A T, CURTIS H, ADELGREN A. Experimental Measurements of the Thermal Effectiveness of Two Types of Protective Clothing for Fire Fighters [J].Fire Technology,1982,18(3):259-67.
    [113]CROWN E M, ACKERMAN M Y, DALE J D, et al. Design and Evaluation of Thermal Protective Flightsuits:Part Ⅱ:Instrumented Mannequin Evaluation [J]. Clothing and Textile Research Journal,1998,16(2):79-87.
    [114]KIM I Y, LEE C, LI P, et al. Investigation of air gaps entrapped in protective clothing systems [J]. Fire Mater,2002,26(3):121-6.
    [115]SONG G W. Clothing air gap layers and thermal resistance performance in single layer garment [J]. Journal of Industrial Textiles,2007,36(3):193-205.
    [116]MAH T, SONG G. Investigation of the contribution of garment design to thermal protection. Part 2:Instrumented female mannequin flash-fire evaluation system [J]. Text Res J,2010,80(14):1473-87.
    [117]PAWAR M. Analyzing the Thermal Protective Performance of Single Layer Garment Materials in Bench Scale and Manikin Tests [D]. Raleigh, North Carolina; North Carolina State University,1995.
    [118]KRASNY J, ROCKETT J A, HUANG D Y. Protecting Fire Fighters Exposed in Room Fires:Comparison of Results of Bench Scale Test for Thermal Protection and Conditions During Room Flashover [J]. Fire Technology,1988,24(1):5-19.
    [119]TORVI D A, DALE J D. Heat Transfer in Thin fibrous materials under high heat flux [J]. Fire Technology,1999,35(3):210-31.
    [120]TORVI D A, THRELFALL T G. Heat transfer model of flame resistant fabrics during cooling after exposure to fire [J]. Fire Technology,2006,42(1):27-48.
    [121]KUKUCK S, PRASAD K. Thermal performance of fire-fighters' protective clothing 3: simulating a TPP test for single-layered fabrics [R] Gaithersburg, MD:National Institute of Standards and Technology,2003.
    [122]ZHU F L, ZHANG W Y. Modeling Heat Transfer for Heat-resistant Fabrics Considering Pyrolysis Effect under an External Heat Flux [J]. Journal of Fire Sciences, 2009,27(1):81-96.
    [123]巩彦如,张璇,毛志平等.热防护纺织材料隔热性能的数值模拟[J].东华大学学报(自然科学版),2010,36(2):115-8.
    [124]BAMFORD G J, BOYDELL W, INST CHEM E. ICARUS:A code for burn injury evaluation [M]. Rugby:Inst Chemical Engineers,1995.
    [125]MELL W E, LAWSON J R. A Heat Transfer Model for Fire Fighter's Protective Clothing [R] Gaithersburg, MD:National Institute of Standards and Technology,1999.
    [126]SPANGLER K. Energy transport in firefighter's protective clothing [D]. Maryland; University of Maryland,2008.
    [127]GIBSON P. Multiphase heat and mass transfer through hygroscopic porous media with applications to clothing materials [R],1996.
    [128]PRASAD K, TWILLEY W, LAWSON J R. Thermal performance of fire fighters' protective clothing.1. Numerical study of transient heat and water vapour transfer [R] Gaithersburg, MD:National Institute of Standards and Technology,2002.
    [129]CHITRPHIROMSRI P. Modeling of Thermal Performance of Firefighter Protective Clothing During the Intense Heat Exposure [D]. Raleigh, NC, USA; North Carolina State University,2004.
    [130]SONG G W, CHITRPHIROMSRI P, DING D. Numerical Simulations of Heat and Moisture Transport in Thermal Protective Clothing under Flash Fire Conditions [J]. International Journal of Occupational Safety and Ergonomics,2008,14(1):89-106.
    [131]BARKER R L. Modeling of Thermal Protection Outfits for Fire Exposures [R],2004.
    [132]ZHU F L, ZHANG W Y, SONG G W. Heat transfer in a cylinder sheathed by flame-resistant fabrics exposed to convective and radiant heat flux [J]. Fire Saf J,2008, 43(6):401-9.
    [133]朱方龙,王秀娟,张启泽等.火灾环境下应急救援防护服传热数值模拟[J].纺织学报,2009,30(4):106-10.
