不耦合条件下导爆索起爆性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
导爆索起爆技术在工程爆破中广泛应用,不耦合装药条件对导爆索的起爆性能有着重要影响。本文对多种不耦合装药条件下导爆索起爆性能进行了分析,从爆轰理论分析、数值仿真模拟、爆破实验和工程实践应用等四个方面开展具体的研究。通过这四部分相互验证和完善,得到不耦合装药条件下导爆索起爆物理实质,推导、拟合出炮孔内空气冲击波峰值超压及其作用时间的衰减计算式,并将拟合公式与爆破实验结果相结合,总结出影响导爆索起爆技术的因素。本文主要内容和获得的研究成果如下。
     (1)根据爆轰物理,建立了导爆索孔内起爆的物理模型。该模型假设导爆索紧贴炮孔内壁,且炮孔内只有导爆索和空气两种物质,炮孔壁是完整和刚性的。利用冲击波理论,推测孔内导爆索爆炸产生空气冲击波的传播过程。根据爆炸相似率和量纲分析理论,推导出空气冲击波峰值超压及其作用时间的经验公式。
     (2)采用ANSYS/LS-DYNA3D对导爆索起爆技术进行数值模拟,得到空气冲击波在炮孔内的传播规律,并拟合回归得出冲击波超压经验公式中的参数。
     (3)为测试空气不耦合条件对导爆索起爆能力的影响,进行了爆破实验。实验证明在空气间隙约为25mm、不耦合系数约为2.0的条件下,导爆索成功起爆乳化炸药。把拟合公式与爆破实验结果进行对比,发现拟合公式计算值偏小于爆破实验值,表明乳化炸药药卷影响了管内空气冲击波的传播。
     (4)对爆炸冲击波在多种介质材料的传播进行理论分析和数值模拟,结果表明介质材料性质显著影响冲击波的传播。
The detonating cord initiation technology has been widely used in blasting. Decoupling charge condition has a significant impact on the initiation performance of the detonating cord.This paper analyzes the initiation performance of the detonating cord under many different decoupling charge conditions.lt is carried out by four specific researches--detonation theory analysis, numerical simulation, blasting experiment verification and engineering practical application. Through the mutual authentication and improvement of the four parts,we obtained the physical essence of the detonating cord initiation under decoupling charge conditions, derived and fitted the attenuation formula of the air shock wave peak overpressure and its action time within the blast hole. On this basis,we combined the attenuation formula and the results of the blasting experiments, concluded the factors which impact the performance of detonating cord initiation. The main contents and results obtained are as follows.
     (1) According to detonation physics, the physical model of initiation technology within the detonating cord hole was established.This model assumed that the detonating cord closed to the inner wall of the blast hole, there were only detonating cord and air in the blast hole, and the blast hole wall was unbroken and rigid. Using the shock wave theory,we tried to infer the propagation process of air shock wave which generated during the explosion within the blast hole. Based on the explosion similar rate and the dimensional analysis theory, the emprical formula of the air shock wave peak overpressure and its action time were derived.
     (2)Using ANSYS/LS-DYNA3D to conduct the numerical simulation of the detonating cord initiation technology, we found the law of air shock wave propagation within the blast hole and fitted the parameters of return shock overpressure emprical formula.
     (3) In order to test the effect of air decoupling condition on the performance of detonating cord initiation, the blasting experiments were conducted. The results showed that under the conditions that air gap is 25mm and decoupling coefficient is 2.0, the detonating cord can detonate the emulsion explosives successfully.Comparing the fitting formula to the results of blasting experiments,we found that the value of fitting formula was smaller than the value of blasting experiments.It indicates that the cartridges of emulsion explosives have effect on the propagation of air shock wave within the blast hole.
     (4) Throngh theoretical analysis and numerical simulation of blast wave propagation in some dielectric material, it shows that the properties of the dielectric material have significant effects on the propagation of shock wave.
引文
[1]东兆星,邵鹏.爆破工程[M].北京:中国建筑工业出版社,2005.
    [2]于亚伦.工程爆破理论与技术[M].北京:冶金工业出版社,2007.
    [3]郭声馄,汪旭光,陈积松.中国工程爆破的成就与发展战略[J].工程爆破,]999(04).
    [4]汪旭光.爆破器材与工程爆破新进展[J].中国工程科学,2002,4(4).
    [5]阜双陆.导爆索[M].北京:国防工业出版社,1975,11.
