气浮陀螺仪干扰力矩影响因素研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着惯性导航技术的发展及其应用领域的扩大,惯性系统对陀螺仪漂移精度的要求也越来越高。同时,越来越多的新型陀螺仪逐渐发展起来,例如:静电陀螺仪、激光陀螺仪、光纤陀螺仪、振动陀螺仪和微机械陀螺仪等。凭借技术成熟和成本低廉等优势,传统结构的气浮陀螺仪仍然在惯性导航领域发挥着不可替代的作用。然而,受到加工技术等方面的限制,国内气浮陀螺仪生产合格率和稳定性都较低,这大大降低了生产效率、增加了生产成本。影响气浮陀螺仪漂移精度的因素很多,如加工误差等引起的涡流力矩和陀螺仪浮子组件质心位置热不稳定性引起的干扰力矩等。这些干扰力矩对漂移精度的影响错综复杂,一直制约着气浮陀螺仪精度的提高。因此,如何有效地控制诸因素引起的干扰力矩以进一步提高气浮陀螺仪漂移精度是目前迫切需要解决的关键问题。
     本文介绍了气浮陀螺仪漂移误差模型,分析了引起陀螺仪K0和K1项漂移系数增大的影响因素。其中,引起气浮陀螺仪气膜不均匀流动的加工误差等因素影响K0项漂移系数,而陀螺仪浮子组件质心位置的热不稳定性是影响K1项漂移系数的主要因素。因此,针对以上问题着重研究了诸因素对气浮陀螺仪干扰力矩的影响规律,进而为提高陀螺漂移精度提供理论指导。
     文中所研究的气浮陀螺仪各部分气膜分别采用柱坐标和笛卡尔坐标表达式,即:气浮陀螺仪止推气膜部分和节流狭缝部分使用柱坐标系表达式,而浮子径向承载气膜部分则可以展开成笛卡尔坐标系表达式,通过相容性变换实现了柱坐标系与笛卡尔坐标系表达式的统一,进而建立了相同形式的数学表达式。基于气体静压润滑雷诺方程式,利用有限元方法,推导了求解气浮陀螺仪气膜压力分布的有限元方程组。基于Christensen粗糙表面随机模型,分别推导了考虑纵向和横向表面粗糙度的雷诺方程。在求得陀螺仪气膜压力数值解的基础上,给出了根据有限元节点压力求解气浮陀螺仪涡流力矩和径向承载能力的计算公式。利用商业数学软件MATLAB,编写了求解雷诺方程的有限元程序,实现了上述因素对气浮陀螺仪涡流力矩影响的研究,以及气膜压力分布结果的可视化输出。
     气浮陀螺仪加工和装配中产生的形状误差是K0项漂移系数的重要影响因素。本文建立了气浮陀螺仪浮子椭圆形误差、浮子三棱形误差、节流狭缝平行度误差以及浮子径向偏心率的数学模型,并将模型代入有限元方程中,求得了以上因素对气浮陀螺仪气膜压力分布的影响规律,进而分析了其对涡流力矩的影响,提出了有效控制涡流力矩的方法。此外,还分析了气膜厚度和供气压力对陀螺涡流力矩的影响规律,并且得到了气浮陀螺仪节流狭缝宽度和气膜厚度的合理匹配数值。利用图像处理涡流力矩测试仪,检测了若干陀螺组件的涡流力矩数值,一定程度验证了仿真的合理性。
     因为气浮陀螺仪的气膜厚度很薄,而且涡流力矩是一个敏感量,所以表面粗糙度引起的气浮陀螺仪浮子周围气膜压力分布变化将对涡流力矩产生影响。建立了表面粗糙度轮廓算术平均偏差与雷诺方程式中表面粗糙度参数的联系,利用推导的考虑表面粗糙度的雷诺方程,研究了表面粗糙度大小和方向对气浮陀螺仪涡流力矩的影响规律。
     气浮陀螺仪浮子组件质心位置的热稳定性是K1项漂移系数的重要影响因素。本文建立了气浮陀螺仪浮子组件的有限元模型,通过节点约束方程,建立了螺钉预紧力模型,并利用螺钉刚度、螺钉预紧力和螺钉拧紧力矩公式,计算了螺钉预紧力模型与螺钉拧紧力矩的对应关系。模拟了变化温度场中,不同大小的螺钉预紧力对陀螺浮子组件质心位置稳定性的影响,得到了螺钉预紧力的合理数值。通过对特征时间点的变形云图和应力分布规律的分析,提出了改善浮子组件性能的合理建议。
With development of inertial navigation technology and expansion of application domain, required precision of gyroscope in inertial system becomes very high. At the same time, more and more new type of gyroscope appeared, such as electrostatic gyroscope, laser gyroscope, optical fiber gyroscope, vibratory gyroscope and micro mechanical gyroscope. Depending mature technology and low cost, air-floated gyroscope still plays an irreplaceable role in inertial navigation field. However, by the restriction of machining technology, qualified rate and stability of air-floated gyroscope are unsatisfactory. This problem reduces production efficiency, and increases the cost. There are many factors influencing drift precision of air-floated gyroscope, such as vortex torque caused by manufacturing error and disturbing interference torque caused by thermal instability of center of mass of float module. So, how to control the factors influencing drift precision effectively is the key problem.
