气垫船特有操纵装置在航向控制中的应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全垫升气垫船是一种高性能船舶,其结构与其它船只有很大的不同,它由下面的气垫压力承担船体重量,通过气垫层使船体与水面或地面隔离。采用空气螺旋桨推进,具有水陆两栖性。由于全垫升气垫船本身的特点,使得气垫船在操纵控制方面与其它运载工具有很大的不同,由于没有水下器件,因此不能像普通船舶一样通过水下器件产生回转向心力,也不能像飞机通过副翼产生侧向的动升力来实现回转。
     气垫船通过空气舵产生回转力,但由于船浮在水面上,船的水阻力很小,偏航阻力也很小,因而在操舵时很容易产生侧漂,船艏向角也很容易改变,但航迹却没有实现真正的回转。在侧风作用下,气垫船的一弦容易侧漏,产生侧漂,横倾等,在气垫船的航速较低时,气垫船很难控制。此时可以启动气垫船特有的操纵装置来对气垫船进行操纵控制。本论文研究了气垫船的特有操纵装置(执行机构)在气垫船航向控制中的应用。气垫船的特有操纵装置包括旋转喷管、螺旋桨、侧风门。利用这些执行机构对气垫船进行航向控制和回转控制。
     本论文以某型气垫船为对象,首先对全垫升气垫船各个部分建模,分别建立了气动力模型、水动力模型、螺旋桨推力模型、空气舵力模型、侧风门力模型和旋转喷管推力模型,最后在固定坐标系下运用刚体的动力学定理得到了气垫船的运动方程,将其转换到适合于表达水动力的运动坐标系中,完成了气垫船四自由度运动数学模型的建立。然后进行船模仿真试验,用以检验所建立模型的正确性。其次,研究了遗传算法的基本理论和基于遗传算法优化PID控制器参数的理论与方法,并针对本文的控制目的设计了基于遗传算法整定的PID控制器。最后为旋转喷管和螺旋桨分别设计PID控制器和基于遗传算法优化的PID控制器,用来控制气垫船的航向。分别进行了无风仿真试验和有风仿真试验,用以验证操纵装置的有效性和遗传算法的优越性。
Air Cushion Vehicle is a high performance ship, its structure is different from other vessels, its weight is borne by the air-cushion below the vessel, and the vessel is isolated from the surface or the ground by the air-cushion. It adopts air propeller and has amphibious nature. Air Cushion Vehicle has different manipulation control characteristics from other vehicles because of its own characteristic. As it has no underwater devices, it can not generate rotary force by the underwater device as other vessels, and it also can not rotate by the lift produced by the aileron as the aircraft.
     Hovercraft produces the rotary force by the air rudder, as the ship is floating on the water, the water resistance and the yaw resistance is very small, then the ship can easily drift when steering, the heading is also very easy to be changed, while the track has not really circumgyrated. In the crosswind, the hovercraft can easily be missed, drifted, heel etc, coupled with the high speed of the hovercraft, the hovercraft is difficult to control. In this time we can start the specific control devices of the hovercraft to manipulate it. In this paper, we studied the special control device (executive institution) of the hovercraft in the hovercraft heading control. The special control devices of the hovercraft including rotating nozzle, propeller, lateral throttle and so on. We can control the heading and gyration by these executive institutions.
     We take the hovercraft as the research object in this paper. Firstly, we establish the models for each parts of the hovercraft, such as aerodynamic model, hydrodynamic model, propeller thrust model, air rudder model, lateral throttle model and the rotating nozzle model. Then we get the motion equation of the hovercraft using the dynamic theorem of rigid body under the fixed coordinate system, after that, we convert it to the moving coordinate system and we finished the four DOF mathematical model of the hovercraft. In order to test the validity of the model, we imitated the real test for the hovercraft. Secondly, we introduced the basic theory of genetic algorithm and the theory to optimize the parameters of PID controller based on genetic algorithm, and designed adaptive online genetic algorithm tuning PID controller according to the purpose of the paper. Finally, we designed PID control and PID controller based on genetic algorithm for each executive institution to control the heading of the hovercraft. And we do the simulation with wind and without wind in order to test the effectiveness of the control devices and the superiority of the algorithm.
