矿井回风喷淋换热器气液两相流仿真及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对影响矿井回风喷淋换热器换热性能、回风阻力、挡水板过水量的因素及规律,基于全热交换效率和通用热交换效率模型,建立了湍流状态下反映气水直接接触热质交换时水滴温度变化的液滴热交换效率模型;利用计算流体动力学软件FLUENT对矿井回风与液滴气、液两相流进行了3D仿真,得出了液滴直径、回风速度、喷淋高度、喷淋方向、喷嘴数量、喷嘴质量流率、液滴与回风之间温差等因素对换热器换热性能的影响规律,以及液滴大小、回风速度、平面挡水板挡板倾角及间距、弧面挡水板半径、蛇型挡水板挡板间距和高度、V型挡水板等因素对回风阻力和挡水板过水量的影响规律。最后通过实验对仿真结果进行了验证。
In order to find the influencing factors and principles on thermal performanceof mine return air spraying heat exchanger (MRASHE), pressure&pressure drop ofmine return air (MRA), and the drift loss rate of drift eliminator (DE), theoreticalmodel of drops heat transfer rate indicating change in drops temperature when returnair and water contact directly was developed based on the overall heat transfer ratemodel and general heat transfer model. Computer fluid dynamics (CFD) simulationsoftware package FLUENT was employed to simulate two-phase flow of MRA andwater droplets in3D space. The influencing principles of thermal performance ofMRASHE by7factors were summed up. These factors include: drop diameter, returnair velocity, spraying height, spraying direction, nozzle number, nozzle mass flow rate,difference in initial temperature between water droplets and MRA, and theinfluencing principles of pressure&pressure drop of MRA, and drift loss rate of DEby several factors of return air velocity, angle between blades of plane DE (PDE) andthe horizontal plane, blades spacing of PDE, blades radius of arc DE (ADE), bladesspacing and height of snake-type DE (SDE), and V-type DE (VDE). Finally, thesimulation results have been experimentally verified.
引文
1.国务院.国务院关于加快发展节能环保产业的意见[EB/OL].(2013-08-11)[2013-8-11].http://news.sina.com.cn/c/2013-08-11/172027920525.shtml.
    2.吕向阳,赵建康.水源热泵技术在矿井系统中的应用[J].节能与环保,2010,(08):43-45.
    3.周华慧.矿井回风余热回收换热装置的换热性能研究[D].河北工程大学,2012.
    4.董志峰,杜春涛,刘建功,等.矿井回风喷淋换热器喷淋高度影响换热效率研究[J].2013,41(05):97-100.
    5.杜春涛,董志峰,孟国营,等.矿井回风喷淋换热器节水及换热效率影响因素研究[J].煤炭科学技术,2012,(12):80-83.
    6.杜春涛,董志峰,孟国营,等.矿井回风喷淋换热器挡水板CFD仿真及研究[J].煤炭工程,2013,(4):106-108.
    7. Scybf.中共十八大根据我国经济社会发展实际,提出的确保在2020年全面建成小康社会宏伟目标[EB/OL].[2013-9-24]. http://forum.home.news.cn/thread/109890046/1.html.
    8.中国科学院能源领域战略研究组.中国至2050年能源科技发展路线图[G].科学出版社,2009.
    9.卢平.能源与环境概论[M].中国水利水电出版社,2011.
    10.武敬,陈华,张良斌.节能工程概论[M].武汉理工大学出版社,2011.
    11.钱鸣高.煤炭的科学开采[J].煤炭学报,2010,(04):529-534.
    12.钱鸣高,缪协兴,许家林.资源与环境协调(绿色)开采[J].煤炭学报,2007,(01):1-7.
    13.刘长友,汪理全,李佃平,等.煤矿开采新理论与新技术:中国煤炭学会开采专业委员会2006年学术年会,徐州,2006[C].中国矿业大学出版社.
    14.王悦汉,汪理全,翟德元.矿井“掘、采、治”开采技术体系的理论探讨:中国煤炭学会开采专业委员会2006年学术年会,徐州,2006[C].中国矿业大学出版社.
    15.瞿群迪,周华强,侯朝炯,等.煤矿膏体充填开采工艺的探讨[J].煤炭科学技术,2004,(10):67-69.
    16.刘建功,赵庆彪.综合机械化充填采煤[J].煤炭学报,2010,(09):1413-1418.
    17.刘建功,赵庆彪.邢台矿建筑物下综合机械化固体充填采煤技术[J].煤炭科学技术,2010,(03):18-21.
    18.缪协兴,张吉雄,郭广礼.综合机械化固体充填采煤方法与技术研究[J].煤炭学报,2010,(01):1-6.