     This paper introduced the drift error model of air-floated gyroscope and the factors making K0 and K1 drift coefficient increase. Manufacturing error causing inhomogeneous flow in gas film of air-floated gyroscope influences K0 drift coefficient, while, thermal instability of center of mass of float module influences K1 drift coefficient. So, in this paper, the factors influencing the interference torque have been studied.
     Different parts of gas film studied in this paper are usually expressed in cylindrical coordinate and Cartesian coordinate respectively. The thrust part and slot part are usually expressed in cylindrical coordinate, while, radial loading part can be expressed in Cartesian coordinate after expanded into plane. By consistency transformation, the uniform expression of cylindrical coordinate and Cartesian coordinate is obtained. In order to achieve the pressure distribution in gas film, finite element equation is deduced based on aerostatic Reynolds Equation. Then, Reynolds Equation including longitudinal and transverse surface roughness is deduced based on Christensen’s roughness model. The formulas solving the vortex torque and bearing capacity are presented at last. Finite element program used to solve Reynolds Equation is composed by using MATLAB, which is commercial mathematic software. Then research of these factors influencing vortex torque can be achieved expediently, and visual output of gas film pressure distribution can be obtained.
     The shape error generated during manufacturing and assembling process is important factor influencing K0 drift coefficient. In this paper, mathematic models of float oval error, float three-lobing error, slot disalignment error and radial eccentricity ratio are established. Then put these models into finite element equation, and effect of these factors on pressure distribution in gas film is obtained. After that, effect of these factors on vortex torque is analyzed and method controlling vortex torque is put forward. Further, effect of gas film thickness and air supply pressure on vortex torque is also studied, and reasonable matching value of slot width and gas film thickness is obtained. By using vortex torque test instrument, vortex torque of several gyroscopes is measured, and the rationality of emulation is verified.
     The gas film thickness is very small and vortex torque is quite sensitive, so pressure distribution variation caused by surface roughness will influence vortex torque at a certain extent. In this paper, relation between average arithmetic deviation of surface roughness and parameter of surface roughness in Reynolds Equation is established. Effect of magnitude and direction of surface roughness on vortex torque is studied by using Reynolds Equation including surface roughness.
     Thermal stability of center of mass of float module is important factor influencing K1 drift coefficient. Finite element model of air-floated gyroscope is established, and screw pretightening force model is established by using nodal restraint equation. By using screw stiffness and pretightenting force equation, relation between screw pretightenting force in finite model and screw tighten torque is obtained. Then, effect of different pretightening force on the stability of center of mass in variable temperature field is studied, and reasonable screw pretightening force is obtained. At last, the deformation nephogram and stress distribution at the key time points is analyzed, and proper suggestion is put forward.
引文
[1] Hu Z X, Gallacher B J, Burdess J S, et al. A Parametrically Amplified MEMS Rate Gyroscope. Sensors and Actuators A: Physical, 2011, 167(2):249-260.
    [2] Trusov A A, Schofield A R, Shkel A M. Micromachined Rate Gyroscope Architecture with Ultra-high Quality Factor and Improved Mode Ordering. Sensors and Actuators A: Physical, 2011, 165(1):26-34.
    [3] Salah M H, McIntyre M L, Dawson D M, et al. Sensing of the Time-varying Angular Rate for MEMS Z-axis Gyroscopes. Mechatronics, 2010, 20(6):720-727.