引文
[1]潘金宽,马晓英.驰骋信息化战场的“两栖轻骑”——气垫船的历史与未来.2005,34(8):121-125页
    [2]郭值学.高性能船舶的发展与前景之管见(一).中国造船.2001,42(4):73-82页
    [3]李百齐.21世纪海洋高性能船.国防工业出版社,2001:102-130页
    [4]恽良.气垫船原理与设计.国防工业出版社,1990:113-121页
    [5]陈小弟.梦想已成真——气垫船发展概述.船舶.1998, (6):4-5、11页
    [6]王华.军用气垫船之最.现代军事.2000,10:29-30页
    [7]郭其顺.世界军用气垫船发展之现状.船舶.2001, (1):6-10页
    [8]江军.中国气垫船的发展.中国海军.2004,1:34-40页
    [9]彭桂华.气垫船的回顾与展望.船舶工程.2001,6(1):9-13页
    [10]V.M.Kozin,A.V.Pogorelova. Variation in the wave resistance of an amphibian air-chshion vehicle moving over a broken-ice field.Journal of Applied Mechanics and Technical Physics.2007,41(8):80-84P
    [11]Hebertt Sira-Ramirez. Dynamic Second-Order Sliding Mode Control of the Hovercraft Vessel. IEEE Transactions On Control Systems Technology.2002,10(6):860-865P
    [12]Antonio Pedro Aguiar, Lars Cremean, Joao Pedro Hespanha. Position Tracking for a Nonlinear Underactuated Hovercraft:Controller Design and Experimental Results. Proceedings of the 42nd IEEE Conference on Decision and Control,Maui,Hawaii USA. 2003:3858-3863P
    [13]黄国梁,楼连根,刘天威.全垫升气垫船操纵运动仿真研究.海洋工程.1997,15(2):16-23页
    [14]黄国梁,刘天威,周伟麟,赵健.全垫升气垫船操纵运动研究.船舶工程.1996,(2):20-23页
    [15]ZHAO Shu-qin,SHI Xiao-cheng, SHI Yi-long,and BIAN Xin-qian. Simulation study of plane motion of air cushion vehicle. Journal of Marine Science and Application. 2003,(2):67-71P
    [16]付明玉,张洪雨,施小成,边信黔.气垫船操纵性能理论分析.中国造船.2006,47(3):14:21页
    [17]黄勇,边信黔,匡洪波,付明玉.常规控制和模糊PID控制在全垫升气垫船航向控制中的应用.自动化技术与应用.2005,24(12):36-38页
    [18]匡洪波,施小成,田亚杰,付明玉.全垫升气垫船航迹保持的变结构模糊PID控制.自动化技术与应用.2006,25(8):4-6页
    [19]李殿璞.船舶运动与建模.哈尔滨工程大学出版社.1999:1-33页
    [20]Marcelo A.S. Neves, Claudio A. Rodriguez. Influence of nonlinearities on the limits of stability of ships rolling in head seas. Ocean Engineering.2007,34:1618-1630P
    [21]赵连恩等.高性能船舶水动力原理与设计.哈尔滨工程大学出版社.2001:214-240页
    [22]张根泉.浅谈高密度气垫船的空气舵设计及其气动力性能.船舶.2003,6:37-38页
    [23]M.R. Davis, D.S. Holloway. The influence of hull form on the motions of high speed vessels in head seas. Ocean Engineering.2003,30:2091-2115P
    [24]Ming-Chung Fang, Jhih-Hong Luo. The nonlinear hydrodynamic model for simulating a ship steering in waves with autopilot system. Ocean Engineering.2005, 32:1486-1502P
    [25]Dongkon Lee, S.Y. Hong, G.J. Lee. Theoretical and experimental study on dynamic behavior of a damaged ship in wanes. Ocean Engineering.2007,34:21-31P
    [26]Robert V. Wilsion, Pablo M. Carrica, Fred Stern. Unsteady RANS method for ship motions with application to roll for a surface combatant. Computers & Fluids.2006, 35:501-524P