    19.刘建功.冀中能源低碳生态矿山建设的研究与实践[J].煤炭学报,2011,(02):317-321.
    20.冯小凯.高温矿井降温技术研究及其经济性分析[D].西安科技大学,2009.
    21.刘贵平,黄宗文.利用矿井回风排除制冷机冷凝热技术[J].中州煤炭,1999,(02):23-24.
    22.王建学,裴伟,牛永胜,等.一种矿井回风源热泵系统:中国,201020601988.4[P].2011.06.01.
    23.马建忠.风源热泵技术在采暖系统的应用[J].中小企业管理与科技(下旬刊),2011,(09):265.
    24.佚名.冀中股份东庞煤矿北井回风换热源热泵工程[EB/OL].[2013-9-26].http://www.doc88.com/p-849510055078.html.
    25.李振华.矿井回风源热泵节能技术应用[J].能源与节能,2012,(10):37-38.
    26.尹延青.矿井用喷雾装置:中国,200520016181.3[P].2006.06.07.
    27.朱晓彦.矿井回风热回收利用的方法及装置:中国,200610041512.8[P].2007.02.21.
    28.辛嵩,王伟,盛振兴.一种矿井回风余热回收装置:中国,200820174785.4[P].2009.10.14.
    29.刘丽娟,王吉明,任丕清.回风源热泵技术在煤矿的应用与实践研究[J].应用能源技术,2012,(10):35-37.
    30.林健.回风源热泵技术在矿井的应用[J].科技创新与应用,2012,(20):99.
    31.王会勤.矿井回风余热在平煤三矿的应用[J].煤炭加工与综合利用,2011,(06):57-59.
    32.徐国领.矿井回风热能利用技术及其应用[J].中州煤炭,2011,(07):87-89.
    33.段军,高进.煤矿暖通系统节能减排——热泵在山西煤矿矿区应用的初步探讨[J].山西煤炭管理干部学院学报,2011,(02):40-42.
    34.赵继瑞,康宁.推广废热回用促进节能减排[J].能源与节能,2011,(08):26-27.
    35.刘建功.冀中能源低碳运行生态矿山建设的创新实践[J].中国煤炭,2010,(05):5-10.
    36.王健,黄炜,王卫东.浅谈冀中能源集团某矿回风源热泵系统的应用与优化[J].黑龙江科技信息,2012,(07):103.
    37.魏京胜,张党育,岳丰田,等.梧桐庄矿热泵系统可用热源分析及利用[J].煤炭科学技术,2012,(05):120-124.
    38.全国煤炭系统首家矿井回风利用项目在东庞矿投入运行[J].煤矿开采,2009,(03):86.
    39.刘军辉,袁鸿省.风源热泵系统在东庞矿的应用研究[J].河北煤炭,2012,(03):66-67.
    40.黄鹤.浅谈朱集西矿井风井井筒冻结工程[J].山西建筑,2011,(12):120-121.
    41.鲁赐福,胡玉龙,姬生梅.朱集西煤矿贯通测量技术[J].硅谷,2011,(22):36-42.
    42.牛永胜,王建学.朱集西煤矿矿井废热回收利用[J].煤矿安全,2012,(09):194-196.
    43.张瑞山,宋锡来,张刚.风源热泵技术在小区供暖中的应用[J].山东煤炭科技,2011,(04):66-67.
    44.孙中文,陈夫科,颜景玉,等.矿井回风热源回收技术及应用[J].山东煤炭科技,2010,(05):30-31.
    45.杨如辉,邹声华,张帝.矿井次生热能资源的利用方式研究[J].矿业工程研究,2010,(04):59-61.
    46.陈生春.空气源热泵热水系统在我省煤矿的应用[J].能源与环境,2009,(05):31-32.
    47.刘伟.矿井水源热泵系统的研究与应用[D].山东科技大学,2009.
    48.盛振兴,辛嵩.矿井通风余热热管回收技术研究[J].矿业安全与环保,2009,(06):85-87.
    49.张培鹏,辛嵩.热管换热器回收矿井回风余热的可行性分析[J].煤矿安全,2011,(05):136-139.
    50.宋艳华.浅谈热泵技术在煤矿中的应用[J].科技情报开发与经济,2011,(25):209-210.
    51.王景刚,张鑫.矿井余热水源热泵技术的研究[J].能源与节能,2012,(03):46-47.
    52.吕向阳,赵建康.水源热泵技术在矿井系统中的应用[J].建筑热能通风空调,2011,(02):64-67.
