玻璃纤维和化学纤维滤料对悬浮细菌颗粒的过滤性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代空调建筑的兴起,微生物气溶胶在空调建筑内引起的污染问题也更加重视。微生物气溶胶可以引起呼吸道感染和病态建筑综合症。微生物气溶胶的存在严重威胁着人类的居住环境和身体健康,对室内环境空气质量造成了影响。现在控制微生气溶胶污染的主要手段包括紫外消毒、化学涂料和空气过滤。空气过滤是一种既经济又安全的手段。过滤材料是空气过滤过程的重要部件。过滤材料主要有玻璃纤维和化学纤维两种。玻璃纤维在高效过滤材料中有着广泛的应用,而化学纤维能够加载静电,从而获得更高的过滤效率却不会引起阻力的增加。因此带静电的化学纤维也有着非常广泛的市场。
     到目前为止,对颗粒物气溶胶的过滤效率的研究已经非常成熟,但是对微生物气溶胶的研究还存在很多问题。究其原因在于研究人员使用的“标识”微生物气溶胶都不相同,微生物气溶胶和颗粒物在形状、密度其他特性等方面与颗粒物气溶胶存在着很大的不同。李全鹏和韩贵媛在微生物气溶胶空气过滤效率的研究做了大量的工作,他们研究了中效滤料的过滤效率以及容尘量等对微生物过滤的影响。此项研究是在上述研究的基础上进行的,研究高效滤料不同滤速下微生物气溶胶的过滤效率。结果表明亚高效和高效滤料对以粘质沙雷为代表的微生物气溶胶有很高的过滤效率,接近100%。因此在微生物要求不高的场合,采用亚高效滤料或者高效滤料已经可以达到要求。随着滤速的升高,高效滤料对微生物气溶胶的过滤效率虽然在减小,但是趋势不明显。
     而早在1930年静电力在过滤器中的实际应用就己经开始。但是静电过滤材料使用中会由于各种原因使荷电强度逐渐减弱,滤材上的电荷可能被中和,致使过滤性能下降。过滤性能的下降会导致控制的空气质量达不到标准。对于静电滤料而言,其去除静电后的效率就是“最低效率”。测量带静电过滤材料效率的方法大多采用欧盟标准EN779中推荐的测量方法,采用异丙醇浸泡方法对静电滤料进行消静电处理后再进行过滤效率测试。本实验在上述方法的基础上对三种带电滤料又进行了异丙醇熏蒸和蒸汽消静电处理,进行比对实验。分别测量了初始效率处理后4小时、8小时、24小时和48小时的过滤效率。结果发现熏蒸和蒸汽方法得到的效率趋势相同,静电滤料在最初的4小时内过滤效率下降得最快且基本达到稳定值。而采用浸泡方法的到的最低效率远高于其余两种方法得到的效率值。三种处理方法没有造成滤料的结构改变。
With the development of the air conditioning, bioaerosol contaminant goes into people’s eyes. Bioaerosol can lead to the sick building symptom and respiratory infection. The existence of bioaerosol threatens people’s health and indoor air environment. Until now the methods of controlling bioaerosol are UV disinfection, chemical coating and filtration. Air filtration is the most economical and safe method of all. Filter medias are an important part of filtration process. Filtration media can be divided into glass fibers and chemical fibers. Fiber glass filter material has a wide range of applications in high efficiency air filters. And chemical filter material can be loaded with electrostatic, which leads to higher efficiency and lower resistance. So electrostatic filters are also widely used in markets.
     Filtration of indoor particulates has been studied extensively[1]. However, the experimental and theoretical study for indoor bioareosol is not comprehensive and systemic because people paid less attention to it before. Three are some reasons for this. The characterized bioaerosol is different from each other. And bioaerosol is different from particles in shape, density and other characters and so on. Senior students did lots of work in bioaerosol filtration. They studied the efficiency of medium efficiency filters and dust loading influence. Our study is based on the former work and studies the bioaerosol efficiency of high efficiency filters at different velocities. The results indicated that the efficiency of Serratia marcescens as the representative of the microbial aerosol on sub-high efficiency and high efficiency filters is very high, close to 100%. Therefore, in microbial less demanding situations, the use of sub-high efficiency or high efficiency filter can already meet the requirements. With the increase of filtration rate, high efficiency filter media for aerosol filtration efficiency of micro-organisms becomes smaller, but the trend is not obvious.