    [4] Künzig T, Niessner M, Wachutka G, et al. The Effect of Thermoelastic Damping on the Total Q-factor of State-of-the-art MEMS Gyroscopes with Complex Beam-like Suspensions. Procedia Engineering, 2010, 5:1296-1299.
    [5] Hashimoto T, Maeya J, Fujita T, et al. Concept of MEMS Ring Laser Gyroscope with Movable Optical Parts. Procedia Chemistry, 2009, 1(1):564-567.
    [6] AndòB, Baglio S, Beninato A. Behavior Analysis of a Ferrofluidic Gyroscope Performances. Procedia Chemistry, 2009, 1(1):116-119.
    [7]陆元九.陀螺及惯性导航原理[M].北京:科学出版社,1964.
    [8]杨孟兴,陈俊杰.光纤陀螺惊天温度特性的分析及实验研究[J].中国惯性技术学报,2010,18(6):751-755.
    [9]吴敏镜,易维昆.惯性器件制造技术[M].北京:宇航出版社,1989.
    [10]陆元九.惯性器件[M].北京:宇航出版社,1990.
    [11]马静,苑丹丹,晁代宏,等.基于漂移布朗运动的光纤陀螺加速贮存寿命评估[J].中国惯性技术学报,2010,18(6):756-760..
    [12]苏宝库,李艳波,刘雨,等.陀螺仪漂移测试小角度伺服法实验方案的改进[J].中国惯性技术学报,2010,18(6):765-770.
    [13]王瑚.空气静压轴承有害涡流力矩的研究[J].航空精密制造技术,1988,(3):1-8.
    [14]党根茂.气体润滑技术[M].南京:东南大学出版社,1990.
    [15]温诗铸.静压空气轴承性能的试验研究[J].机械工程学报, 1962,10(3):16-31.
    [16]张言羊.静压式空气轴承的一种近似计算方法[J].西安交通大学学报,1964,(2):35-44.
    [17] Gross W A. Gas Film Lubrication. New York: John Wiley & sons, 1962.
    [18] Constantinesco V N. Gas Lubrication. New York: ASME, Publication, 1969.
    [19] Grassam N S, Powell J W. Gas Lubricated Bearing. London: Butter Worths, 1964.
    [20] Powell J W. Design of Aerostatics Bearings. London: Machinery Publishing Company Limited, 1970.
    [21] Yabe H. A Study on Characteristics of Externally Pressurized Gas Thrust Bearing with Surface-restriction Compensation. Bulletin of JSME, 1979, 22(171):1336-1342.
    [22] Yabe H. A Study on Characteristics of Externally Pressurized Gas Thrust Bearing with Surface-restriction Compensation. Bulletin of JSME, 1982, 25(207):1451-1456.
    [23] Kogure K. A Study on Characteristics of Surface–restriction Compensated Gas Bearing with T-shaped Grooves. Bulletin of JSME, 1982, 25(210):2039-2045.
    [24] Lin G. Analysis of Load Carrying Capacity and Optimal Design of Aerostatics Bearing with Groove Compensation[J]. Journal of JSPE, 1987, 53(4):107-112.
    [25]郭涛,崔燕,姚竹贤.单自由度气浮陀螺仪漂移系数的控制技术[J].中国惯性技术学报,2002,10(2):44-48.
    [26]刘暾,刘育华,陈世杰.静压气体润滑[M].哈尔滨工业大学出版社,1990:1-190.
    [27]乔江东.基于数值模拟的精密摆角铣头气体静压轴承的研究[D].哈尔滨工业大学硕士学位论文,2006.
    [28]郑书飞,蒋书运.一类改进的气体静压轴承压力场分布有限元算法[J].东南大学学报,2009,25(4):501-505.
    [29]周权,赵祥雄,陈汝刚,等.基于有限差分法的动压气体止推轴承静态特性分析[J].润滑与密封,2009,34(8):6-9.
    [30] Awasthi R K,Jain S C, Satish C, et al. Finite Element Analysis of Orifice-Compensated Multiple Hole-Entry Worn Hybrid Journal Bearing[J]. Finite Elements in Analysis and Design, 2006, 42(14-15):1291-1303.
    [31]李树森,孟庆鑫,刘暾.小孔节流静压气体轴颈轴承的静态特性研究[J].润滑与密封,2006,(2):20-23.
    [32]于贺春,马文琦,王祖温,等.基于FLUENT的径向静压气体轴承的静态特性研究[J].润滑与密封,2009,34(12):77-81.