    [134]SONG G W. Modeling Thermal Protection Outfits for Fire Exposures [D]. North Carolina, USA; North Carolina State University,2002.
    [135]GASPERIN M, JURICICA D, MUSIZZAA B, et al. A model-based approach to the evaluation of flame-protective garments [J]. ISA transactions,2008,47(2):198-210.
    [136]TALUKDAR P, TORVI D A, SIMONSON C J, et al. Coupled CFD and radiation simulation of air gaps in bench top protective fabric tests [J]. Int J Heat Mass Transf, 2010,53(1-3):526-39.
    [137]JIANG Y Y, YANAI E, NISHIMURA K, et al. An integrated numerical simulator for thermal performance assessments of firefighters' protective clothing [J]. Fire Saf J,2010, 45(5):314-26.
    [138]刘洪凤,张富丽.蒸汽防护服装的性能要求及研究现状[J].上海纺织科技,2012,40(5):14-6.
    [1]ASTM F 2701-08. Standard Test Method for Evaluating Heat Transfer through Materials for Protective Clothing Upon Contact with a Hot Liquid Splash [S]. West Conshohocken, PA, USA.2008.
    [2]李小辉.防火服装热防护性能的测评及影响因素研究[D].上海;东华大学,2012.
    [3]ASTM F1930-12. Standard Test Method for Evaluation of Flame Resistant Clothing for Protection against Flash Fire Simulations Using an Instrumented Manikin [S]. West Conshohocken, PA, USA.2012.
    [4]TORVI D A. Heat Transfer in Thin Fibrous Materials under High Heat Flux Conditions [D]. Edmonton, AB; University of Alberta,1997.
    [5]PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm [J]. Journal of Applied Physiology,1948,1(2):93-122.
    [6]HENRIQUES F C, MORITZ A R. Studies of thermal injury:Ⅰ.The conduction of heat to and through skin and the temperature attained therein [J]. American Journal of Pathology, 1947,23(4):531-49.
    [7]STOLL A M, CHIANTA M A. Method and rating system for evaluation of thermal protection [J]. Aerosp Med 1969,40(11):1232-8.
    [8]TAKATA A N. Development of criterion for skin burns [J]. Aerospace medicine,1975, 45(6):634-7.
    [9]ASTM D 1777-96. Standard Test Method for Thickness of Textile Materials [S]. West Conshohocken, PA, USA.1996.
    [10]ASTM D 737-04. Standard Test Method for Air Permeability of Textile Fabrics [S]. West Conshohocken, PA, USA.2004.
    [11]SHALEV 1, BARKER R L. A comparison of laboratory methods for evaluating thermal protective performance in convective/radiant exposures [J]. Text Res J,1984,54(10): 648-54.
    [12]TORVI D A, DALE J D. Effects of variations in thermal properties on the performance of flame resistant fabrics for flash fires [J]. Text Res J,1998,68(11):787-96.
    [13]SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters [J]. Text Res J,2000,70(7):567-73.
    [14]JALBANI S H, ACKERMAN M Y, CROWN B M, et al. Modification of ASTM F 2701-08 apparatus for use in evaluating protection from low pressure hot water jets [M]. 9th symposium on performance of protective clothing and equipment:emerging issues and technologies. Anaheim, California; ASTM Committee F23 on Personal Protective Clothing and Equipment.2011.
    [15]OLDERMAN G M. Liquid repellency and surgical fabric barrier properties [J]. Engineering in Medicine,1984,13(1):35-43.
    [16]SONG G W, CAO W, GHOLAMREZA F. Analyzing stored thermal energy and thermal protective performance of clothing [J]. Text Res J,2011,81(11):1124-38.
    [17]GHOLAMREZA F, SONG G W, ACKERMAN M Y. Analyzing the discharged energy and its contribution to thermal performance of protective clothing upon hot liquid splash; proceedings of the Fiber Society Conference Spring, St. Gallen, Switzerland, F,2012 [C].
    [1]AATCC 127-2008. Water Resistance:Hydrostatic Pressure Test [S].Research Triangle Park, NC, USA.2008.
    [2]AATCC 42-2000. Water Resistance:Impact Penetration Test [S]. Research Triangle Park, North Carolina.2006.