     As early as in 1930, the practical application of electrostatic in the filter had begun. However, charge strength of electrostatic filter material decreases owing to various reasons, the charge on the filter and may be discharged, resulting the reduce of filtration performance. Filtration performance degradation will lead to the air quality down to standard. For the electrostatic filters, the efficiency after the removal of static electricity is "minimum efficiency." The method of measuring the minimum efficiency with electrostatic filter material is recommended in the EU standard EN779, which is the use of isopropyl alcohol dipping method for anti-static treatment electrostatic filter and then tests the filtration efficiency. The experimental methods we used are fumigation and steaming treatment besides the dipping method. We make comparisons with the three experiments. We measured the filtration efficiency of processing in the initial 4 hours, 8 hours, 24 hours and 48 hours. The results showed that the efficiency obtained by fumigation and steaming shows a similar trend. In the first four hours, the filtration efficiency declines fastest and then keeps stable. The efficiency of dipping approach to the minimum efficiency is much higher than the other two methods, the efficiency. Above all, three kinds of treatment did not cause structural changes in the filter.
引文
[1]Kowalski W J. Filtration of airborne microorganisms:Modeling and prediction [J]. ASHRAE Transactions: Research, 1999, 105(2): 4-17.
    [2]邱济夫,聂沈.抗菌空气过滤器性能评价方法的研究[J].洁净与空调技术, 2005, 12(1): 1-6.
    [3]车凤翔.空气生物学原理及应用[M].北京:科学出版社, 2004.
    [4]Flannigan B, Miller J D. Health implications of fungi in indoor environments-an overview: [J]. In:Samson R, Flannigan B, Flannigan M, Graveson S .Health Implications of Fungi in Indoor Environments. Amsterdam,the Netherlands: Elsevier Science Publications.1994,3-28.
    [5]Park J H, Schleiff P, Attfield M, et al. Building-related respiratory symptoms can be predicted with semi-quantitative indices of exposure to dampness and mold [J]. Indoor Air, 2004, 14(6): 425-433.
    [6]Kilpel?inen M, Terho E, Helenius H, et al. Home dampness, current allergic diseases, and respiratory infections among young adults [J]. Thorax, 2001, 56(6): 462-467.
    [7]Savilahti R, Uitti J, Roto P, et al. Increased prevalence of atopy among children exposed to mold in a school building [J]. Allergy, 2001, 56(2): 175-179
    [8]Savilahti R, Uitti J, Laippala P, et al. Respiratory morbidity among children following renovation of a water-damaged school [J]. Archives of Environmental Health, 2000, 55(6): 405-410.
    [9]Taskinen T, Hyv?rinen A, Meklin T, et al. Asthma and respiratory infections in school children with special reference to moisture and mold problems in the school [J]. Acta Paediatrica, 1999, 88(12): 1373-1379.
    [10]Teeuw K B, Vandenbroucke-Grauls M J E C, Verhoef J. Airborne gram-negative bacteria and endotoxin in sick building syndrome: a study in Dutch governmental office buildings [J]. Archives of Internal Medicine, 1994, 154(20): 2339-2345.
    [11]Fraser D W, Tsai T R, Orenstein W, et al. Legionnaires' disease [J]. New England Journal of Medicine, 1977, 297(22): 1189-1197.
    [12]Griffiths W D, Stewart I W, Futter S J, et al. The development of sampling methods for the assessment of indoor bioaerosols [J]. Science, 1997, 28(3): 437-457.
    [13]Wang Z, Reponen T, Grinshpun S A, et al. Effect of sampling time and air humidity on the bioefficiency of filter samplers for bioaerosol collection [J]. Journal of Aerosol Science, 2001, 32(5): 661-674.
    [14]周德庆.微生物学教程(第二版)[M].北京:中国教育出版社, 2002.
    [15]于玺华.现代空气微生物学[M].北京:人民军医出版社, 2002.
    [16]赵红梅.微生物气溶胶对畜牧业生产的影响[J].畜牧兽医杂志, 2001, 20(4): 16-18.
    [17]Hambraeus A. Aerobiology in the operating room-- a review [J]. Journal of Hospital Infection, 1988,11(A): 68-76.
    [18]李劲松.试论室内空气生物污染[J].中国预防医学杂志, 2002, 3(3): 4.
    [19]Hodgson M. Field studies on the sick building syndromea [J]. Annals of the New York Academy of Sciences, 1992, 641(1): 21-36.
    [20]Pope C A, Dockery D W, Schwartz J. Review of epidemiological evidence of health effects of particulate air pollution [J]. Inhalation Toxicology, 1995, 7(1): 1-18.
    [21]Shahan T, Sorenson W, Lewis D. Superoxide anion production in response to bacterial lipopolysaccharide and fungal spores implicated in organic dust toxic syndrome [J]. Environmental research, 1994, 67(1): 98-107.