    [27]Moraes, J.M. Vasconellos, R.G. Latorre. Wave resistance for high-speed catamarans. Ocean Engineering.2004,31:2253-2282P
    [28]Thomas W. Treakle Ⅲ,Dean T. Mook,Stergios I.Liapis,Ali H. Nayfeh.A time-domain method to evaluate the use of moving weights to reduce the roll motion of a ship. Ocean Engineering.2000,27:1321-1343P
    [29]Roger Skjetne,Thor I. Fossen,Petar V. Kokotovic.Adaptive meanuvering with experiments for amodel ship in a marine control laboratory.Automatica.2005, 41:289-298P
    [30]I.N. Lagoudis,C.S. Lalwani,M.M. Naim,J. King. Defining a conceptual model for high-speed vessels.International Journal of Transport Management.2002, (1):69-78P
    [31]S.Esteban, J.M.Giron-Sierra,B.De Anders-Toro,J.M.De La Cruz,and J.M.Riola.Fast ships models for seakeeping improvement studies using flaps and T-foil. Mathematical and Computer Modelling.2005,41:1-24P
    [32]Manuel Haro Casado, Ramon Ferreiri.Identification of the nonlinear ship modele parameters based on the turning test trial and the backstepping procedure. Ocean Engineering.2005,32:1350-1369P
    [33]孙伟.基于模糊神经网络的电力系统短期负荷预测研究.科技与生活.2010,11(20):77-90页
    [34]付强.智能PID控制器在航空发动机控制中的应用研究.西北工业大学硕士学位论文.2005:26-29页
    [35]李士勇等.模糊控制和智能控制理论与应用.哈尔滨工业大学出版社.1990:163-186页
    [36]李瑞霞.智能PID整定方法的仿真与实验研究.太原理工大学硕士学位论文.2007:34-38页
    [37]陶永华.新型PID控制及其应用.机械工业出版社.2002:1-21页
    [38]武交锋,杜永贵.基于自适应在线遗传算法整定的PID控制.机械工业与自动化.2006,6(2):47-51页
    [39]席裕庚,柴天佑,恽为民.遗传算法综述.控制理论与应用.1996,13(6):697-708页
    [40]杨智民,王旭,庄显义.遗传算法在自动控制领域的应用综述.信息与控制.2000,8(4):329-339页
    [41]侯宏霞,王涛,杨国清,王德意.影响遗传算法PID参数优化性能的主要因素.西北水利发电.2002,18(4):5-8页
    [42]刘娜,韩璞,甄成刚.基于遗传算法的PID参数寻优.计算机仿真.2002,(3)70-73页
    [43]任占魁,王玮.基于遗传算法寻优的PID控制技术及应用.计算技术与自动化.2005,24(2):36-38页
    [44]吴春富.基于遗传算法优化的模糊PID控制研究.自动化技术与应用.2005,24(7):14-15页
    [45]韩华,罗安,杨勇.一种基于遗传算法的非线性PID控制器.控制与决策.2005,20(4):448-454页
    [46]ZHANG Liqun, L1 Donghai, TANG DuOyuan, XUE Yali. Tuning PID controllers based On stableregion. Tsinghua Univ(Sci&Tech).2004,44(2):274—277P
    [47]刘金琨.先进PID控制MATLAB仿真第二版.北京:电子工业出版社.2004:115-118页
    [48]蔡自兴.智能控制第二版.北京:电子工业出版社.2004:176-230页
    [49]王莉.自适应遗传算法在PID控制器设计中的应用.西安科技大学学报.2005,25(1):7-11页
    [50]丁寅磊,吕丽霞.基于遗传算法的PID控制器参数优化研究.仪器仪表用户.2009, 16(1):21-25页
    [51]王成龙,付明玉,边信黔.全垫升气垫船四自由度运动仿真.计算机仿真.2009,26(7):31-35页
    [52]付明玉,施小成,丁福光.气垫船航迹反步控制方法研究.哈尔滨工程大学学报.2008,29(3):251-255页
    [53]王成龙等.神经网络PID在全垫升气垫船航向控制中的应用.中国造船.2008,49(6):62-67页

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700