    [33]侯予,赵祥雄,陈双涛,等.小孔节流静压止推气体轴承静特性的数值分析[J].润滑与密封,2008,33(9):1-12.
    [34] Eleshaky M E. CFD Investigation of Pressure Depressions in Aerostatic Circular Thrust Bearings[J]. Tribology International, 2009, 42(7):1108-1117.
    [35] Yoshimoto S, Yamamoto M, Toda K. Numerical Calculations of Pressure Distribution in the Bearing Clearance of Circular Aerostatic Thrust Bearings with a Single Air Supply Inlet[J]. Journal of Tribology, 2007, 129(2):384-390.
    [36] Stout K J. The Effect of Manufacturing Variations on the Performance of Externally Pressurized Gas-lubricated Journal Bearing[J]. Journal of Mechanical Engineering Science, 1985, 199(4):299-309.
    [37] Pande S S, Somasundaram S. Effect of Manufacturing Errors on the Performance of Aerostatic Journal Bearing[J]. Wear, 1981, 66(2):145-156.
    [38]陈明,刘明.几何形误差对气体静压圆柱轴承静特性的影响[J].机械工程师,1987,(2):10-13.
    [39]陈明,刘明.几何形误差对气体静压圆柱轴承静特性影响的研究[C].摩擦学第四届全国学术交流会论文集(第一册),1987,1-13.
    [40]董卫华.几何加工精度对气体动压径向轴承性能的影响[J].南京航空航天大学学报,1996,26(5):635-641.
    [41]李树森,刘暾,张鹏顺.几何形误差对气体静压圆柱轴承运动精度的影响[J].润滑与密封,2001,(3):45-48.
    [42]边新孝,李谋渭,李威.加工误差对气体静压径向轴承的影响[J].北京科技大学学报,2005,27(3):331-333.
    [43]徐建民,陈明.形状误差对气体静压圆柱轴承静特性的影响[J].武汉化工学院学报,1998,20(1):71-74.
    [44]徐建民,陈明.轴承副几何形状误差对空气静压圆柱轴承运动精度的影响[J].武汉化工学院学报,1997,19(3):75-78.
    [45]秦冬黎,姚英学.误差对气体静压球轴承静态承载性能的影响分析[J].哈尔滨轴承,2006,27(3):44-48.
    [46]秦冬黎,姚英学,张海兵.误差对气体球轴承动静压混合承载性能的影响分析[J].机械制造,2007,45(511):55-58.
    [47]姚英学,杜建军,刘暾,等.制造误差对气体静压轴颈-止推轴承静特性影响[J].哈尔滨工业大学学报,2003,35(1):315-318.
    [48]姚英学,杜建军,刘暾,等.制造误差对气体静压轴承涡流力矩影响分析方法研究[J].航空学报,2003,24(2):124-128.
    [49]杜建军,姚英学,高栋,等.气体静压轴颈-止推串接型轴承涡流力矩的有限元分析[J].润滑与密封,2005,(3):57-59.
    [50]秦冬黎,姚英学.小孔节流动静压混合气体润滑球轴承的干扰力矩分析[J].润滑与密封,2007:32(4):131-135.
    [51] Patir N, Cheng H S. An Average Flow Model for Determining Effect of Three-dimensional Roughness on Partial Hydrodynamic Lubrication[J]. Journal of Tribology-transactions of the ASME, 1978, 100:12-17.
    [52] Patir N, Cheng H S. Application of Average Flow Model to Lubrication between Rough Sliding Surface[J]. Journal of Tribology-transactions of the ASME, 1979, 101:220-230.
    [53] Ai X, Cheng H S, Hua D. A Finite Element Analysis of Dynamically Loaded Journal Bearings in Mixed Lubrication[J]. Tribology Transactions, 1998, 41(2):273-281.
    [54] Shi F, Wang Q. A Mixed-TEHD Model for Journal Bearing Conformal Contacts, Part I: Model Formulation and Approximation of Heat Transfer Considering Asperity Contact[J]. Journal of Tribology-transactions of the ASME, 1998, 120(2):198-205.
    [55] Wang Q, Shi F, Lee S C. A Mixed-TEHD Model for Journal Bearing Conformal Contacts,Part II: Contact Film Thickness and Performance Analysis[J]. Journal of Tribology-transactions of the ASME, 1998, 120(2):206-213.