    [22]Ahearn D, Crow S, Simmons R, et al. Fungal colonization of air filters and insulation in a multi-story office building: production of volatile organics [J]. Current Microbiology, 1997, 35(5): 305-308.
    [23]Siegel J, Walker I. Deposition of biological aerosols on HVAC heat exchangers[M]. California: Lawrence Berkeley National Laboratory , 2001.
    [24]Tsai F, Macher J, Hung Y. Concentrations of airborne bacteria in 100 US office buildings [C]. Proceedings of Indoor Air, 2002, 353-359.
    [25]Abe K. Fungal index and contamination in air conditioners when cooled [J]. Journal of the Society of Indoor Environment Japan, 1998, 1:41-50.
    [26]斯国静,吴小辉,俞骅,等.杭州市公共场所集中空调通风系统卫生状况调查[J].中国卫生检验杂志, 2006, 16(8): 973-973.
    [27]Cartwright J. Particle shape factors [J]. Annals of Occupational Hygiene, 1962, 5(3): 163-171.
    [28]Arthur L K. The logarithm in biology I. Mechanisms generating the log-normal distribution exactly [J]. Journal of Theoretical Biology, 1966, 12(2): 276-290.
    [29]Koch A L. Bacterial growth and form [M]. 2nd ed.Germany: Springer, 2001.
    [30]Koppes L H, Woldringh C L, Nanninga N. Size variations and correlation of different cell cycle events in slow-growing Escherichia coli [J]. Journal of Bacteriology, 1978, 134(2): 423-433.
    [31]Zaritsky A. On dimensional determination of rod-shaped bacteria [J]. Journal of Theoretical Biology, 1975, 54(2): 243-248.
    [32] Bliss C I. Statistics in biology [M]. New York: McGraw-Hill, 1967.
    [33]Gabriel K R. A simple method of multiple comparisons of means [J]. Journal of the American Statistical Association, 1978, 73(364): 724-729.
    [34]Parker C R. Aerosol science and technology [M]. New York: McGraw-Hill, 1993.
    [35]Ryan K J, Ray C G. Sherris medical microbiology [M]. 4th ed. New York:McGraw-Hill Medical, 2010.
    [36]Colman G. Adhesion of microorganisms to surfaces [J]. Journal of Medical Microbiology, 1980, 13(3): 491-492.
    [37] Cheng W. History of Textile Technology of Ancient China [M]. New York: Scince Press, 1992.
    [38]魏全敏.空气过滤器滤料的选用[J].舰船防化, 2004, C(0): 69-72.
    [39]姚穆.纺织材料学[M]. 3版.北京:中国纺织出版社, 2009.
    [40]张玉惕.产业用纺织品[M].北京:中国纺织出版社, 2009.
    [41]鲍重光.静电技术原理[M].北京:北京理工大学出版社, 1993.
    [42]Davies C N. Fibrous filters for dust and smoke [C]. Proceedings of the 9th International Congress on Industrial Medicine, 1949, 162-196.
    [43]虞霞,沈恒根.关于舒适性空调系统中空气过滤器的研究[J].建筑热能通风空调, 2005, 24(3): 84-87.
    [44]李全鹏.空气微生物在纤维滤料上收集存活的研究[D].天津:天津大学, 2007.
    [45]韩贵媛.微生物气溶胶在纤维滤料上过滤和繁殖规律的研究[D].天津:天津大学,2010.
    [46]谢慧怡.高效空气过滤器及滤料杀菌效率评价方法的研究[D].天津:天津大学, 2006.
    [47]张少凡.制药工业的生物洁净技术研究[D].天津:天津大学, 1989.
    [48]沈晋明,许钟麟.采用生物洁净技术控制医院空调系统的微生物污染[J].洁净与空调技术, 2003, 10(2): 3-7.
    [49]李劲松.室内空气生物污染危害评价和控制的研究[C].中华预防医学会环境卫生分会.全国空气污染与健康学术研讨会论文集.浙江. 2005: 156-170
    [50]车风翔.空气生物学研究现状和进展[J].环境科学, 1986, 11(7): 85.
    [51]Foarde K, Hanley J. Determine the efficacy of antimicrobial treatments of fibrous air filters [J]. ASHRAE Transactions, 2001, 107(1): 156-170.
    [52]Hardin B D, Kelman B J, Saxon A. Adverse human health effects associated with molds in the indoor environment [J]. Journal of occupational and environmental medicine, 2003, 45(5): 470-478.
    [53]Shelton B G, Kirkland K H, Flanders W D, et al. Profiles of airborne fungi in buildings and outdoor environments in the United States [J]. Applied and Environmental Microbiology, 2002, 68(4): 1743-1753.