    [6]朱红兵.空气间隔装药爆破机理及其应用研究:[博士学位论文].武汉,武汉大学,2006.
    [7]史维升.不耦合装药条件下岩石爆破的理论研究和数值模拟:[硕士学位论文].武汉,武汉科技大学,2004.
    [8]杨军,陈鹏万,胡刚.现代爆破技术[M].北京:北京理工大学出版社,2004.
    [9]李名能,吕树森.导爆索起爆系统[J].爆破器材,1995(02).
    [10]张国荣.结构新颖的空心塑料导爆索[J].爆破器材,1990(02).
    [11]梅群.低能量导爆索关键技术及应用研究:[博士学位论文].合肥,中国科学技术大学,2007.
    [12]龚康平,陈美菱,李玲霞.一种低能量银导爆索的设计[J].火工品,2008,4(8).
    [13]黄寅生,杨贵华,臧小为等.铝壳金属导爆索性能研究[J].爆破器材,2008,37(3).
    [14]龚康平.编织型导爆索研究[J].爆破器材,2009,38(1).
    [15]阮喜清.非电复式起爆网络在台车回采中的应用[J].采矿技术,2003,3(3).
    [16]阮喜清,卢霞.小直径深孔采矿法在凡口铅锌矿的应用[J].中国矿山工程,2005,,34(4).
    [17]N.T.莫克森,D.米德,S.B.理查森.空气隔层爆破技术的研究[J].国外金属矿山,1993,,34(11).
    [18]薛若恒.对径向间隙效应原理及不偶合装药的初探[J].本溪冶金专科学校学报,1989(1).
    [19]刘鹏程.地下大直径深孔空气间隔装药结构探讨[J].矿业研究与开发,1994,,14(4).
    [20]鞠崇文,严碧.孔底间隔爆破技术及其应用[J].爆破,1998,15(1).
    [21]璩世杰.台阶爆破垂直中深孔间隔装药技术的理论分析与应用[J].工程爆破,1999,,5(4).
    [22]李维新.一维不定常流与冲击波[M].北京:国防工业出版社,2003.
    [23]李翼祺.马素贞.爆炸力学[M].北京:科学出版社,1992.
    [24]孙锦山,朱建士.理论爆轰物理[M].北京:国防工业出版社,1995.
    [25]W.E.贝克.空中爆炸[M].北京:原子能出版社,1982.
    [26]张连玉,汪令羽.爆炸气体动力学基础[M].北京:北京工业学院出版社,1987.
    [27]陈健.空气爆炸防护若干问题的研究:[博士学位论文].合肥,中国科学技术大学,2009.
    [28]陈军.超压爆轰产物状态及相关现象研究:[博士学位论文].绵阳,中国工程物理研究院,2008.
    [29]吴世永,张鸵,卢芳云.坑道内爆炸波的传播规律研究[J].地下空间工程与学报,,2010,,6(4).
    [30]Welch C R. In-tunnel air blast engineering model for internal and external detonations [C]. Proceeding of the 8th International Symposium on Interaction of the Effects of Munitions with Structures. Mclean Virginia,1997.
    [31]WU Jun, LIU Jingbo, YAN Qiushi. Effect of Shock Wave on Fabricated Anti-Blast Wall and Distribution Law Around the Wall Under Near Surface Explosion[J]. Transactions of Tianjin University,2008(14).
    [32]何翔,庞伟宾.坑道中冲击波超压的衰减[J].防护工程,2003,25(3).
    [33]杨科之,杨秀敏.坑道内化爆冲击波的传播规律[J].爆炸与冲击,2003,21(1).
    [34]hoiS, Wang J, MunfakhG, eta.l 3D nonlinear blast model analysis for underground structures. Geotechnical Engineering in the Information Technology Age,2006,206.
    [35]W. Bleakney, Rectangular Block, Diffraction of a shock Wave Around on Obstacle,. Princeton Univ. Dept. of Physics, Princeton, N.J., December 17,1949.
    [36]时党勇,李裕春,张盛民.基于ANSYS/LS-DYNAS8.1进行显式动力分析[M].北京:清华大学出版社,2005.
    [37]Ansys, inc.. ANSYS/LS-DYNA User Guide[R]. August 1999.
    [38]Livermore Software Technology Corporation. LS-DYNA Keyword User's Manual(970v)[R]. L ivermore,2003.