    53.王景刚,余军,王建学,等.矿井回风换热器数值模拟[J].制冷与空调(北京),2013,13(3):37-40.
    54.范振忠,朱晓彦,王元明,等.矿井回风热能提取装置:中国,200720043354.X[P].2008.10.15.
    55. Launder B E, Spalding D B. The numerical computation of turbulent flows[J]. ComputerMethods in Applied Mechanics and Engineering,1974,3(2):269-289.
    56.权犇,王晓晴.矿井回风余热全回收利用装置:中国,200920021263.5[P].2010.01.13.
    57.陈炬,徐广才,李爱民,等.矿井回风余热回收换热器:中国,201120524559.6[P].2012.09.26.
    58.王玉怀,张军,牛永胜,等.一种矿井回风综合处理扩散塔:中国,201020202327.4[P].2011.03.23.
    59.王建学,裴伟,牛永胜,等.一种高速矿井回风换热器及其使用方法:中国,201110301689.8[P].2012.04.11.
    60.牛永胜,王建学,裴伟,等.一种直接膨胀式矿井回风源热泵系统及其运行方法:中国,201110405762.6[P].2012.06.13.
    61.王建学,裴伟,牛永胜,等.一种矿井回风部分废能回收利用系统:中国,201220045271.5[P].2012.09.19.
    62.牛永胜,王建学,裴伟,等.一种矿井回风换热器与扩散塔的连接装置:中国,201110405401.1[P].2012.06.13.
    63.朱晓彦.矿井回风热回收利用的装置:中国,200620078177.4[P].2008.02.20.
    64.朱晓彦.矿井地热能利用装置:中国,200720037929.7[P].2008.02.27.
    65.牛永胜,王建学,裴伟,等.一种煤矿空气压缩机废热回收利用系统:中国,201110372729.8[P].2012.04.11.
    66.牛永胜,王建学,裴伟,等.一种直接膨胀式矿井回风源热泵系统:中国,201120509698.1[P].2012.08.01.
    67.王建学,裴伟,牛永胜,等.矿区防垢涡旋高温热泵机组:中国,201110279569.2[P].
    2012.02.15.
    68.王建学,王景刚,裴伟,等.一种矿井回风换热器性能检测试验系统及其使用方法:中国,201210464698.3[P].2013.02.20.
    69.王建学,裴伟,牛永胜,等.一种基于原有扩散塔的矿井回风热能利用装置:中国,201310005469.X[P].2013.05.01.
    70.王建学,裴伟,牛永胜,等.一种高速矿井回风换热器:中国,201120379225.4[P].
    2012.05.30.
    71.王建学,王景刚,裴伟,等.一种矿井回风换热器性能检测试验系统:中国,201220605611.5[P].2013.05.08.
    72.王倩,宋垚臻.空气与水直接接触热质交换国内外研究进展[J].茂名学院学报,2007,(06):29-33.
    73. Majumdar A K, Singhal A K, Spalding D B. Numerical modeling of wet cooling towers. I:Mathematical and physical models[J]. Journal of heat transfer,1983,105(4):728-735.
    74. Dowdy J A, Karabash N S. Experimental determination of heat and mass transfercoefficients in rigid impregnated cellulose evaporative media[J]. ASHRAE Transactions,1987,93(2):382-395.
    75. Yan W. Evaporative cooling of liquid film in turbulent mixed convection channel flows[J].International journal of heat and mass transfer,1998,41(23):3719-3729.
    76. Yan W, Soong C. Convective heat and mass transfer along an inclined heated plate withfilm evaporation[J]. International journal of heat and mass transfer,1995,38(7):1261-1269.
    77. Blagojevi B, Bajsi I. A one-dimensional numerical model of heat and mass transfer inair-water droplet flow[J]. Heat and mass transfer,1996,31(6):435-441.
    78. Kachhwaha S S, Dhar P L, Kale S R. Experimental studies and numerical simulation ofevaporative cooling of air with a water spray—I. Horizontal parallel flow[J]. Internationaljournal of heat and mass transfer,1998,41(2):447-464.
    79. Kachhwaha S S, Dhar P L, Kale S R. Experimental studies and numerical simulation ofevaporative cooling of air with a water sprayII. Horizontal counter flow[J]. Internationaljournal of heat and mass transfer,1998,41(2):465-474.
    80. Terekhov V I, Pakhomov M A, Chichindaev V V. Effect of Evaporation of Liquid Dropletson the Distribution of Parameters in a Two–Species Laminar Flow[J]. Journal of AppliedMechanics and Technical Physics,2000,41(6):1020-1028.