    [56] Majumdar B C, Ghosh M K. Stability of a Rigid Rotor Supported on Rough Oil Journal Bearings[J]. Journal of Tribology-transactions of the ASME, 1990, 112(1):73-77.
    [57] Ramesh J, Majumdar B C, Rao N S. Thermohydrodynamics Analysis of Submerged Oil Journal Bearings Condidering Surface Roughness Effects[J]. Journal of Tribology-transactions of the ASME, 1997, 119(1):100-106.
    [58] Ramesh J, Majumdar B C. Stability of Rough Journal Bearings Using Nonlinear Transient Method[J]. Journal of Tribology-transactions of the ASME, 1995, 117:691-695.
    [59] Ramesh J, Majumdar B C, Rao N S. Non-linear Transient Analysis of Submerged Oil Journal Bearings Considering Surface Roughness andThermal Effects. Journal of Engineering Tribology, 1995, 209(J1):53-61.
    [60] Christensen H. Stochastic models for hydrodynamic lubrication of rough surfaces. Proceedings of the Institution of Mechanical Engineers, 184(55):1013-1026.
    [61] Christensen H, Tonder K. The Hydrodynamic Lubrication of Rough Journal Bearings[J]. Transactions of the ASME, Journal of Lubrication Technology, 1973, 95(2):166-172.
    [62] Guha S K. Analysis of Steady-state Characteristics of Misaligned Hydrodynamic Journal Bearings with Isotropic Roughness Effect[J]. Tribology International, 2000, 33(1):1-12.
    [63] Turaga R, Sekhar A S, Majumdar B C. Stochastic FEM Analysis of Finite Hydrodynamic Bearings with Rough Surfaces[J]. Tribology Transactions, 1997, 40(4):605-612.
    [64] Turaga R, Sekhar A S, Majumdar B C. Stability Snalysis of a Rigid Rotor Supported on Hydrodynamic Journal Bearings with Rough Surfaces Using the Stochastic Finite Element Method. Journal of Engineering Tribology, 1998, 212(2):121-130.
    [65] Turaga R, Sekhar A S, Majumdar B C. Unbalance Response and Stability Analysis of a Rotor Supported on Hydrodynamic Journal Bearings with Rough Surfaces. Journal of Engineering Tribology, 1999, 213(1):31-34.
    [66] Zhang C, Qiu Z. Effect of Surface Texture on Hydrodynamic Lubrication of Dynamically Loaded Journal Bearings[J]. Tribology Transactions, 1998, 41(1):43-48.
    [67] Zhang C, Cheng H S. Transient Non-Newtonian Thermohydrodynamic Mixed Lubrication of Dynamically Loaded Journal Bearings[J]. Journal of Tribology-transactions of the ASME, 2000, 122:156-161.
    [68] Kato T, Obara S. Improvement in Dynamic Characteristics of Circular Journal Bearings by Means of Longitudinal Microgrooves[J]. Tribology Transactions, 1996, 39(2):462-468.
    [69] Kazama T, Yamaguchi A. Application of a Mixed Lubrication Model for Hydrostatic Thrust Bearings of Hydraulic Equipment[J]. Journal of Tribology-transactions of the ASME, 1993, 115(4):686-691.
    [70] San A L. Turbulent Hybrid Bearings with Fluid Inertia Effects[J]. Journal of Tribology-transactions of the ASME, 1990, 112(4):699-707.
    [71] Nagaraju T, Sharma S C, Jain S C. Influence of Surface Roughness Effects on the Performance of Non-recessed Hybrid Journal Bearings[J]. Tribology International, 2002, 35(7):467-487.
    [72] Nagaraju T, Sharma S C, Jain S C. Influence of Surface Roughness on Non-Newtonian Thermohydrostatic Performance of a Hole-Entry Hybrid Journal Bearing[J]. Journal of Tribology-transactions of the ASME, 2007, 129(3):595-602.
    [73] Lin J R. Surface Roughness Effect on the Dynamic Stiffness and Damping Characteristics of Compensated Hydrostatic Thrust Bearings[J]. International Journal of Machine Tools and Manufacture, 2000, 40(11):1671-1689.
    [74] Lin J R, Hsu C H, Lai C. Surface Roughness Effects on the Oscillating Squeeze-film Behavior of Long Partial Journal Bearings[J]. Computers and Structures, 2002, 80(3-4):297-303.