    [3]AATCC 35-2006. Warwe Resistance:Rain Test [S]. American Association of Textile Chemists and Colorists.2006.
    [4]ASTM D 1777-96. Standard Test Method for Thickness of Textile Materials [S]. West Conshohocken, PA, USA.1996.
    [5]ASTM D 737-04. Standard Test Method for Air Permeability of Textile Fabrics [S]. West Conshohocken, PA, USA.2004.
    [6]LI Y, ZHU Q Y. Simultaneous heat and moisture transfer with moisture sorption, condensation, and capillary liquid diffusion in porous textiles [J]. Text Res J,2003,73(6): 515-24.
    [7]WONG K K, TAO X M, YUEN C W M, et al. Wicking properties of linen treated with low temperature plasma [J]. Text Res J,2001,71(1):49-56.
    [8]CHATTERJEE P K. Absorbency [M]. New Jersy:Elsevier Science Publishing Company, 1985.
    [9]UNSAL E, DANE J H, SCHWARTZ P. Effect of liquid characteristics on the wetting, capillary migration, and retention properties of fibrous polymer networks [J]. J Appl Polym Sci,2005,97(1):282-92.
    [10]OLDERMAN G M. Liquid repellency and surgical fabric barrier properties [J]. Engineering in Medicine,1984,13(1):35-43.
    [11]CAO W, CLOUD R. Effects of temperature on liquid penetration performance of surgical gown fabrics [J]. International Journal of Clothing Science and Technology, 2010,22(5):319-32.
    [12]LIU Y Y, CHEN X Q, XIN J H. Can superhydrophobic surfaces repel hot water? [J]. J Mater Chem,2009,19(31):5602-11.
    [1]TORVI D A, DALE J D, FAULKNER B. Influence of air gaps on bench-top test results of flame resistant fabrics [J]. Journal of Fire Protection Engineering,1999,10(1):1-12.
    [2]SAWCYN C M J. Heat transfer model of horizontal air gaps in bench top testing of thermal protective fabrics [D]. Saskatoon, Canada; University of Saskatchewan,2003.
    [3]SONG G W. Clothing air gap layers and thermal resistance performance in single layer garment [J]. Journal of Industrial Textiles,2007,36(3):193-205.
    [4]MAH T, SONG G W. Investigation of the contribution of garment design to thermal protection. Part 1:Characterizing air gaps using three-dimensional body scanning for women's protective clothing [J]. Text Res J,2010,80(13):1317-29.
    [5]LI J, LU Y H, LI X H. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fire [J]. Text Res J,2012,83(12):1235-43.
    [6]WANG Y Y, LU Y H, LI J, et al. Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance [J]. Fibers and Polymers,2012,13(5): 647-52.
    [7]NFPA 1971. Standard on protective ensembles for structural firefighting and proximity firefighting [S]. Quincy, MA, USA.2007.
    [8]ASTM D 1777-96. Standard Test Method for Thickness of Textile Materials [S]. West Conshohocken, PA, USA.1996.
    [9]ASTM D 737-04. Standard Test Method for Air Permeability of Textile Fabrics [S]. West Conshohocken, PA, USA.2004.
    [10]PRZYBYLSKI R, MAG T, ESKIN N A M, et al. Canola Oil [M]//SHAHIDI F. Bailey's Industrial Oil and Fat Products (6th Edition). John Wiley & Sons, Inc.2005.
    [11]FASINA O O, COLLEY Z. Viscosity and specific heat of vegetable oils as a function of temperature:35℃ to 180℃ [J]. Int J Food Properties,2008,11(4):738-46.
    [12]FORMATE TECHNICAL MANUAL FOR CABOT SPECIALTY FLUIDS Chemical and Physical Properties [J/OL] 2008.
    [13]TORVI D A. Heat Transfer in Thin Fibrous Materials under High Heat Flux Conditions [D]. Edmonton, AB; University of Alberta,1997.
    [14]SONG G W. Modeling Thermal Protection Outfits for Fire Exposures [D]. North Carolina, USA; North Carolina State University,2002.
    [15]SAWCYN C M J, TORVI D A. Improving heat transfer models of air gaps in bench top tests of thermal protective fabrics [J]. Text Res J,2009,79(7):632-44.