    81. Tashtoush B. Heat-and-mass transfer analysis from vegetable and fruit products stored incold conditions[J]. Heat and mass transfer,2000,36(3):217-221.
    82. Belahmidi E M, Mir A, Bendou A. Numerical study of the evaporative cooling of liquidfilm in laminar mixed convection tube flows[J]. International journal of thermal sciences,2001,40(11):1011-1020.
    83. Inaba H, Aoyama S, Haruki N, et al. Heat and mass transfer characteristics of air bubblesand hot water by direct contact[J]. Heat and mass transfer,2002,38(6):449-457.
    84. Dai Y J, Sumathy K. Theoretical study on a cross-flow direct evaporative cooler usinghoneycomb paper as packing material[J]. Applied thermal engineering,2002,22(13):1417-1430.
    85. Liao C, Chiu K. Wind tunnel modeling the system performance of alternative evaporativecooling pads in Taiwan region[J]. Building and Environment,2002,37(2):177-187.
    86. Feddaoui M, Mir A, Belahmidi E. Numerical simulation of mixed convection heat and masstransfer with liquid film cooling along an insulated vertical channel[J]. Heat and masstransfer,2003,39(5-6):445-453.
    87. Sobin V M, Dashkov G V. Heat and mass transfer under cooling of flowing water sheets byan air counterflow[J]. Journal of Engineering Physics and Thermophysics,2005,78(4):651-661.
    88. Sureshkumar R, Kale S R, Dhar P L. Heat and mass transfer processes between a waterspray and ambient air–I. Experimental data[J]. Applied Thermal Engineering,2008,28(5):349-360.
    89. Sureshkumar R, Kale S R, Dhar P L. Heat and mass transfer processes between a waterspray and ambient air–II. Simulations[J]. Applied Thermal Engineering,2008,28(5):361-371.
    90. Abou Al-Sood M M, Birouk M. Droplet heat and mass transfer in a turbulent hotairstream[J]. International Journal of Heat and Mass Transfer,2008,51(5):1313-1324.
    91. Heyns J A, Kr ger D G. Experimental investigation into the thermal-flow performancecharacteristics of an evaporative cooler[J]. Applied Thermal Engineering,2010,30(5):492-498.
    92. Mizushina T, Ito R, Miyashita H. Experimental study of an evaporative cooler[J].International chemical engineering,1967,7(4):727-732.
    93. Jafari Nasr M R, Behfar R. A novel design for evaporative fluid coolers[J]. AppliedThermal Engineering,2010,30(17):2746-2752.
    94. Papaefthimiou V D, Rogdakis E D, Koronaki I P, et al. Thermodynamic study of the effectsof ambient air conditions on the thermal performance characteristics of a closed wet coolingtower[J]. Applied Thermal Engineering,2012,33:199-207.
    95.由世俊,张卫江.金属填料型直接蒸发式空气冷却器的研究[J].制冷学报,1994,4(4):28-31.
    96.张旭,陈沛霖.直接蒸发冷却过程不可逆热动力学分析[J].同济大学学报:自然科学版,1995,23(6):638-643.
    97.张旭,陈沛霖.空气热湿处理的不可逆热力学分析及Le研究[J].同济大学学报:自然科学版,1999,27(5):561-566.
    98.张庆民,陈沛霖.空气经过淋水纸质填料时的热湿交换过程[J].同济大学学报:自然科学版,1995,23(6):648-653.
    99.葛克山,王群,任迪峰.湿帘中气-液传质系数及压降的测定[J].中国农业大学学报,1999,4(2):82-85.
    100.杨强生,饶钦阳,范云良,等.喷雾强化空气冷却器的实验研究[J].上海交通大学学报,1999,33(3):313-317.
    101.张继元.湿垫内“水-气”间热质交换过程的理论分析[J].农业机械学报,1999,30(4):47-50.
    102.代彦军,张鹤飞.降膜蒸发冷却复合传热传质研究[J].太阳能学报,1999,(04):385-391.
    103.张寅平,朱颖心,江亿.水—空气处理系统全热交换模型和性能分析[J].清华大学学报(自然科学版),1999,(10):35-38.
    104.杨丽明,张金涛.水冷却塔传质过程理论模型研究[J].制冷,2000,19(4):12-15.
    105.由世俊,华君,涂光备.金属填料表面热质传递实验研究[J].制冷学报,2000,4:35-39.
    106.邢永杰,魏东.淋水金属填料的直接蒸发冷却实验研究[J].制冷,2001,20(4):16-19.