    [75] Gururajan K, Prakash J. Roughness Effects in a Narrow Porous Journal Bearing with Arbitrary Porous Wall Thickness[J]. International Journal of Mechanical Sciences, 2002, 44(5):1003-1016.
    [76] Gururajan K, Prakash J. Surface Roughness Effects in Infinitely Long Porous Journal Bearings[J]. Journal of Tribology-transactions of the ASME, 1999, 121(1):139-147.
    [77] Gururajan K, Prakash J. Effect of Surface Roughness in a Narrow Porous Journal Bearing[J]. Journal of Tribology-transactions of the ASME, 2000, 122(2):472-475.
    [78]徐享钧,张金墀.静压气体轴承的自转力矩及其应用[J].上海理工大学学报,1979,(1):125-130.
    [79]王博亮,刘建梅,徐志强.图像处理测量静压流体轴承涡流力矩[J].导弹与航天运载技术,2005,(5):43-47.
    [80]白永杰,刘德钧.某型液浮陀螺浮子结构的热应力分析[J].中国惯性技术学报,1999,7(4):54-57.
    [81]卜石,刘娜.利用AWE分析三浮陀螺浮子结构温度场[J].弹箭与制导学报,2006,(SD):966-977.
    [82]卜石,刘娜.某型号液浮陀螺温度场分析[J].弹箭与制导学报,2006,26(4):95-106.
    [83]严冰,徐枫,刘雪辰,等.液浮陀螺温度场优化方法研究及实现[J].设计与应用,2010,18(9):2145-2151.
    [84]虎刚,吴金涛.充气条件下陀螺马达的温升特性研究[J].宇航学报,2007,28(5):1167-1170.
    [85]邵月慧,崔燕.陀螺温度控制及建模研究[J].微计算机信息,2006,22(3-1):9-11.
    [86]杨玲,谢玲.单神经元PID在陀螺温控系统中的仿真研究[J].计算机仿真,2006,23(1):155-158.
    [87]腾玉琨,张英芳,谢念涛.陀螺漂移鱼温度动态过程的试验分析[J].中国惯性技术学报,1997,5(1):22-26.
    [88]廖祖平.单自由度气浮陀螺仪K0、K1项漂移系数精度控制的工艺研究[J].导航与控制,2004,3(3):52-58.
    [89]陆贤睦.单自由度陀螺浮子结构热应力和热变形的初步探讨[J].光学机械,1981,(3):20-28.
    [90]沈生培,陆贤睦,杨垿.提高单自由度液浮速率陀螺热稳定性和抗干扰的研究[J].上海交通大学学报,1983,(1):159-167.
    [91]杨庭楣,唐文林.静压液浮陀螺仪的热分析和热设计[J].中国惯性技术学报,1991,(2):76-86.
    [92]王春喜,崔桂利,廖祖平.陀螺仪马达轴承预紧力测试方法研究[J].宇航计测技术,2009,29(6):26-32.
    [93]彭万欢.静压气体径向轴承的静动特性研究[J].中国工程物理研究院硕士学位论文,2006:7-10.
    [94] Constantinescu V N. Gas Lubrication. The American Society of Mechanical Engineers, 1969.
    [95]刘暾,杜建军,姚英学,等.狭缝节流气体静压润滑方程式的离散化和相容性条件[J].机械工程学报,2003,39(1):33-37.
    [96]刘暾,彭春野,葛卫平,等.小孔节流气体静压润滑的离散化和计算收敛[J].摩擦学学报,2001,21(2):139-142.
    [97] Wang N, Chang C Y. Application of Newton’s Method to the Lubrication Analysis of Air-lubricated Bearings[J]. Tribology Transactions, 1999, 42(2):419-424.
    [98] Yoshimoto S, Nakano Y, Kakutari T. Static Characteristics of Externally Pressurized Gas Journal Bearings with Circular Slot Restrictors[J]. Tribology International, 1984, 17(4):199-202.
    [99] Leon L, Geroge F P. Numerical Solution of Partial Differential Equations in Science and Engineering. New York: John Wiley & Sons, 1982.
    [100] Connor J J, Brebbia C A. Finite Element Techniques for Fluid Flow. London: Butterworth & Co. Ltd. 1976.
    [101] Cross W A, Lee A M. Fluid Film Lubrication. New York: Wiley & Sons, 1980.
    [102]于秋红.热工基础[M].北京大学出版社,2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700