    [54]Kemp S J, Kuehn T H, Pui D Y H, et al. Filter collection efficiency and growth of microorganisms on filters loaded with outdoor air [J]. ASHRAE Transactions, 1995, (1): 228-238.
    [55]曹明.驻极体滤料对微细颗粒物分级效率的实验研究[D].上海:东华大学, 2007.
    [56]虞霞.民用空调中控制颗粒物浓度用纤维过滤器的测试及应用研究[D].上海:东华大学, 2005.
    [57]May K R. Aerosol impaction jets [J]. Journal of Aerosol Science, 1975, 6(6):403-404, IN401, 405-411.
    [58]Lowkis B, Motyl E. Electret properties of polypropylene fabrics [J]. Journal of Electrostatics, 2001, 51-52: 232-238.
    [59]Kim J, Jasper W, Hinestroza J. Direct probing of solvent induced charge degradation in polypropylene electret fibres via electrostatic force microscopy [J]. Journal of Microscopy, 2007, 225(1): 72-79.
    [60]Kim J, Jasper W, Hinestroza J. Charge Characterization Of An Electrically Charged Fiber Via Electrostatic Force Microscopy [J]. Journal of Engineered Fibers and Fabrics, 2006, 1(2): 30-46.
    [61]Lehtim?ki M, Heinonen K. Reliability of electret filters [J]. Build Environment, 1994, 29(3): 353-355.
    [62]Schurmann G, Fissan H. Fractional efficiencies of an electrostatically spun polymer fiber filter [J]. Journal of Aerosol Science, 1984, 15(3): 317-320.
    [63]Martin S B, Moyer E S. Electrostatic respirator filter media: filter efficiency and most penetrating particle size effects [J]. Applied Occupational and Environmental Hygiene, 2000, 15(8): 609-617.
    [64]Jasper W, Hinestroza J, Mohan A, et al. Effect of xylene exposure on the performance of electret filter media [J]. Journal of Aerosol Science, 2006, 37(7): 903-911.
    [65]Chen C C, Huang S H. The effects of particle charge on the performance of a filtering facepiece [J]. American Industrial Hygiene Association Journal, 1998, 59(4): 227-233.
    [66]Chen C C, Lehtimaki M, Willeke K. Loading and filtration characteristics of filtering facepieces [J]. American Industrial Hygiene Association Journal, 1993, 54(2): 51-60.
    [67]European Committee for Standardization. Particulate Air Filters for General Ventilation [S]. Eletrostatic Discharging Procedure. Belgium. 2002.
    [68]Johansson U. ISO TC142 - WG9 - N091 - IPA RR - COMP . 2011.
    [69]殷平.驻极体静电空气过滤器及其应用[J].建筑热能通风空调, 1999, 18(3): 20-21.
    [70]张威,高翼强,李向红.舒适性空调用空气过滤材料过滤性能的研究[C].中国技术市场协会.中美国际过滤与分离技术研讨会论文集,上海: 2009: 335-348.
    [71]European Committee for Standardization. Particulate Air Filters for General Ventilation [S]. Eletrostatic Discharging Procedure. Belgium. 2010.
    [72]Hinds W C. Aerosol technology: properties, behavior, and measurement of airborne particles [M]. New York: Wiley-Interscience, 1982.
    [73]付海明,沈恒根.纤维过滤器过滤理论的研究进展[J].中国粉体技术, 2003, 9(1): 41-46.
    [74]Freundlich H. Colloid & Capillary Chemistry [M]. USA: Methuen & co. ltd, 1926 .
    [75]Albrecht F. Theoretische Untersuchungenüber die Ablagerung von Staub aus str?mender Luft und ihre Anwendung auf die Theorie der Staubfilter [J]. Physikalische Zeitschrift, 1931, 32(23):48-56.
    [76]Davies C N. The separation of airborne dust and particles [C] .Institution of Mechanical Engineers, London, Proceedings IB, 1952,185-213.
    [77]Friedlander S. Theory of aerosol filtration [J]. Industrial & Engineering Chemistry, 1958, 50(8): 1161-1164
    [78]Thomas D, Penicot P, Contal P, et al. Clogging of fibrous filters by solid aerosol particles Experimental and modelling study [J]. Chemical Engineering Science, 2001, 56(11): 3549-3561.
    [79]Clarenburg L, Piekaar H. Aerosol filter--I theory of the pressure drop across single component glass fibre filters [J]. Chemical Engineering Science, 1968, 23(7): 765-771.