    107.黄翔,武俊梅,宣永梅.两种填料直接蒸发冷却式空调机性能的实验研究[J].制冷学报,2001,3(33):4.
    108.王新泉,田传胜,王晓璐,等.有限空间空气与水热湿交换过程的计算机数值模拟[J].郑州纺织工学院学报,2001,(04):17-20.
    109.李刚,黄翔,颜苏芊,等.喷水室热、质传递的理论分析[J].纺织高校基础科学学报,2002,(04):337-340.
    110.孟华,龙惟定,王盛卫.适于系统仿真的冷却塔模型及其实验验证[J][J].暖通空调,2004,34(7):1-5.
    111.由世俊,牛润萍,张欢.空调用填料表面传热传质性能的预测分析[J][J].暖通空调,2006.
    112.葛柳平,张欢,孙贺江,等.金属填料内空气热湿处理的热质传递[J].煤气与热力,2005,25(3):16-19.
    113.孙贺江,由世俊,涂光备.空调用金属填料传热传质性能实验[J].天津大学学报,2005,38(6):561-564.
    114.王助良,张敏,颜学升,等.车间湿帘降温系统热湿交换的研究[J].农业机械学报,2006,37(12):139-143.
    115.张丹,黄翔,吴志湘.蒸发冷却空调最佳淋水密度的实验研究[J].西安工程科技学院学报,2006,20(2):191-194.
    116.宋垚臻.空气与水逆流直接接触热质交换模型计算及与实验比较[J].化工学报,2005,(06):999-1003.
    117.宋垚臻.空气与水顺流直接接触热质交换过程模型计算及分析[J].农业工程学报,2006,(01):6-10.
    118.宋垚臻.空气与水逆流直接接触热质交换过程模型计算及分析[J].化工学报,2005,(04):620-625.
    119.宋垚臻,吕金虎,卓献荣.空气与水直接接触热质交换顺流和逆流过程特性比较[J].化工进展,2005,(07):783-787.
    120.吴治将,汪南,朱冬生.立式蒸发式冷凝器强化传热实验研究[J].低温工程,2010,(003):26-29.
    121.李雪玲.非饱和蒸发式冷却器设计及强化传热性能研究[D].华东理工大学,2011.
    122.赵荣义,范存养,薛殿华,等.空气调节[M].北京:中国建筑工业出版社,2009.
    123.薛殿华.空气调节[M].1.北京:清华大学出版社,2006.
    124.颜苏芊.靶式撞击流喷水室对空气热湿处理和喷嘴流场模拟研究[D].西安建筑科技大学,2011.
    125.周亚素,甘长德,赵敬德.纺织厂空气调节[M].3.北京:中国纺织出版社,2010.
    126.周义德,杨瑞梁,吴杲.纺织空调除尘节能技术[M].北京:中国纺织出版社,2009.
    127. John D. Anderson J. Computational Fluid Dynamics: The Basic with Application[M].Beijing: Tsinghua University Press,2010.
    128. Fluent Inc. Fluent6.3User's Guide[EB/OL].[2013-9-10].http://ishare.iask.sina.com.cn/f/13905788.html?from=like.
    129. Al-Waked R, Behnia M. CFD simulation of wet cooling towers[J]. Applied ThermalEngineering,2006,26(4):382-395.
    130.于勇,张俊明,姜连田. FLUENT入门与进阶教程[M].北京:北京理工大学出版社,
    2008.
    131. Morsi S, Alexander A J. An investigation of particle trajectories in two-phase flowsystems[J]. J. Fluid Mech,1972,55(2):193-208.
    132. Haider A, Levenspiel O. Drag coefficient and terminal velocity of spherical andnonspherical particles[J]. Powder technology,1989,58(1):63-70.
    133. Kroger D G. Air-cooled heat exchangers and cooling towers[M]. PennWell Books,2004.
    134. Kloppers J C. A critical evaluation and refinement of the performance prediction ofwet-cooling towers[D]. Stellenbosch: University of Stellenbosch,2003.
    135. Xu Z, Xiao Y, Wang Y. Experimental and theoretical studies on air humidification by awater spray at elevated pressure[J]. Applied thermal engineering,2007,27(14):2549-2558.
    136.鲁孟群,刘何清,李春林,等.喷水室内热湿交换数值模拟研究[J].制冷与空调(四川),2010,24(006):101-106.
    137.龚光彩,陈可,马扬.数值模拟V型百叶窗过滤器气粒两相场分布[J].过滤与分离,2004,14(3):19-22.
    138.马尔文公司.马尔文激光衍射粒度分析仪工作原理[EB/OL].[2013-9-30].http://www.malvern.com.cn.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700