    [39]WANG J. Simulation of landmine explosion using LS-dyna3d software: Benchmark work of simulation f explosion in soil and air[C]. Australia:Weapons Systems Division Aeronautical and Maritime Research Laboratory,2001.
    [40]白金泽LS-DYNA3D理论基础与实例分析[M].北京:科学出版社.,2005.
    [41]Ansys Company. ANSYS/LS-DYNA算法基础和使用方法[R].2003.
    [42]R, Yang et al. A New Constitutive Model For Blasting Damage [J].Int. J. Rock,Mech. Min. Sci. and Geomech. Abstr,1996.33(3).
    [43]尚晓江,苏建宇ANSYS/LS-DYNA动力分析方法与工程实例[M].北京:中国水利水电出版社.2006.
    [44]张玮,杨颖涛,吴宇强.导爆索水孔爆破的数值模拟[J].工程爆破,2006,12(1).
    [45]钟东望,廖乃正.导爆索水孔爆破切割技术探讨[J].爆破,2001,18(4).
    [46]吴志刚.水介质耦合钻孔爆破及其在隧道工程中的应用:[硕士学位论文].成都,西南交通大学,2006.
    [47]伍建强,钱永久,贺丽LS-DYNA在工程结构抗爆中的应用[J].四川建筑科学研究,2005,31(5).
    [48]黄刚海.间柱采场深孔爆破落矿采矿工艺关键技术数值模拟研究:[硕士学位论文].长沙,中南大学,2010.
    [49]张宝,张庆明,黄风雷.爆轰物理学[M].北京:兵器工业出版社,2006.
    [50]J.亨利其.爆炸动力学及其应用[M].北京:科学出版社,1987.
    [51]李秀地,郑颖人.坑道内冲击波冲量传播模型的试验[J].解放军理工大学学报(自然科学版),2007,8(5).
    [52]第五机械工业部第二零四研究所.火工品手册[M].北京:第五机械工业部,1981.
    [53]金韶华,松全才.炸药理论[M].西安:西北工业大学出版社,2010.
    [54]汪旭光.乳化炸药[M].北京:冶金工业出版社,2008.
    [55]吴曼林,刘玉存.冲击波感度实验(SSGT)的数值模拟[J].火工品,2004(1).
    [56]宋锦原,汪旭光.乳化炸药冲击波感度试验研究[J].第七届工程爆破学术会议论文集,2001,10.
    [57]宋锦原,熊代余,汪扬.乳化炸药密度对其冲击波感度的影响[J].工程爆破,2003,9(3).
    [58]张正宇,张文煊,吴新霞等.现代水利水电工程爆破[M].北京:中国水利水电出版社,2003.
    [59]李顺波,东兆星,齐燕军等.爆炸冲击波在不同介质中传播衰减规律的数值模拟[J].振动与冲击,2009,28(7).
    [60]林俊德.封闭空间的化爆荷载与沙墙消波[J].解放军理工大学学报.2007,8(6).
    [61]雷鸣,张柏华,工宏亮等.沙墙吸能作用对爆炸冲击波影响的数值分析[C].第1届全国工程结构抗冲击爆炸作用学术会议.2007.
    [62]崔云霄,胡永乐,陈剑杰等.容器内填沙爆炸实验的数值分析[C].第九届全国冲击动力学学术会议论文集.2009.
    [63]姚哲芳.周听清,成永华等.大型多跨连体厂房爆破设计[J].工程爆破,2009.15(1).
    [64]Yang R, Bawden W.F. Katsabanis P.D. A new constitutive model for blast damage[J]. International Journal of Rock Mechanics and Mining Science. 1996,(33).
    [65]P.库尔.水下爆炸[M].北京:国防工业出版社,1960.
    [66]Zhu Hong-bing, Lu Wen-bo, Wu Liang. Air-Decking Technique in Bench Blasting[J]. Journal of china university of mining&technology(English Edition)Vol.16,No2,Jun.2006.
    [67]宋浦,肖川,梁安定等.炸药空中与水中爆炸冲击波超压的换算关系[J].火炸药学报.2008,31(4).
    [68]LYAKHOV G M. Principles of Explosion Dynamics in Soils and in Liquid Media[M]. Heapa, Mockba,1964.
    [69]张亚宾,张云鹏,李占金等.水压爆破的数值模拟[J].河北理工大学学报(自然科学版),2007,29(4).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700