    [16]SHALEV I, BARKER R L. A comparison of laboratory methods for evaluating thermal protective performance in convective/radiant exposures [J]. Text Res J,1984,54(10): 648-54.
    [17]SUN G, YOO H S, ZHANG X S, et al. Radiant protective and transport properties of fabrics used by wildland firefighters [J]. Text Res J,2000,70(7):567-73.
    [18]LEE Y M, BARKER R L. Thermal protective performance of heat-resistant fabrics in various high intensity heat exposures [J]. Text Res J,1987,57(3):123-32.
    [19]CAMENZIND M A, DALE J D, ROSSI R M. Manikin test for flame engulfment evaluation of protective clothing:Historical review and development of a new ISO standard [J]. Fire Mater,2007,31(5):285-95.
    [1]KEEBLE V B, PREVATT M B, MELLIAN S A. An evaluation of fit of protective overalls manufactured to a proposed revision of ANSI/ISEA 101 [M]//MCBRIARTY J P, HENRY N W. Performance of Protective Clothing:Fourth Volume, ASTM STP 1133. Philadelphia, PA; American Society for Testing and Materials.1992:675-97.
    [2]HUCK J, MAGANGA O, KIM Y. Protective coveralls:evaluation of garment design and fit [J]. International Journal of Clothing Science and Technology,1997,9(1):45-61.
    [3]CROWN E M, ACKERMAN M Y, DALE J D, et al. Design and Evaluation of Thermal Protective Flightsuits:Part II:Instrumented Mannequin Evaluation [J]. Clothing and Textile Research Journal,1998,16(2):79-87.
    [4]KIM I Y, LEE C, LI P, et al. Investigation of air gaps entrapped in protective clothing systems [J]. Fire Mater,2002,26(3):121-6.
    [5]SONG G W. Clothing air gap layers and thermal resistance performance in single layer garment [J]. Journal of Industrial Textiles,2007,36(3):193-205.
    [6]MAH T, SONG G. Investigation of the contribution of garment design to thermal protection. Part 2:Instrumented female mannequin flash-fire evaluation system [J]. Text Res J,2010,80(14):1473-87.
    [7]MAH T, SONG G W. Investigation of the contribution of garment design to thermal protection. Part 1:Characterizing air gaps using three-dimensional body scanning for women's protective clothing [J]. Text Res J,2010,80(13):1317-29.
    [8]LEE Y, HONG K, HONG S A.3D quantification of microclimate volume in layered clothing for the prediction of clothing insulation [J]. Applied Ergonomics,2007,38(3): 349-55.
    [9]WANG Y Y, LU Y H, LI J, et al. Effects of air gap entrapped in multilayer fabrics and moisture on thermal protective performance [J]. Fibers and Polymers,2012,13(5): 647-52.
    [10]LI J, LU Y H, LI X H. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fire [J]. Text Res J,2012,83(12):1235-43.
    [11]HU J L, CHAN Y F. Effect of fabric mechanical properties on drape [J]. Text Res J,1998, 68(1):57-67.
    [12]MAH T, SONG G W. An investigation of the assessment of fabric drape using three-dimensional body scanning [J]. J Text Inst,2010,101(4):324-35.
    [13]PSIKUTA A, FRACKIEWICZ-KACZMAREK J, FRYDRYCH I K, et al. Quantitative Evaluation of air gap Thickness and Contact Area Between Body and Garment [J]. Text Res J,2012,82(14):1405-13.
    [1]SATI R, CROWN E M, ACKERMAN M, et al. Protection from steam at high pressures: Development of a test device and protocol [J]. International Journal of Occupational Safety and Ergonomics,2008,14(1):29-41.
    [2]JALBANI S H, ACKERMAN M Y, CROWN B M, et al. Modification of ASTM F 2701-08 apparatus for use in evaluating protection from low pressure hot water jets [M]. 9th symposium on performance of protective clothing and equipment:emerging issues and technologies. Anaheim, California; ASTM Committee F23 on Personal Protective Clothing and Equipment.2011.
    [3]ACKERMAN M Y, CROWN E M, DALE J D, et al. Project update:Protection from steam and hot water hazards; proceedings of the Protective Clothing Systems for Safety '11, Edmonton, Alberta, Canada, F,2011 [C].