    [80]Clarenburg L, Schiereck F. Aerosol filters-II theory of the pressure drop across multi-component glass fibre filters [J]. Chemical Engineering Science, 1968, 23(7): 773-781.
    [81]Piekaar H, Clarenburg L. Aerosol filters--the tortuosity factor in fibrous filters [J]. Chemical Engineering Science, 1967, 22(12): 1817-1827.
    [82]Kvetoslav R S. Aerosol filtration science at the end of 20th century. Chapter 2.Advance in aerosol Filtration [M]. Boca Roton: Lewis Publishers, 1997.
    [83]Rosner D E, Tandon P, Konstandopoulos A G. Local size distributions of particles deposited by inertial impaction on a cylindrical target in dust-laden streams [J]. Journal of Aerosol Science, 1995, 26(8): 1257-1279.
    [84]陈霖新.洁净厂房的设计与施工[M].北京:化学工业出版社, 2004.
    [85]Maze B, Vahedi T H, Wang Q, et al. A simulation of unsteady-state filtration via nanofiber media at reduced operating pressures [J]. Journal of Aerosol Science, 2007, 38(5): 550-571.
    [86]高晓艳.静电纺纤维/非织造布复合过滤材料的结构性能与模拟[D].苏州:苏州大学, 2009.
    [87]Mechanisms of filtration for high efficiency fibrous filters[CP/OL]. http://www.tsi.com/documents/ITI-041.pdf.
    [88]谢小军,黄翔,狄育慧.驻极体空气过滤材料静电驻极方法初探[J].洁净与空调技术, 2005,12(2): 41-44.
    [89]Kim J, Hinestroza J P, Jasper W, et al. Effect of solvent exposure on the filtration performance of electrostatically charged polypropylene filter media [J]. Textile Research Journal, 2009, 79(4): 343-350.
    [90]Biermann A, Lum B, Bergman W. Evaluation of prototype electrofibrous filters for nuclaer-ventilation ducts[CP/OL]. Lawrence Livermore National Lab, CA (USA), 1982.
    [91]Cantaloube B, Dreyfus G, Lewiner J. Vapor-induced depolarization currents in electrets [J]. Journal of Polymer Science: Polymer Physics Edition, 1979, 17(1):95-101.
    [92]Rychkov A, Cross G, Gonchar M. A method for discriminating between 'external' and 'internal'processes leading to voltage decay from electrets in humid conditions [J]. Journal of Physics D: Applied Physics, 1992, (25)522-524.
    [93]Ohmi T, Sudoh S, Mishima H. Static charge removal with IPA solution [J]. IEEE Transactions on Semiconductor Manufacturing, 1994, 7(4): 440-446.
    [94]May K R. The collison nebulizer: Description, performance and application [J]. Journal of Aerosol Science, 1973, 4(3): 235-238, IN231, 239-243.
    [95]鹿建春.实验空气生物学技术[M].北京:科学出版社. 2004.
    [96]庞增义.一种新型稳压阀[J].分析仪器, 1981(3):63-67.
    [97]European Committee for Standardization. EN 1822-3 High Efficiency Air Filters (HEPA and ULPA) [S]. Part 3: Testing Flat Sheet Filter Media. 1998.
    [98]Andersen A. New sampler for the collection, sizing, and enumeration of viable airborne particles [J]. Journal of Bacteriology, 1958, 76(5): 471-484.
    [99]中华人民共和国国家发展改革委员会. QB/T 2591-2003,中华人民共和国轻工业行业标准(抗菌塑料-抗菌性能试验方法和抗菌效果)[S].北京:中国标准出版社, 2003.
    [100]The American Society for Testing and Materials. Designation. Standard Test Method for Evaluating the Bacterial Filtration Efficiency (BFE) of Medical Face Mask Materials, Using a Biological Aerosol of Staphylococcus aureus [S]. 2001.
    [101]国家环境保护总局,国家质量监督检验检疫总局.中华人民共和国国家标准-病原微生物实验室污染物排放标准[S]. 2006.
    [102]邢松年.高效空气过滤器的检测方法及实际应用[J].医疗卫生装备, 2005, 24(1):29-31.
    [103]中国制冷空调工业协会洁净室技术委员会.空气过滤器与过滤材料国外标准汇编[中册] [S].除菌用HEPA过滤器性能实验方法.北京. 2006.
    [104]蔡杰.空气过滤器专题讲座(续二) [J].洁净与空调技术, 2003,10 (1): 60-62.
    [105]Furuhashi M. Efficiency of bacterial filtration in various commercial air filters for hospital air conditioning [J]. Bulletin of Tokyo Medical and Dental University, 1978, 25(3): 147-155.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700