    [4]DALE J D, CROWN E M, ACKERMAN M Y, et al. Instrumented Mannequin Evaluation of Thermal Protective Clothing.; proceedings of the Performance of Protective Clothing:Fourth Volume, ASTM STP 1133, West Conshohocken,PA, USA, F,1992 [C]. American Society for Testing and Materials.
    [5]CROWN E M, DALE J D. Evaluation of flash fire protective clothing using an instrumented mannequin [R] University of Alberta, Edmonton, AB:Final research report prepared for Alberta Occupational Health and Safety Heritage Grant Program,1992.
    [6]PENNES H H. Analysis of tissue and arterial blood temperatures in the resting human forearm [J]. Journal of Applied Physiology,1948,1(2):93-122.
    [7]HENRIQUES F C, MORITZ A R. Studies of thermal injury:Ⅰ. The conduction of heat to and through skin and the temperature attained therein [J]. American Journal of Pathology, 1947,23(4):531-49.
    [8]ASTM D 737-04. Standard Test Method for Air Permeability of Textile Fabrics [S]. West Conshohocken, PA, USA.2004.
    [9]MAH T, SONG G. Investigation of the contribution of garment design to thermal protection. Part 2:Instrumented female mannequin flash-fire evaluation system [J]. Text Res J,2010,80(14):1473-87.
    [10]KEISER C, BECKER C, ROSSI R M. Moisture transport and absorption in multilayer protective clothing fabrics [J]. Text Res J,2008,78(7):604-13.
    [11]UMENO T, HOKOI S, TAKADA S. Prediction of skin and clothing temperatures under thermal transient considering moisture accumulation in clothing [J]. ASHRAE Transactions,2001,107(1):71-81.
    [12]BERRY M F, HOLMES J H, SCHWAB C W. Burn Management [M]//ATLURI P, KARAKOUSIS G C, PORRETT P M, et al. The Surgical Review:An Integrated Basic and Clinical Science Study Guide. Philadelphia; Lippincott Williams and Wilkins.2006: 289-307.
    [13]KIM I Y, LEE C, LI P, et al. Investigation of air gaps entrapped in protective clothing systems [J]. Fire Mater,2002,26(3):121-6.
    114] DORMAN L E. The effects of protective clothing and its properties on energy consumption during different activities [D]. Leicestershire, UK; Loughborough University,2007.
    [15]WANG F M, KUKLANE K, GAO C S, et al. Can the PHS model (ISO7933) predict reasonable thermophysiological responses while wearing protective clothing in hot environments? [J]. Physiological Measurements,2011,32(2):239-49.
    [16]CROWN E M, ACKERMAN M Y, DALE J D, et al. Design and Evaluation of Thermal Protective Flightsuits:Part Ⅱ:Instrumented Mannequin Evaluation [J]. Clothing and Textile Research Journal,1998,16(2):79-87.
    [17]SONG G W. Clothing air gap layers and thermal resistance performance in single layer garment [J]. Journal of Industrial Textiles,2007,36(3):193-205.
    [18]CHEN Y S, FAN J T, QIAN X, et al. Effect of garment fit on thermal insulation and evaporative resistance [J]. Text Res J,2004,74(8):742-8.
    [19]SAWCYN C M J. Heat transfer model of horizontal air gaps in bench top testing of thermal protective fabrics [D]. Saskatoon, Canada; University of Saskatchewan,2003.
    [20]LI J, LU Y H, LI X H. Effect of relative humidity coupled with air gap on heat transfer of flame-resistant fabrics exposed to flash fire [J]. Text Res J,2012,83(12):1235-43.
    [1]BARKER R L. A review of gaps and limitations in test methods for first responder protective clothing and equipment [R] Pittsburgh, Pennsylvania:National Institute for Occupational Safety and Health,2005.
    [2]LEE C, KIM I Y, WOOD A. Investigation and correlation of manikin and bench-scale fire testing of clothing systems [J]. Fire Mater,2002,26(6):269-78.
    [3]CROWN E M, DALE J D, BITNER E. A comparative analysis of protocols for measuring heat transmission through flame resistant materials:Capturing the effects of thermal shrinkage [J]. Fire Mater,2002,26(4-5):207-13.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700